Comments
Description
Transcript
460 ( )
Chapter 8, continued 2. H; Distance against current Distance with current }} 1 }} 5 time Speed with current Speed against current 2 2 x13 x23 2(x 2 3) 2(x 1 3) }} 1 }} 5 1.25 (x 1 3)(x 2 3) (x 1 3)(x 2 3) 2(x 2 3) 1 2(x 1 3) }} 5 1.25 (x 1 3)(x 2 3) } 1 } 5 1.25 2x 2 6 1 2x 1 6 x 29 4x } 5 1.25 x2 2 9 }} 5 1.25 2 1.25(x 2 2 9) 5 4x 1.25x 2 2 11.25 5 4x 1.25x 2 2 4x 2 11.25 5 0 4(1.25x 2 2 4x 2 11.25) 5 0 5. B; Volume of rectangular prism: V 5 *wh 5 (6x)(6x)(8x 2 3) 5 36x 2(8x 2 3) Volume of cylinder: V 5 :r 2h 5 :(3x)2(8x 2 3) 5 :(9x 2)(8x 2 3) 5x 2 16x 2 45 5 0 The ratio of the volume of the rectangular prism to the 4 volume of the inscribed cylinder is } F . : Volume of cube 5 s 3 5 (2r)3 5 8r 3 (5x 1 9)(x 2 5) 5 0 5x 1 9 5 0 9 x 5 2}5 or x2550 or x55 4 }:r 3 Volume of sphere 3 }} 5 } 3 Volume of cube 8r 4 3 } }: 5 8 Because x must be positive, x 5 5. Your speed in still water is 5 miles per hour. 4 1 5 }3 : + }8 3. D; : 50 5} 6 t5} 1} s15 s 50s s(s 1 5) 50s 1 250 s 1 5s 100s 1 250 5} s 2 1 5s 50s s 1 5s 5} 1} 2 2 The expression that represents the total time of the 100s 1 250 . cyclist’s round trip is } s 2 1 5s 4. F; Amount of zinc % zinc Amount of copper 5 }} 2 Amount of zinc x 25 5 } 2x 0.45 x 0.45(25) 5 0.451 } 2 x2 0.45 11.25 5 x 2 0.45x 11.25 5 0.55x 20.45 ø x You need about 20.45 ounces of zinc to make brass. ø 0.52 The ratio of the volume of the sphere to the volume of the cube is about 0.52. Chapter 8 Review (pp. 603–606) 1. If two variables x and y are related by an equation of a the form y 5 }x where a Þ 0, then x and y show inverse variation. z 2. The expression } represents the constant of variation. xy p (x) 3. A function of the form f (x) 5 } where p(x) and q(x) q(x) are polynomials and q(x) Þ 0 is called a rational function. complex fractions. 2 x11 } x24 2 3 5. When you rewrite the equation } 5 } as x21 x 3(x 2 1) 5 2x, you are cross-multiplying. a 6. y 5 } x a 5 y 5 }x 5 5 5 }1 5} 23 55a 5 2}3 5 y 5 }x Algebra 2 Worked-Out Solution Key 1 x } 4. Sample answer: The fractions } and }} are 2 1 3 }14 }1} x x11 5 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 50(s 1 5) s(s 15) 5}1} 460 4 : : (9x 2)(8x 2 3) 4 6. Volume of sphere 5 } :r 3 3 2 50 36x 2(8x 2 3) Volume of prism Volume of cylinder }} 5 }} 5 }F Chapter 8, 7. continued a 24 y 5 }x y5} x a 24 26 5 } 24 5} 23 24 5 a 5 28 3x 2 2 12. f (x) 5 } x24 x 2 4 5 0 l x 5 4, so x 5 4 is a vertical asymptote. 3 a y 5 }c 5 }1 5 3 is a horizontal asymptote. 24 y y5} x 45 a 8. y 5 }x y5} x 45 a 18 5 } 5 2 5 181 }2 2 5 a 5 215 45 5 a 45 y5} x a 28 y 5 }x y5} x a 212 28 }5} 5} 23 The numerator has no real zeros, so there is no x-intercept. The denominator has no real zeros, so there is no vertical asymptote. m 5 0 and n 5 2, so m < n and y 5 0 is a horizontal asymptote. x y 23 } 22 1 8 2121 }3 2 5 a 2 5 }3 24(2) 5 a 28 5 a 28 y5} x 4 10. y 5 } x23 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. The domain is all real numbers except 4, and the range is all real numbers except 3. 5 13. y 5 } x2 1 1 9(5) 5 a 2 3 x 22 5} 23 } 9. 2 y 1 2 0 5 2 1 3 } 1 x 21 1 2 y 4x 2 14. y 5 } x21 1 x 21 4x 2 5 0 l x 5 0, so 0 is an x-intercept. x 2 1 5 0 l x 5 1, so x 5 1 is a vertical asymptote. m 5 2 and n 5 1, so m > n and the graph has no horizontal asymptote. The domain is all real numbers except 3, and the range is all real numbers except 0. 1 11. y 5 } 1 2 x15 y x y 21 22 0 0 1 2 3 } 2 } 1 21 x The domain is all real numbers except 25, and the range is all real numbers except 2. y 5 22 x 22 18 2 16 3 18 Algebra 2 Worked-Out Solution Key 461 Chapter 8, continued 6x 2 15. h(x) 5 } x22 6x2 5 0 l x 5 0, so 0 is an x-intercept. x 2 2 5 0 l x 5 2, so x 5 2 is a vertical asymptote. m 5 2 and n 5 1, so m > n and the graph has no horizontal asymptote. y 21 22 0 0 1 26 3 54 4 48 5 50 10 4 x 23 2}3 21 22 0 2}3 1 22 3 2 2}3 } 26 3 22 2}3 0 2} 20 1 2}6 10 } 15 y 35 24 2 6 1 3 1 53 15 33 } 20 x 2 2 1 5 0 l x 2 5 1 l x 5 61, so 1 and 21 are x-intercepts. x 1 4 5 0 l x 5 24, so x 5 24 is a vertical asymptote. 1 2 m 5 2 and n 5 1, so m > n and there is no horizontal asymptote. x x 22 8 0 3 2 1 2}4 } 80x 5y 5 + 16 + x 2 + x 3 + y 16x 3 80x4 xy }} 19. } + }2 5 } 5} 2 3 5 2 2 3 5x y 5+x +y+y y2 y 5x 2 6(x 2 16) x23 x 2 3 6x 2 2 96 20. } + } 5} + }} 2(x 2 4) (x 1 3)(x 2 3) 2x 2 8 x2 2 9 x23 (2)(3)(x 2 3)(x 1 4)(x 2 4) 5 }}} (2)(x 2 4)(x 1 3)(x 2 3) 3(x 1 4) (x 2 8)(x 1 5) 5 0 or x 5 25 The vertical asymptotes are x 5 8 and x 5 25. 1 m 5 2 and n 5 2, so m 5 n and y 5 }1 5 1 is a horizontal asymptote. 5} x13 20x 2 2 5x 16x 2 2 8x 1 1 21. }} 4} 3 2 15x 3 x 2 7x 1 12x 16x2 2 8x 1 1 15x 3 x 2 7x 1 12x 20x 2 5x (4x 2 1)(4x 2 1) 15x 3 5 }} +} x(x 2 2 7x 1 12) 5x(4x 2 1) 5 }} +} 3 2 2 (4x 2 1)(4x 2 1)(5x)(3x)(x) 5 }}} x(x 2 4)(x 2 3)(5x)(4x 2 1) 3x(4x 2 1) 5 }} (x 2 4)(x 2 3) Algebra 2 Worked-Out Solution Key 6(x 1 4)(x 2 4) (x 1 3)(x 2 3) 5} + }} 2(x 2 4) x2 2 3x 2 40 5 0 x1550 x 8 The numerator has no real zeros, so there is no x-intercept. x58 2 25 224 23 or 5 27 216 21 x2850 g(x) y y x2 1 6 17. y 5 } 2 x 2 3x 2 40 462 x x2 2 1 18. g(x) 5 } x14 The numerator has no real zeros, so there is no x-intercept. The denominator has no real zeros, so there is no vertical asymptote. m 5 0 and n 5 2, so m < n and y 5 0 is a horizontal asymptote. y 28 h(x) 28 16. y 5 } x2 1 3 x y Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x x Chapter 8, continued x 2 2 13x 1 40 22. }} 4 (x 2 2 5x 2 24) x 2 2 2x 2 15 x 2 2 13x 1 40 1 x 2 2x 2 15 x 2 5x 2 24 (x 2 8)(x 2 5) 1 5 }} + }} (x 2 5)(x 1 3) (x 2 8)(x 1 3) 5 }} +} 2 2 (x 2 8)(x 2 5) 5 }}} (x 2 5)(x 1 3)(x 2 8)(x 1 3) 1 (x 1 3) 5 }2 3(x 1 4)(x 1 3) 5x 3(x 2 1 7x 1 12) 5x 29. 5} 1 }} 6x(x 1 3) 6x(x 1 3) 5(x 1 2) 5 7x 9(x 2 1) 5 4(3x) 5x 1 10 5 7x 9x 2 9 5 12x 23 5 x Check: 5 7 }0} 5 512 }0} 23 2 1 4 24 4 }0} 151 21 5 21 6 2 }5} 2x 1 5 x12 x 5 21 x23 Check: 5x 2 2 15x 6 2(21) 1 5 2 21 1 2 4x 2 9 }0} 6 3 2 1 4x 2 9 }0} 5 }} 1 }} (x 1 8)(x 2 3) (x 1 8)(x 2 3) 252 5x 2 2 11x 2 9 5 }} (x 1 8)(x 2 3) x 1 12 3 30. 5x x12 25. } 2} x2 2 9 x 2 1 4x 1 3 x 2 1 14x 1 24 5 6x 1 9 x23 5x x 2 1 8x 1 15 5 0 x11 5 }} + } 2 }} +} (x 1 3)(x 1 1) x 2 3 (x 1 3)(x 2 3) x 1 1 2 x 2x26 (x 1 5)(x 1 3) 5 0 x1550 2 5x 1 5x 5 }} 2 }} (x 1 3)(x 2 3)(x 1 1) (x 1 3)(x 2 3)(x 1 1) or x 5 25 x 2 2 x 2 6 2 (5x 2 1 5x) 5 }} (x 1 3)(x 2 3)(x 1 1) x 2 2 x 2 6 2 5x 2 2 5x 5 }} (x 1 3)(x 2 3)(x 1 1) x 5 23 Check x 5 23: 2(25) 1 3 25 1 12 }0} 3 25 1 2 2(23) 1 3 23 1 12 }0} 3 23 1 2 7 3 27 23 }0} 7 3 7 3 353 24x 2 2 6x 2 6 }0} 22(2x 2 1 3x 1 3) }5} 5 }} (x 1 3)(x 2 3)(x 1 1) 2x x14 31. 2 2x 26. } 5 } x 9 x1350 or Check x 5 25: 5 }} (x 1 3)(x 2 3)(x 1 1) 9 3 23 21 23x 4x 2 3 }5} 2x(4x 2 3) 5 (23x)(x 1 4) 2x 2 5 18 8x 2 2 6x 5 23x 2 2 12x x2 5 9 11x 2 1 6x 5 0 x 5 63 Check x 5 3: Check x 5 23: 2(3) 9 2 3 }0} 6 9 2 3 } 0 2} 2 3 2 3 2}3 5 2}3 } 5 } 2x 1 3 x12 }5} (x 1 12)(x 1 2) 5 3(2x 1 3) 5x 5 }} 2 }} (x 1 3)(x 1 1) (x 1 3)(x 2 3) }0} 29 9 1 0 }7 22x 5 2 5} + } 1 }} x18 x23 (x 1 8)(x 2 3) }0} 3(23) 9 22x 1 10 5 12 4x 2 9 5x 4x 2 9 5x 24. } 1 } 5} 1 }} x18 (x 1 8)(x 2 3) x18 x 2 1 5x 2 24 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 29 5 3x 55x 4x 1 10 5 6x 1 12 3x 2 1 26x 1 36 x12 10 5 2x Check: 5 }} 6x(x 1 3) x12 3x 9 }5} 2(2x 1 5) 5 6(x 1 2) 5x 3x 2 1 21x 1 36 5} 1 }} 6x(x 1 3) 6x(x 1 3) 5x x21 4 28. }5} 7 5 x14 5 x x 1 4 3(x 1 3) 23. } 1 } 5 } + } 1 } + } 2x 6(x 1 3) x 2x 6(x 1 3) 3(x 1 3) 5} 1 }} 6x(x 1 3) 6x(x 1 3) 7 x12 5 x 27. 2(23) 9 2 23 26 9 2 3 2 2 x(11x 1 6) 5 0 x50 or 11x 1 6 5 0 6 x 5 2} 11 Algebra 2 Worked-Out Solution Key 463 Chapter 8, continued 34. Check x 5 0: 23(0) 4(0) 2 3 }0} 0 4 0 23 21 2} 11 2 3x 2 2 3x 5 12 1 2x 2 2 2 6 2 x 2 3x 2 10 5 0 }0} 6 6 2} 14 23 4 2} 11 11 1 2 (x 2 5)(x 1 2) 5 0 18 } 11 } 57 2} 11 18 12 2} 0 2} 57 38 6 6 2} 5 2} 19 19 x2550 or x55 or Check x 5 22: 3(5) 511 }0} 12 2 12 24 }0}12 5 2 6 5 6 5 2 35. 2(x 1 7) x14 2x 1 20 2x 1 8 2(x 1 7) x14 2x 1 20 2(x 1 4) 12 3 }225} 65x F Check: G 2(x 1 7) F 2x 1 20 2(x 1 4) 2(x 1 4) } 2 2 5 2(x 1 4) } x14 3 5 }1}03 6 2 G 4(x 1 7) 2 4(x 1 4) 5 2x 1 20 1 2 }1}03 4x 1 28 2 4x 2 16 5 2x 1 20 12 5 2x 1 20 6 2 }03 28 5 2x 353 24 5 x 8(x 2 1) 4 } 5} x12 x2 2 4 33. 8(x 2 1) 4 }} 5 } x12 (x 1 2)(x 2 2) F 8(x 2 1) (x 1 2)(x 2 2) G 4 (x 1 2)(x 2 2) }} 5 (x 1 2)(x 2 2)1 } x 1 22 8(x 2 1) 5 4(x 2 2) 8x 2 8 5 4x 2 8 Check: 2(24 1 7) 24 1 4 4x 5 0 x50 2(24) 1 20 2(24) 1 8 }220} 6 0 12 0 }220} Division by 0 is undefined, so x 5 24 is an extraneous solution, and the equation has no solution. 36. a. 4x 2 8 5 28 b. Total free Total free 60 1 x 4 5} 75 1 x throws attempted throws made 60 1 x 75 1 x } 5 0.82 60 1 x 5 0.82(75 1 x) Check: 4 012 } 0} 2 4 2 }0} 252 464 26 21 }225} 5x 1 6 5 6x 28 24 12 (22) 2 1 }0}12 }5} 2 0 24 3(22) 22 1 1 12 5 21 15 6 3 x 8(0 2 1) x 5 22 }0} 12 2 3 5 2x }2 1 }x 5 2x(3) 5 2 x1250 Check x 5 5: }1}53 1 G 3x 2 2 3x 5 12 1 2(x 2 2 1) 231 2} 11 2 6 (x 1 1)(x 2 1) 3x(x 2 1) 5 12 1 2(x 1 1)(x 2 1) 6 5 2 F 3x : Check x 5 2} 11 32. 12 (x 1 1)(x 2 1) 12 (x 1 1)(x 2 1)1 x} 5 (x 1 1)(x 2 1) }} 1 2 1 12 050 0 3x x11 } 5 }} 1 2 }0} 12 2} 11 } 38 } 11 12 x 21 Algebra 2 Worked-Out Solution Key 60 1 x 5 61.5 1 0.82x 60 1 0.18x 5 61.5 0.18x 5 1.5 } x 5 8.3 The player must make 9 consecutive free throws to raise her free-throw percentage to at least 82%. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2(0) 014 3x x11 }5} 12 2 Chapter 8, continued 2 7. y 5 } 2 3 x15 Chapter 8 Test (p. 607) 1. 10 a y 5 }x y5} x 2 5 }5 5} 4 10 5 a 5 }2 y x 22 10 a 5 10 The domain is all real numbers except 25, and the range is all real numbers except 23. y5} x 2. 2 a 216 y 5 }x y5} x a 21 8. y 5 } 2 1 x24 216 85} 22 y 5} 4 216 5 a 1 5 24 5 216 x y5} x 15 a 3. y 5 }x y5} x 15 a 10 5 }3 } 5} 4 3 10 }2 5 a 15 5} 4 2 1 2 15 5 a 1 1 2x 1 1 5 0 l x 5 2}2 , so x 5 2}2 is a a 18 a y 5 }x 1 21 5 2}2 is a horizontal asymptote. y 5 }c 5 } 2 y5} x f(x) 18 a Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 62x 9. f (x) 5 } 2x 1 1 vertical asymptote. 15 y5} x 4. The domain is all real numbers except 4, and the range is all real numbers except 21. 6 5 }3 5} 4 18 5 a 5} 2 9 2 2 x 18 y5} x a 5. 214 y 5 }x y5} x a 24 7 2 214 }5} 5} 4 7 7 2 }(24) 5 a 5 2}2 214 y5} x 6. 15 32x a x 5 y5} a 15 32(4) }5} 3 8 } 4 5} 1 2 5 3 8 4 15 } } 5a 5} 128 15 32 }5a 15 } 15 32 } y5 5} x 32x 1 is all real numbers except 2}2. 4 10. y 5 } x2 1 2 The numerator has no real zeros, so there is no x-intercept. The denominator has no real zeros, so there is no vertical asymptote. 214 5 a y5} 1 The domain is all real numbers except 2}2 , and the range m 5 0 and n 5 2, so m < n and y 5 0 is a horizontal asymptote. x y 22 } 21 2 3 4 } 3 0 2 1 } 2 y 1 21 x 4 3 2 } 3 Algebra 2 Worked-Out Solution Key 465 Chapter 8, continued x2 2 4 11. y 5 } x 2 1 8x 1 15 15. x 2 2 4x 5 x(x 2 4) x 2 2 2x 2 8 5 (x 2 4)(x 1 2) x 2 4 5 0 l x 5 4 l x 5 62, so 2 and 22 are x-intercepts. 2 2 LCM 5 x(x 2 4)(x 1 2) 16. 2x 1 6 5 2(x 1 3) x 2 1 8x 1 15 5 0 x 3 1 10x 2 1 21x 5 x(x2 1 10x 1 21) 5 x(x 1 3)(x 1 7) (x 1 5)(x 1 3) 5 0 x1550 or x 5 25 LCM 5 2x(x 1 3)(x 1 7) x1350 or 6y 2 3x 2y 2xy 3 3x2y 17. } 4 }3 5 } +} 2xy 4x 3y 5 6y 2 4x 3y 5 x 5 23 The vertical asymptotes are x 5 25 and x 5 23. 6x 3y 4 1 m 5 2 and n 5 2, so m 5 n and y 5 }1 5 1 is a horizontal asymptote. x 5} 3 7 24x y 6x 3y 4 5 }} 3 4 3 6+4+x +y +y y y 1 4y 5 }3 4 26 32 } 3 24 212 7 2}2 5 21 x x24 211 5 5} x13 9 5 2}2 } 22 0 1 2}8 2 0 (x 2 5)(x 2 3) x 2 2 8x 1 15 x14 x14 19. }} + } 5 }} + }} (x 1 4)(x 1 8) (x 1 5)(x 2 5) x 2 1 12x 1 32 x 2 2 25 (x 2 5)(x 2 3)(x 1 4) 5 }}} (x 1 4)(x 1 8)(x 1 5)(x 2 5) 1 x23 5 }} (x 1 8)(x 1 5) x 2 2 11x 1 28 20. }} 4 (x 2 2 16) x 2 1 5x 1 4 x2 1 3 12. g(x) 5 } 2x 2 1 The numerator has no real zeros, so there is no x-intercept. 1 1 x 2 2 11x 1 28 x 1 5x 1 4 1 x 2 16 (x 2 7)(x 2 4) 1 (x 1 4)(x 2 4) 5 }} +} 2 2 2x 2 1 5 0 l x 5 }2, so x 5 }2 is a vertical asymptote. + }} 5 }} (x 1 4)(x 1 1) m 5 2 and n 5 1, so m > n and there is no horizontal asymptote. 5 }}} (x 1 4)(x 1 1)(x 1 4)(x 2 4) x f (x) 26 23 21 2}3 0 23 1 4 2 } 7 4 4 x27 (x 1 4) (x 1 1) 5 }} 2 3x 2 (4x 1 1) 4x 1 1 3x 21. } 2 } 5 }} x15 x15 x15 1 22 7 3 x(x 1 5) LCM 5 x(x 2 3)(x 1 5) 14. 4x 2(x 2 2) 5 (22)(x 2)(x 2 2) 8x(x 1 2) 5 23(x)(x 1 2) LCM 5 23(x2)(x 2 2)(x 1 2) 5 8x 2(x 2 2)(x 1 2) Algebra 2 Worked-Out Solution Key (x 2 7)(x 2 4) g(x) 13. (x 2 3)(x 1 5) 466 (x 2 4)(x 1 1) x 2 6 x 2 2 3x 2 4 x 2 6 18. } + } 5 }} +} (x 2 6)(x 1 3) x 1 1 x 2 2 3x 2 18 x 1 1 (x 2 4)(x 1 1)(x 2 6) 5 }} (x 2 6)(x 1 3)(x 1 1) x 3x 2 4x 2 1 5} x15 2x 2 1 5} x15 2 4 2 x16 x23 4 22. } 1 } 5 } + } 1 } + } x16 x23 x16 x16 x23 x23 4x 1 24 2x 2 6 1 }} 5 }} (x 2 3)(x 1 6) (x 2 3)(x 1 6) 6x 1 18 5 }} (x 2 3)(x 1 6) 6(x 1 3) 5 }} (x 2 3)(x 1 6) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28 Chapter 8, continued 6 3x 6 3x 23. } 2} 5 }} 2} x14 x14 (x 1 4)(x 2 3) x2 1 x 2 12 3x 6 x23 2} +} 5 }} x14 x23 (x 1 4)(x 2 3) 3x Check x 5 3: Check x 5 2: 311 13 1 }1}0} 3 316 316 }1}0} 1 9 6x 2 18 3x 2 (6x 2 18) 23(x 2 6) 2x x25 4x 2 20 2x 6x 2 20 2(3x 2 10) 5 }} 5 }} (x 1 5)(x 2 5) (x 1 5)(x 2 5) x23 2x 1 4 }5} 622 4 5 4 5 }5} a 28. I 5 }2 r 50m 1 30 0 5 (x 2 9)(x 1 2) 5} m x1250 C x 5 22 Check x 5 9: Check x 5 22: 3 912 }0} 923 2(9) 1 4 3 22 1 2 }0} 6 22 3 0 }0} 22 2 3 2(22) 1 4 25 0 }0} 3 3 }5} 11 11 Average cost (dollars) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 8 10 c 5 }}}} Number of months 0 5 x 2 2 7x 2 18 80 Division by 0 is undefined, so 22 is an extraneous solution. The only solution is x 5 9. 40 20 13 x16 13 x 1 x 2 1 7x 1 6 5 13x x 2 1 8x 1 6 5 13x x 2 2 5x 1 6 5 0 (x 2 3)(x 2 2) 5 0 x2350 or x2250 x53 or x52 2 4 6 8 Number of months m After 5 months, the average cost will be $56. Monthly fee + Number of months 1 Setup fee 1} 5 x(x 1 6)1 } x(x 1 6)1 } x 2 x16 x 1 62 x 1 (x 1 6)(x 1 1) 5 13x 0 30. Let c be the average cost and m be the number of months. }1}5} x11 (5, 56) 60 0 1 4 5 }0} Monthly fee + Number of months 1 Installation fee 6x 1 12 5 x 2 2 x 2 6 x11 x 612 0} Check: } 621 614 29. Let c be the average cost and m be the number of months. 3(2x 1 4) 5 (x 1 2)(x 2 3) 1 x16 x12 x14 x56 5 }} 1 }} (x 1 5)(x 2 5) (x 1 5)(x 2 5) 26. 13 8 x 2 8 5 22 5} + } 1 }} x15 x25 (x 1 5)(x 2 5) 3 11 13 8 }5} 2x 2 8 5 x 2 2 2x 2x 4 4 24. } 1 } 5} 1 }} x15 x15 (x 1 5)(x 2 5) x 2 2 25 or 13 8 x 2 1 2x 2 8 5 x 2 1 x 2 2 5 }} (x 1 4)(x 2 3) or 3 2 1 8 (x 2 2)(x 1 4) 5 (x 2 1)(x 1 2) 23x 1 18 x59 13 216 }5} 5 }} (x 1 4)(x 2 3) x2950 13 9 x22 x21 27. 3x 2 6x 1 18 5 }} (x 1 4)(x 2 3) 3 x12 13 9 211 2 }1}0} }5} 5 }} (x 1 4)(x 2 3) 25. 13 9 }1}0} 2 }} 5 }} (x 1 4)(x 2 3) (x 1 4)(x 2 3) 4 4 3 1 216 c 5 }}}} Number of months 99m 1 50 5} m 99m 1 50 100 5 } m 100m 5 99m 1 50 m 5 50 You would need to use this service for 50 months in order for your average monthly cost to fall to $100. Algebra 2 Worked-Out Solution Key 467 Chapter 8, continued TAKS Practice (pp. 610–611) 5. A; 2 (21, 3); parallel to y 5 2}5 x 2 1 1. B; * 5 20 2 2 5 18 in. 2 m1 5 2}5 w 5 12 2 2 5 10 in. 2 h 5 8 2 2 5 6 in. m2 5 m1 5 2}5 Surface area 5 2B 1 Ph Let (x1, y1) 5 (21, 3). 5 2(18)(10) 1 [2(18) 1 2(10)](6) y 2 y1 5 m2(x 2 x1) 5 360 1 56(6) 2 y 2 3 5 2}5 (x 2 (21)) 5 360 1 336 5 696 2 y 2 3 5 2}5 (x 1 1) The surface area of the new packaging is 696 square inches. 2. G; 2 2 13 y 5 2}5 x 1 } 5 Volume 5 :r 2h 1960 5 :(12)2h 5y 5 22x 1 13 1960 5 144:h 2x 1 5y 5 13 1960 144: 6. F; }F 5h a2 1 b2 5 c2 4.3 ø h x 2 1 402 5 (50 2 x)2 The swimming pool is about 4.3 feet tall. 2 x 1 1600 5 2500 2 100x 1 x 2 3. B; The scale factor of n AED to n ABC is 8 : 24, or 1 : 3. Let x be the perimeter of n ABC. 40 x }5} 100x 1 1600 5 2500 100x 5 900 x59 The part of the flagpole that remains standing is 9 feet tall. x 5 120 7. A; The line passes through (0, 5) and (24, 0). The perimeter of n ABC is 120 units. 025 4. F; Find the surface area to paint on each part of the silo. 5 y 2 5 5 }4 (x 2 0) 5 :r* 5 :(15)(17) 5 y 2 5 5 }4 x ø 801.11 5 Cylinder surface area 5 (2:r 2 1 2:rh) 2 2:r 2 2}4 x 1 y 2 5 5 0 5 2:rh 5 241 2}4x 1 y 2 5 2 5 0 5 2:(15)(40) 5x 2 4y 1 20 5 0 ø 3769.91 5x 2 4y 5 220 2 Total surface area ø 801.11 1 3769.91 ø 4571 ft . 1 gallon 400 ft So, the painter needs 12 gallons of paint. 5 y 2 y1 5 m(x 2 x1) Cone surface area 5 (:r 2 1 :r*) 2 :r 2 4571 ft2 + } ø 11.4 2 25 m5} 5} 5 }4 24 2 0 24 8. H; h tan 608 5 } 40 40 + tan 608 5 h 69 ø h The tree is about 69 feet tall. 468 Algebra 2 Worked-Out Solution Key h 608 40 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 3 2 y 2 3 5 2}5 x 2 }5 Chapter 8, continued 9. C; 50 3 x 4.5 }5} 3x 5 50 + 4.5 50 + 4.5 x5} 3 x 5 75 It takes 75 pounds of force to stretch the spring 4.5 inches. 10. J; y 5 2x 2 produces the narrowest parabola when graphed 2 because {2{ > {21.5{ > {2}3 { > {0.5{. 11. C; The domain of the relation shown is all values of x that are greater than or equal to 1, or x q 1. 12. J; 94 1 85 1 89 1 90 1 s 5 }} q 90 358 1 s 5 } q 90 358 1 s q 450 s q 92 To achieve a final grade of A, Lisa’s score on the fifth exam must be greater than or equal to 92, so s q 92. 13. C; 3y 5 15(x 2 5) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y 5 5(x 2 5) y 5 5x 2 25 The slope of the line is 5. 14. Price 1 Sales tax 5 Total cost 212.50 1 212.50x 5 227.91 212.50x 5 15.41 x ø 0.073 The sales tax to the nearest percent is 7%. Algebra 2 Worked-Out Solution Key 469