Comments
Description
Transcript
{
{ 1 0 5 1 42 1 58.5 0 130.5 continued { 1 0 5 48. H; 1 1 0 The pentagonal prism has 15 edges. Cl 5 }}} 6 Lesson 3.8 3.8 Guided Practice (pp. 210–213) (130.5 1 292.5 1 0) 2 (210 1 0 1 0) 5 }}} 5 35.5 6 The atomic weights of flourine, sodium, and chlorine are 19, 23, and 35.5, respectively. F 4 1 1. } 24 2 2 22 70 128 1 70 128 1 0 70 45. a. Area 5 6} 0 70 1 2 124 36 124 36 1 { 1 { 21 6 G F 4 21 22 22 6 1 5} 5 F 8 25 1 2. } 28 2 (220) 5 4786 { { F 22 1 3. } 624 1 5 3201 2 The area of the bottom triangular region is 3201 mi . c. Total area 5 4786 1 3201 5 7987 The total of the Dinosaur Diamond is 7987 mi2. d. You could connect Vernal, UT, to Moab, UT, to create a left and right triangular region. { 1 { 1 x 120 1 100 50 5 5000 1 0 0 6}2F (50x 1 0 1 0) 2 (0 1 0 1 12,000) G 5 5000 1 6}2 (50x 2 12,000) 5 5000 Two possibilities: 1 1. }2 (50x 2 12,000) 5 5000 4 6 21 1 24 4. 2} 0 24 1 2}4 G F x 5 40 The farmer could put the final post at (40, 120) or (440, 120). Mixed Review for TAKS 47. C; Total pay 5 Salary 1 Bonus + Number of new customers 150 Algebra 2 Worked-Out Solution Key 8 25 4 21 F G } 2 3 2} 12 1 3 2} 12 5 1 4 1 22 5 }2 1 21 2 1 2 2}2 G 1 5 3 1 24 2}4 } 0 } 24 1 1 6 0 6 1 0 0 1 } 1 23 } } 24 0 1 6 1 5. A 5 F 2 22 2 0 1 24 } 8 9 1 6 24 6 0 } 9 F 2}4 1 }4 014 011 21 22 4 G F 21 1 22 1 1 X5 0 22 ; A 12 24 26 2}4 X5 X5 1 2. 2}2 (50x 2 12,000) 5 5000 225x 5 21000 12 a c, or c q 12 G F G F GF G F GF G F GF G F G F G 23 5 x 5 440 60 a 5c 3 1 4 21 25x 5 11,000 450 a 390 1 5c } 11 } 1 46. 1 5} 12 5 70 0 36 5 6}2 [(0 1 8680 1 2412) 2 (0 1 0 1 4690)] x 120 1 6}2 100 50 0 0 2} 22 2} 11 The area of the top triangular region is 4786 mi2. 0 70 1 0 67 0 1 67 124 36 1 124 1 2 11 } F G F G 5 6}2 [(4900 1 15872 1 0) 2 (8680 1 2520 1 0)] 1 b. Area 5 6} 2 G 1 G 21 21.5 0.5 5 21.5 21.5 0.5 21 22 0.5 G Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 3, Chapter 3, continued F GF G F G F G F GF G F G F G F G F G F GF G F Check: AA21 5 5 2 22 0 21 21.5 0.5 2 0 22 21.5 21.5 0.5 12 24 26 21 0.5 22 1 3 1 0 23 1 3 1 0 22 1 0 1 2 23 1 0 1 4 11021 212 1 6 1 6 218 1 6 1 12 62223 1 0 0 5 0 1 0 0 0 1 12110 0.01307 0.2026 20.0327 0.1503 20.1699 0.1242 2 22 0 0.06535 1 0 2 0.0654 0.5 2 0 22 0.7515 1 0 1 0.2484 21 22 0.5 12 24 26 01323 22 2 4 1 6 21022 01423 1 0 0 5 0 1 0 0 0 1 23 4 5 1 5 0 5 2 2 21 A ø 0.01307 0.1242 Check: 23 4 5 1 5 0 5 2 2 AA21 ø 20.0654 20.0131 0.01307 0.1634 0.2026 20.0327 0.1503 20.1699 0.1242 23 3 1024 22 3 1024 24 0.99988 25 3 1025 2 3 1024 1 3 1024 0.9999 21.1 3 10 1 0 0 ø 0 1 0 0 0 1 2 1 22 5 3 4 3 5I 0 12 27 ; A21 5 220 12 25 8 1.5 21 0.5 3 Check: 21 AA 2 1 22 12 5 5 3 0 4 3 8 24 2 20 2 3 5 27 3 220 12 25 1.5 21 0.5 214 1 12 1 2 62521 60 2 60 1 0 235 1 36 1 0 15 2 15 1 0 48 2 60 1 12 228 1 36 2 8 12 2 15 1 4 1 0 0 5 0 1 0 20.0654 1 0.06535 1 0 0 0 1 20.327 1 0.02614 1 0.3006 G 1.0001 0.1962 1 0.05228 1 0.7515 5 5I 12 27 3 2 1 22 0.0393 1 0.8104 2 0.8495 A21A 5 220 12 25 5 3 0 20.0131 1 1.0130 1 0 1.5 21 0.5 4 3 8 20.0655 1 0.4052 2 0.3398 20.4902 2 0.1308 1 0.621 0.1634 2 0.1635 1 0 0.817 2 0.0654 1 0.2482 5 7. A 5 0.1634 0.2026 20.0327 0.1503 20.1699 F F G G 0.99998 2 3 1024 0 25 3 1025 0.9999 21 3 1024 22.6 3 1024 21 3 1024 0.9998 1 0 0 ø 0 1 0 0 0 1 5I G 2 F G F G F G F G F GF G F G F G F GF G F G F G 5 5I 20.0654 20.0131 2 0.6012 2 0.8495 1 0.2484 20.327 1 0 1 0.3268 0.5 31022 5 0.05228 1 1.013 2 0.0654 21.5 5 23 2 3 1 6 0 20.2616 2 0.0655 1 0.3268 21.5 01323 5 5 20.4509 2 0.1699 1 0.621 21 21022 4 1 0.1962 2 0.0131 1 0.817 5I 22 2 3 1 6 GF G 23 5 20.03921 1 0.2026 2 0.1635 A21A 5 21.5 6. A 5 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 F F 0.1634 20.0654 20.0131 A21A 5 24 2 35 1 12 12 2 21 1 9 5 240 1 60 2 20 220 1 36 2 15 32512 1.5 2 3 1 1.5 224 1 0 1 24 40 1 0 2 40 23 1 0 1 4 1 0 0 5 0 1 0 0 0 1 5I Algebra 2 Worked-Out Solution Key 151 Chapter 3, F GF G F G F GF 4 1 3 x 5 10 5 y 21 5 21 1 A21 5 } 17 4 23 X 5 A21B 5 1 5 17 2} 17 } 5 3 4 17 2} 17 } 1 3. } 425 G 5 17 2} 17 10 3 2} 17 4 } 17 21 3 5 22 The solution of the system is (3, 22). 9. x 6 23 y 26 5 2 y 2 1 4 3 21 X5A B5 F 7 6 1 7. }} 228 2 (224) 24 24 3 2 2 1 1 }2 } 25 8 3 2 } 5 0 m 17 2 2 1 p 5 35 4 3 2 d 69 F G A movie pass costs $8, a package of popcorn costs $1, and a DVD costs $17. 7 6 1 5 2}4 24 24 F G x y 4 Matrix of constants: 22 2. First, you find the determinant of A. Then, switch the elements on the downward diagonal and negate the elements on the upward diagonal. Finally, you multiply } and the new matrix. Algebra 2 Worked-Out Solution Key G 3 2}4 2}2 1 1 F G 5 11 1 1 2} 2} 36 72 F 260 G F 1 30 260 5 2} 360 6 F G F GF G F G 224 224 1 1 1 1 15 2} 60 5 1 21 2 }6 10. } 10 4 2}3 2 1 2} 32 4 4 3 } G }6 2} 12 5 } 5 21 2 }6 1 5 }2 5 FG FG } 2} 2} 12 24 30 1 9. }} 2720 2 (2360) 6 3.8 Exercises (pp. 214–217) 152 6 2 17 1 det A 7 3 2 3 20 22 1 5 2} 144 12 6 5 1 1. Matrix of variables: 3 F G 20 22 1 8. } 120 2 264 12 8 Skill Practice F G 7 21 F GF G F G FG 1 5 2}2 G F 5 1 1 }2 5 6 25 3 9 1 5 2}3 22 27 27 8 2 A B5 9 5 } The solution of the system is (21, 2). 21 6 3 22 1 21 2 22 1 5 }2 25 5 2 11. 22 4 23 5 21 23 GF G F G F GF G F GF G F G x 1 2 1 5. } 12 2 10 25 21 21 4 23 5 1 3 22 3 22 2 3 21 A21 5 }2 4 23 24 25 5 1 5 1 24 1 5 218 Because {A{ 5 0, }is undefined and A does not {A{ have an inverse. The system has infinitely many solutions. F 1 4 5 21 1 1 1 23 A21 5 }0 26 10. 5 3 1 6. }} 221 2 (218) 22 F GF G F G F G 2 21 4 1 4. } 28 2 (29) F GF G F G 1 } F G F GF G F G F GF G F G F GF G F G F G 4 3 4 } 1 5 2 } 2 }2 2 } 12 2 3 1 11. The new matrix should have been multiplied by }, det A not by det A. F G F G F GF 2 4 1 5 21 12. C; 21 1 210 2 (29) 23 } 3 10 2 5 F G 5 6 } 5 24 1 5 }6 21 5 1 1 2 }6 23 3 210 G 2 2 }3 1 3 } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 8. continued Chapter 3, continued F GF G F GF G F F G F F F GF G F GF G F F G F F F GF G F GF G F F G F F F GF G 5 21 1 13. } 1 24 1 5 21 5 5 21 1 1 1 4 5 24 1 24 X5 1 0 3 1 14. } 2 22 3 } 2 28 5 6 6 8 3 2 3 1 0 21 0 1 11 21 X5 X5 21 0 } } 6 4 1 4 1 0 0 1 1 16. 2} 12 21 X5 23 F GF 1 1 2 2}6 } 1 } 12 1 } 4 2}6 1 } 12 G F G 23 6 1 2 1 0 0 1 }18 X5 9 2 23 2 6 25 2 } 24 29 21 0 } } 3 2 1 4 23 1 0 9 2 }11 23 11 2 } 1 1 0 2}2 5 X5 0 22 F G F F 1 0 0 1 X5 GF G G G F GF F GF G F G 1 3 22 18. } 3 9 25 5 3 4 110 3 1 19. A21 5 1 2}4 F F F Check: 2 29 3 1 0 0 1 0.9 0.6 20.2 0.2 1 0 5 12 19 } 6 29 12 } 8 2 1 6 }11 1 1 2} 1 }2 12 G F GF G F G F G G GF G 1 2}3 4 5 0 5 2}3 3 1 6 3 422 2 5 2 }3 2 } 13 3 24 7 } 40 3 210 024 0 2 10 20.3 20.2 0.3 0.9 0.6 0.1 20.2 0.2 0.2 0.6 1 0 2 0.6 0.4 1 0 1 0.6 20.9 1 0.9 1 0 20.6 1 0.6 1 0 0.3 1 0.1 2 0.4 20.6 1 0 1 0.6 0.9 1 0.1 1 0 F G 1 0 0 5 0 1 0 5 12 0 0 1 } G G 20.3 1 0.9 1 0.4 20.2 1 0.6 2 0.4 5 } 7 6 022 0.1 3 5 21 0 1 10 0.2 1 4 1 1 } } 12 4 5 2}6 1 4 10 19 G 0.3 3 F GF G F G F G 18 5 22 1 2 024 12 2 5 15 2 }3 1 } 8 023 X5 0 2}6 4 23 24 22 X5 1 } 6 2 AA21 5 22 1 2 0 5 20.3 20.2 5 3 21 3 1 15 21 1 20 X5 5 2}2 1 }4 0 1 2}2 3 2}3 25 5 2}3 } 2 2 1 2}3 5 2 1 1 2}3 3 21 }12 X5 5 } } 1 X5 3 610 1 4 X5 4 3 6 } GF G G G 24 24 1 0 0 1 5 0 1 2}2 G 5 2 1 X5 0 22 21 } X5 2 26 3 } 2 21 3 2 0 } 9 3 5 21 3 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 15 2 6 5 2 1 29 26 X5 4 1 15. 2} 4 26 6 24 21 24 3 21 28 2 1 212 1 6 X5 3 } 2 2 1 10 1 1 X5 0 1 GF G G G 5 21 24 F G F GF G F GF F 1 22 25 17. 2} 2 0 1 G 5I Algebra 2 Worked-Out Solution Key 153 Chapter 3, A A5 5 F F 20.3 GF 0.3 20.2 1 1 22 0.9 0.6 0.1 22 0 3 20.2 0.2 0.2 3 1 0 20.3 1 0.4 1 0.9 G 21 A A5 20.3 1 0 1 0.3 0.9 2 1.2 1 0.3 0.9 1 0 1 0.1 20.2 2 0.4 1 0.6 20.2 1 0 1 0.2 G 5 5 0 1 0 0 0 1 } } 20.8 3 } 1.1 6 21. 3 20. A21 5 Check: 1 21 AA 0 } } 0. 3 } 20. 6 2 5 2 1 3 1 4 4 0 5 2 1 1 5 F 4 2 3 4 8 5 10 F G 154 2}3 5 2}6 1 } 3 1 } 6 7 } 6 2 2}3 1 } 6 14 2}3 2 } 1} 3 3 1 0 0 5 0 1 0 0 0 1 Algebra 2 Worked-Out Solution Key 5I 2 1 6 } 4 8 1 5 2 1 7 6 4 3 1 6 G 0 1 0 0 0 1 Check: AA G 1 1 2}3 1 0 1 }3 }1}22 8 3 1 3 2}3 1 }6 1 }2 4 3 4 3 8 3 2}3 1 }3 1 }3 2 1 1 1 2 2 2 2 1 3 1 4 4 1 0 2 2 1 3 1 4 4 4 4 1 2 2 2 4 5 2 7 3 2 3 2}3 1 1 1 }3 0 2 }3 1 }3 }221} 5I 20.5 0 0.5 0.125 0.4375 0.21875 0.0625 20.03125 5 22 G 8 2}3 1 4 2 }3 21.0625 1 21 21 4 4 }102} 3 3 }1}2} 0 0 0 1 }3 1 }3 F G F F GF F 1 1 0 1 }3 2 }3 2}6 1 }3 1 }6 5 0 21. A21 5 1 4 3 7 } } 0.1 6 } 0.1 6 20. 3 } 2}3 2 }6 1 }2 4 } } 0. 3 } 20. 6 1. 3 2}3 4 7 2}3 1 0 1 }3 1 6 }2}1} F G 4 1 5 } } 0.1 6 } 0.1 6 } } 20.8 3 } 1.1 6 } 2}3 20. 3 21. 3 1 3 2}3 1 }3 2 }3 5I 1. 3 2}3 7 6 } F G F G F GF F G 0 4 3 } 0.4 1 0.6 1 0 1 } 5 2}6 GF G F G } } 0.1 6 } 0.1 6 20. 3 F G F 4 21.8 1 1.8 1 0 0 } } 0. 3 } 20. 6 1. 3 2}3 0.6 2 0.6 1 0 1 F } } 20.8 3 } 21.1 6 21. 3 G G 2 20.5 0 0.5 3 10 21.0625 0.125 0.4375 3 21 2 0.21875 0.0625 20.03125 20.5 1 1.0625 1 0.4375 0 2 0.125 1 0.125 1 2 3.1875 1 2.1875 0 1 0.375 1 0.625 21.5 1 1.0625 1 0.4375 0 2 0.125 1 0.125 5 0.5 2 0.4375 2 0.0625 21 1 1.3125 2 0.3125 1.5 2 0.4375 2 0.0625 F G 1 0 0 5 0 1 0 0 0 1 5I G Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 21 continued Chapter 3, F F GF 0 20.5 A21A 5 21.0625 5 continued 0.5 0.125 0.4375 1 21 22 0.21875 0.0625 20.03125 G 2 3 10 3 21 A21A ø 2 20.5 1 0 1 1.5 F F F 0.03425 21.0625 2 0.25 1 1.3125 0.5 1 0 2 0.5 0.08219 0.08219 0.01370 0.34247 20.10960 5 21 0 8 1 12 25 0 5 20.21875 1 0.1875 1 0.03125 G 20.16438 1 0 1 0.1644 1.31506 1 0 2 1.3152 21 1 0 1 1 22. A 0.41095 1 0.65752 2 0.0685 23.28765 1 2.73976 1 0.548 20.03425 1 0.03425 1 0 F G F F G F F 1 0 0 5 0 1 0 0 0 1 ø 0.17125 1 0.274 2 0.4452 0.4375 1 0.625 2 0.0625 5I 0.03425 21 0.03425 0.08219 0.08219 20.08219 1 0.08219 1 0 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. AA 0.65753 1 0.34247 1 0 G 0.08904 0.01370 20.65753 0.34247 20.10960 Check: G F G F G F G F GF G F G F G 0 0.99997 0 24 24 1 1 0 0 1 0 0 1 22 5 21 0 8 1 0 12 25 0 0.03425 0.03425 0.08904 0.08219 0.08219 0.01370 20.65753 0.34247 20.10960 G Check: 20.0685 1 0.41095 1 0.65753 21 AA 0 1 0.65752 2 0.65753 5 5 3 1025 25 1.1 3 10 21.4 3 10 23. A21 5 5I 0.15 0.3 0.05 20.06875 0.1125 0.01875 20.025 20.05 20.175 5 3 28 0 2 1 20.06875 0.1125 0.01875 0 26 20.025 20.05 20.175 4 21 0.411 2 0.41095 1 0 G 0.99998 2 3 10 5 ø 0 ø G 20.0685 1 0 1 1.06848 1.0625 1 0.375 2 0.4375 22.125 1 1.25 1 0.875 0.08904 20.65753 22 0.21875 2 0.125 2 0.09375 0.03425 0.15 0.3 0.05 0.45 1 0.55 1 0 0.9 2 0.9 1 0 0 1 0.65752 1 0.34247 5 0.3 2 0.275 2 0.025 0.6 1 0.45 2 0.05 0.411 2 0.41095 1 0 20.15 1 0 1 0.15 20.3 1 0 1 0.3 20.0685 1 0.41095 2 0.34247 20.17808 1 0.0685 1 0.10960 0 1 0.1096 2 0.10960 1.06848 2 0.0685 1 0 F F G 22.0 3 1025 0.99998 25 0.99999 5 3 1025 5 3 1025 5 21.0 3 10 1 0 0 ø 0 1 0 0 0 1 G 0.15 2 0.15 1 0 0.1 1 0.075 2 0.175 G 20.05 1 0 1 1.05 1 0 0 0 5 0 1 0 0.99998 0 0 1 2.0 3 1025 5I 5I Algebra 2 Worked-Out Solution Key 155 Chapter 3, 0.15 0.3 GF 0.05 3 28 A21A 5 20.06875 0.1125 0.01875 2 20.025 20.05 20.175 21 G 4 1 A21A ø 0 26 0.45 1 0.6 2 0.05 0 1 0.3 2 0.3 0.55 1 0.45 1 0 0 1 0.1125 2 0.1125 F G F F GF F 1 0 0 5 0 1 0 0 0 1 0.2766 ø G 21.2 1 1.2 1 0 0.2 2 0.2 1 0 24. A 5 20.075 2 0.1 1 0.175 20.2979 0.1489 0.2128 G 1 5 0.2766 20.2340 20.1915 AA21 5 22 2 1 0.3191 F F G 3 21 6 20.0851 0.1915 20.2979 0.2128 25. 5 20.5532 1 0.6382 2 0.0851 F 20.936 1 0.1915 1 0.7445 A 0.468 1 0.383 1 0.1489 20.766 2 0.2979 1 1.064 0.383 2 0.5958 1 0.2128 20.5745 1 0.2979 1 1.2768 F F G 1 0 G 1 3 1024 0.9999 0 1.0002 1 0 0 0 1 5I 21 3 1024 1 0 0 ø 0 1 0 G 0 0 1 1.0002 5 y 225 1 1 22 5 2} 15 7 5 4 1 } 2 15 2} 15 7 4 2} 2} 15 15 1 2 15 } 2} 15 10 4 225 7 5 3 2 The solution is (3, 2). 26. F GF G F G F GF G F GF G F G 4 7 x 2 3 y 21 A G 10 x 5 216 24 3 3 27 1 5 2}2 22 4 5 3 7 2 2}2 } 1 22 The solution (10, 28). Algebra 2 Worked-Out Solution Key 24 3 10 GF G F G F GF G F GF G F G X 5 A21B 5 156 G 5I 2} 2} 15 15 21 3 1024 0 2 3 1024 X5A B5 1 3 1024 0 1 24 21 5 21 3 1024 1 0 5 23 3 1024 4 21 21 G 1 3 1024 27 22 0.8298 2 0.3191 2 0.5106 20.702 2 0.1915 1 0.8934 1 6 0.3191 1 0.383 1 0.2979 0.9999 1.1064 1 0.3191 2 0.4255 2 3 21 1.2764 2 0.383 2 0.8937 20.0851 1 0.2978 2 0.2128 4 0.1489 22 20.3404 2 0.2978 1 0.6384 20.4255 1 0.1489 1 1.2768 G 5 1.1064 1 0.468 2 0.5745 1.383 2 0.234 2 1.149 20.1915 1 0.2128 1.5955 1 0.1915 2 1.7874 0.1915 20.0851 0.1915 20.2979 0.1489 4 0.2766 2 0.468 1 0.1915 0 2 0.05 1 1.05 20.2340 ø 0 0.3191 5I 0.3191 GF 0.2766 20.2340 20.1915 20.0851 5 20.20625 1 0.225 2 0.01875 21 F F 0 7 2 2}2 } 1 22 216 24 5 10 28 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. F F continued Chapter 3, 27. continued F GF G F G F GF G F GF G F G 3 22 x y 6 25 1 25 2 26 3 A21 5 2}3 5 14 5 2 5 3 2}3 } X 5 A21B 5 2 2 5 3 2}3 2 21 5 14 5 } 5 32. 1 21 x y 9 210 4 45 210 1 A21 5 21 29 1 4 45 9 21 33. F GF G F G F GF G F GF G F G 22 29 4 x y 16 5 7 3 5 21 A 1 A21 5 }4 16 9 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9 } 4 4 X 5 A21B 5 1 21 2}2 22 8 1 21 2}2 The solution is (10, 22). 30. F x y 5 21 21 A GF G F G F GF G F GF G F G 2 27 1 5 }3 7 1 2 5 3 1 } 3 7 3 2 } 3 } 5 5 } 3 1 } 3 X 5 A21B 5 7 } 3 2 } 3 26 3 5 23 0 31. F GF G F G F GF G F GF G F G 1 21 3 1 A21 5 } 19 21 x y 5 3 21 1 X5A B5 22 225 6 3 19 1 } 19 3 19 1 } 19 1 19 6 } 19 } 2} 5 1 19 6 } 19 } 2} 22 225 5 5 26 10 20 16 5 5 7 5 4 3 2}4 2}4 } 5 4 } G F GF G F G 7 5 4 3 2}4 2}4 20 16 5 } 4 5 23 5 F GF G F G F GF G F GF G F G 3 25 x y 21 2 5 2 5 A21 5 1 226 10 2 5 5 1 3 1 3 2 5 X 5 A21B 5 226 10 1 3 5 22 4 The solution is (22, 4). } The solution is (23, 0). 6 34. C; 26 5 3 5 G The solution is (23, 5). 10 22 5 22 38 1 } 4 } } 5 24 22 2}8 5 27 1 5 }4 23 5 X 5 A21B 5 9 4 4 1 4 } F GF G F G x y 22 8 5 2}8 1 5 8 1 2}4 F GF G F G F GF The solution is (25, 29). 29. 5 1 5 8 1 2}4 } The solution is (26, 10). 25 29 5 22 38 5 5 21 1 5 }8 22 2 X5A B5 9 21 10 21 X 5 A21B 5 x y } 10 21 5 5 21 21 5 1 A 21 24 F GF G F G F GF G F GF G F G 2 2 21 The solution is (21, 24). 28. F GF G F G F GF 35. F GF G F G F G F GF G F G 1 21 23 5 x 2 2 1 y 23 21 0 z 5 217 8 1 21 A 3 5 5 23 29 216 1 4 7 1 3 5 2 X 5 A B 5 23 29 216 1 4 7 217 21 8 29 5 19 210 The solution is (29, 19, 210). 1 28 The solution is (1, 28). Algebra 2 Worked-Out Solution Key 157 F GF G F G F G F GF G F G 1 28 23 36. x 18 5 211 217 1 22 1 y 2 22 5 z A 40. 2.2 23 18 0.2 21 X 5 A21B 5 20.6 0.4 20.8 1 211 A21 5 217 4 21 F 4 5 1 2 3 5 24 22 21 A F 0.25 z 23 0.1429 ø 1.2143 22.0714 20.0714 21 2 0 FG G 3 F F 6 21 0 21 4 F 5 GF G F G y 5 227 23 z 0.1905 0.0476 0.0476 FG 2 8 27 14 y 225 3 6 25 10 z 216 210 4 ø 4 21 25 4 A21 5 1 F 1 } } 21.58 3 21.41 6 X 5 A21B 5 y 5 248 2 20.58 3 0.916 } } 21.41 6 F FG G 20.25 20.58 3 0.91 6 } } 21.41 6 10 0 The solution is (22, 10, 0). 158 Algebra 2 Worked-Out Solution Key } 1.08 3 G 0.25 22 5 4 22 217 20 8 27 8 25 Problem Solving F 20.25 } } 21.58 3 18 60s 1 240t 5 21,000 0.25 21.41 6 27 229 5 22 216 s 1 t 5 200 14 0.75 52 5 t 5 hours in a twin-engine plane GF G F G 0.75 x 43. s 5 hours in a single-engine plane x z 1 27 0 The solution is (23, 8, 1, 25). The solution is (24, 1, 3). F w 1 3 39. GF G F G F G FG 6 X 5 A21B 5 1 2 21 5 23 24 3 4 10 2 2 21 0.9048 20.0952 A21 ø 21.3810 1.1429 20.7143 0.2857 X 5 A21B 5 25 F G 4 The solution is (21, 22, 3). 38. 3 5 14 0 A 220 3 25 5 24 21 x 11 } } 0.58 3 0. 3 2 22 4 21 21 } } 2.08 3 0. 3 0.25 42. 21 X5A B5 } } 0.58 3 0. 3 20.75 20.25 0 41. Sample answer: 4 5 0.5714 20.8571 21 } } 2.08 3 0. 3 The solution is (3, 3, 25). GF G F G y 14 20.75 20.25 5 x 25 5 z 0 X 5 A21B 5 The solution is (22, 4, 21). 2 y 0.25 22 5 GF G F G F G F GF G F G 0.25 0.2 21 5 20.6 0.4 20.8 1 21.6 37. F 11 x 6 1 2 1 21 1 21 4 21 2.2 23 21.6 21 continued } } 1.08 3 1 s 60 240 t 21 A GF G 14 248 2 GF G F G F GF 1 5 240 21 1 5} 180 260 1 21 X5A B5 200 21,000 4 3 } 5 1 2} 180 1 1 180 2}3 F GF 1 } } 4 3 2} 180 200 1 2}3 1 } 180 21,000 G GF G 5 150 50 The pilot spent 150 hours flying a single-engine plane and 50 hours flying a twin-engine plane. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 3, Chapter 3, continued 44. x 5 three-point field goals b. 3c 1 5m 5 28 7c 1 10m 5 60 3 5 c y 5 two-point field goals F GF G F G F GF z 5 free throws 7 10 x 1 y 1 z 5 976 3x 1 2y 1 z 5 1680 F GF G F G 1 1 x 976 3 2 1 y 5 1680 0 1 21 z 135 F G F GF G F G 2}3 A21 5 1 2}3 1 } 1 1 } 2 3 X 5 A21B 5 2}3 X 5 A21B 5 1 976 99 1 2}3 } 1680 5 506 1 1 2}3 1 2}3 135 371 2 3 Dirk made 99 three-point field goals, 506 two-point field goals, and 371 free throws. 45. a. m 5 number of batches of muffins r 5 number of batches of rolls m 1 2r 5 8 (cups of buttermilk) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b. 1 3 r 3 1 c. A21 5 } 1 21 21 X5A B5 5 22 1 8 11 5 3 22 21 3 22 8 1 11 21 1 5 2 3 The class should make two batches of muffins and three batches of rolls. F 78 104 1 2c 1 3m 5 18 0 F GF G F G F GF G F GF G F G 3 c 3 5 m A21 5 1 5 5 23 23 X 5 A21B 5 0.6 25.5 23.8 A 2 5 5 23 23 5 23 18 2 28 23 2 5 6 2 Each cheese costs $6.00 and each meat costs $2.00. G GF G F G 28 60 5 4 3.2 F 500 b t 5 w 0.9348 5 100 0.0223 0.0549 5 20.0039 20.9079 0.0093 0.1086 20.0378 FG G 2.3 X 5 A21B ø 0.8 1.2 About 2.3 ounces of Bran Crunchies, 0.8 ounces of Toasted Oats, and 1.2 ounces of Whole Wheat Flakes should be combined. 5 18 28 3 GF G F G 20.0056 21 3c 1 5m 5 28 2 198 Area per + sheet m 5 cost of meat 2}5 t 5 ounces of Toasted Oats w 5 ounces of Whole Wheat Flakes 78b 1 104t 1 198w 5 500 b 1 0.6w 5 5 22b 1 25.5t 1 23.8w 5 100 48. a. Equation 1: 46 a. c 5 cost of cheese 3 2}5 7 5 } 47. b 5 ounces of Bran Crunchies 22 F GF G F G F GF G F GF G F G m 1 7 } 5 1 cheeses and meats in the various platters may not be the same, or there may be other factors that affect cost, such as the cost of the platters on which the food is served. m 1 3r 5 11 (number of eggs) 1 2 22 22 Each cheese costs $4.00 and each meat costs $3.20. 1 2 3 } F 5 c. Sample answer: The costs may differ because the 1 2}3 2}3 21 3 27 1 2 3 21 60 10 25 1 A21 5 2}5 y 2 z 5 135 1 m 28 5 ( Sheets Sheets of 1 Sheets 1 of red yellow of blue ) Total area Area of Area of Equation 2: Area 5 1 yellow blue of red Equation 3: Cost + Sheets Sheets of 1 Cost + of red yellow Sheets Total 1 Cost + 5 of blue cost Algebra 2 Worked-Out Solution Key 159 continued Mixed Review for TAKS Equation 1: 0.75r 1 0.75y 1 0.75b 5 9 Equation 2: r 2 y 2 b 5 0 Equation 3: 6.5r 1 4.5y1 8.5b 5 80 b. F 0.75 0.75 1 21 6.5 4.5 51. B; GF G F G FG 0.75 r 21 y 8.5 b 5 Let p 5 pounds of peanuts. 9 Let x 5 total weight. 0 Equation 1: p 1 12 5 x 80 x 2 p 5 12 6 c. X 5 A21B 5 Equation 2: 2.5p 1 4.75(12) 5 4x 2.5 4x 2 2.5p 5 57 3.5 You should buy 6 sheets of red, 2.5 sheets of yellow, and 3.5 sheets of blue tiles. 49. a. AT 5 5 5 F GF G F G F G F GF G F G F G 0 1 1 3 5 21 0 1 4 2 011 014 012 21 1 0 23 1 0 25 1 0 1 4 2 21 23 25 AAT 5 A(AT ) 5 0 1 21 0 1 021 5 4 2 21 23 25 023 025 21 1 0 24 1 0 22 1 0 y (3, 4) (1, 1) (21, 21) (1, 21) AAT AT 4 2 AAAAT, or A (AAT). This means the triangle will be rotated 908 clockwise four times from T, or rotated 908 clockwise twice from AAT, so it will be back to its original position. BA 5 F d ad 2 cb ,B5 2c d } ad 2 cb } ad 2 bc } ad 2 cb cd 2 dc } ad 2 cb 2ab 1 ba } ad 2 cb 2cb 1 da } ad 2 cb ad 2 bc } ad 2 bc 2ca 1 ac } ad 2 bc db 2 bd } ad 2 bc 2bc 1 ad } ad 2 bc 2b ad 2 cb a } ad 2 cb } GF GF 5 5 G third number 5 4n 1 2 The sum is 141, so n 1 (3n 2 5) 1 (4n 1 2) 5 141. 53. A; 5x 1 y 5 217 35x 1 7y 5 2119 37 2x 2 7y 5 2x 2 7y 5 8 37x 1 0 0 1 1 0 0 1 G G Algebra 2 Worked-Out Solution Key 5I 5I 8 5 2111 x 5 23 5(23) 1 y 5 217 l y 5 22 The solution is (23, 22). F GF G F G (F GF (F GF F F F 1 24 2 23 5 0 2 410 1 26 2 8 20 1 0 230 1 4 1 5 1 Because AB 5 BA 5 I, B is the inverse of A. 160 second number 5 3n 2 5 2. AB 1 AC 5 b. To get back to the original triangle, you must find F F first number 5 n 5 (4, 23) (2, 25) AB 5 Solve for p. 52. H; x (23, 24) c p56 The grocer will need 6 pounds of peanuts. 1. 2AB 5 2 1 F G 1.5p 5 9 Quiz 3.6–3.8 (p. 217) (5, 2) A 50. A 5 4x 2 2.5p 5 57 21 24 22 Matrix A rotates the triangle 908 clockwise about the origin. a b Multiply Equation 1 by 24. 21 23 25 5 (25, 22) 24x 1 4p 5 248 5 5 5 F GF G F G G) G) G G GF G 1 24 2 23 5 0 2 1 24 5 2 210 2 28 10 4 2 23 0 1 4 214 20 226 1 26 21 2 4 23 2 4 10 1 0 215 1 2 26 2 8 21 2 16 230 1 4 25 1 8 2 2 14 27 2 17 10 2 26 213 1 3 5 212 224 216 210 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 3, Chapter 3 F F F (F F F 3. A(B 1 C) 5 2 23 5 0 2 5 5 4. (B 2 A)C 5 5 2 4 5 24 2 8 24 2 20 220 1 4 220 1 10 2 23 1 5 212 224 5 1 24 2 1 1 2 G) 10. 1 23 2 216 210 26 21 2 2 4 G G { 2 30 2 2 7. 4 5 524 24 3 28 1 G 11. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3 x 2 7 y 12. 1 22 X 5 A21B 5 9. 22 1 26 5 4 22 2 23 y A21 5 21 5 23 4 22 3 X 5 A21B 5 2 22 y 5 3 24 2 23 3 24 5 2 23 3 5 3 213 17 3 } 5 24 2 G 24 5 28 5 3 1 1 2 1 } 2 1 1 2 1 } 2 2}4 } 1 1 22 5 2}4 22 7 4 x 5 3 y 3 2}4 2}4 24 3 2}4 28 0 5 4 6 5 225 3 24 25 7 13. 5 3 24 25 7 3 24 6 25 7 225 F GF G F G F GF 4 1 x 26 1 y A 1 1 5} 10 6 3 5 21 21 F GF G F G F GF G F GF G F G 21 F GF G F G F GF G F GF G F G x 22 22 5 118 2205 The solution is (118, 2205). 1 22 The solution is (4, 22). 3 24 x X 5 A21B 5 7 23 7 23 22 3 21 A21 5 1 26 5 2 2 The solution is (0, 4). 22 7 23 1 A21 5 }1 5 5 } F GF G F G F GF G F GF G F G 5 23 5 2}3 2}3 2}3 2}3 X 5 A21B 5 { 1 22 5 } F GF G F G F GF G F GF G F G A 5 (12 1 18 2 45) 2 (260 1 54 1 3) 5 212 8. 1 25 3 26 24 17 21 5 2 21 9 23 6 1 22 3 { y 213 5 The solution is 1 } ,2 . 3 2 5 (21 1 0 1 18) 2 (24 1 12 1 0) 5 9 2 21 23 6 22 3 25 X5A B5 0 1 3 { x 21 26 21 26 1 2 21 1 4 1 23 2 6 A 4 0 22 1 4 3 21 GF G F G F GF G F GF G F 2 23 21 {22 23 { 5 5(23) 2 (22)(4) 5 27 5 F 24 24 2 0 26 21 1 1 25 21 5 6. G(F G F GF G GF G F G)F GF G GF 1 24 1 24 5 5. continued 21 X5A B5 5 21 4 22 18 5 1 } 1 10 2} 10 3 5 } 2 5 } G F GF G F G 1 } 1 10 2} 10 22 3 } 5 2 } 5 18 5 22 6 The solution is (22, 6). 1 The solution is (3, 1). Algebra 2 Worked-Out Solution Key 161 Chapter 3, 1 12 2 2 26 1 0 1 12 1 12 3. s 5 pounds of sunflower seed 2 2 26 { t 5 pounds of thistle seed s 1 t 5 20 5 6}2 [(0 1 24 1 312) 2 (24 1 0 1 24)] 5 144 F F F The area of the sail is 144 square feet. Problem Solving Workshop 3.8 (p. 219) 1. 2m 1 p 5 17.75 2m 1 2p 1 d 5 34.50 4m 1 3p 1 2d 5 67.25 (22)R1 1 R3 (21)R1 1 R2 (21)R2 1 R3 F F F F 2 0 A 1 17.75 2 2 1 A 34.50 4 2 3 1 2 A 0 A 2 2 1 A 34.50 0 2 1 1 2 A 0 A 31.75 17.75 0 1 1 A 16.75 0 2 1 1 2 A 0 A 31.75 17.75 0 1 1 A 16.75 0 0 1 A 15 67.25 17.75 G G G G From the third row, d 5 15. From the second row, p 1 d 5 16.75, so p 1 15 5 16.75, or p 5 1.75. From the first row, 2m 1 p 5 17.75, so 2m 1 1.75 5 17.75, or m 5 8. A movie pass costs $8, a package of popcorn costs $1.75, and a DVD costs $15. m 5 amount in money market funds s 1 b 1 m 5 18000 100R2 R1 1 (21)R3 (210)R1 1 R2 2R2 1 3R3 (21)R2 1 2}14 2R3 F F F F F 1 1 0.1 0.07 1 21 1 1 1 5 1 A 18000 0.05 A 1440 21 A A 18,000 A 144,000 G 0 10 7 0 1 2 2 A 18,000 1 1 A 18,000 0 23 25 A 236,000 0 1 2 1 2 A 1 A 18,000 18,000 0 23 25 A 236,000 G 0 1 0 24 A 218,000 1 1 A 18,000 0 3 5 A 36,000 0 0 1 A 4500 G G G From row 3, m 5 4500. From row 2, 3b 1 5m 5 36,000, so 3b 1 5(4500) 5 36,000, or b 5 4500. From row 1, s 1 b 1 m 5 18,000, so s 1 4500 1 4500 5 18,000, or s 5 9000. You should invest $9000 in stocks, $4500 in bonds, and $4500 in money market funds. 162 Algebra 2 Worked-Out Solution Key R2 } 0.45 20 1 A 1 20 0 0.45 A 4.05 1 1 A 20 0 1 A 9 G G G From row 2, t 5 9. From row 1, s 1 t 5 20. So, s 1 9 5 20, or s 5 11. The mixture contains 11 pounds of sunflower seed and 9 pounds of thistle seed. 4. x 2 2y 1 4z 5 210 5x 1 y 2 z 5 24 3x 2 6y 1 12z 5 230 (23)R1 1 R3 F F 4 A 210 1 22 1 21 A 5 3 26 1 22 24 G G 12 A 230 4 A 210 5 1 21 A 24 0 0 0 A 0 Because row 3 produces the equation 0 5 0, the system has infinitely many solutions. Mixed Review for TEKS (p. 220) 1. B; B5 0.1s 1 0.07b 1 0.05m 5 1440 s2b2m50 (20.34)R1 1 R2 A5 2. s 5 amount in stocks; b 5 amount in bonds 1 A 1 0.34 0.79 A 10.85 0.34s 1 0.79t 5 10.85 F F 4.5 6 2.5 5.5 8 2.5 4 6.5 3.25 5 8.5 3.25 B2A5 5 2. H; 21 A 5 G G F 21 F F 4 2 4.5 6.52 6 3.25 2 2.5 5 2 5.5 8.5 2 8 3.25 2 2.5 G 20.5 0.5 0.75 20.5 0.5 0.75 } } 20. 1 } 20. 2 X5A B5 F G } 0.}3 } } 2. 2 20. 4 } 0.}1 4. 4 } } 0.}3 1. 3 26. 6 } } } 2. 2 20. 4 20. 1 } 4.}4 0.}1 20. 2 1. 3 26. 6 FG 25 5 20 40 The person has 40 quarters. G GF G 85 13.25 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. { 0 1 14. Area 5 6} 12 2 continued