Comments
Description
Transcript
Chapter 1,
Chapter 1, continued 4. By comparing y1 and y2, you can find all values of x for which y1ay2. 1. {x{ 5 Lesson 1.7 Investigating Algebra Activity 1.7 (p. 50) 2 25 24 23 22 21 2 0 2 3 4 1 0 1 1 2 3 4 3 0 1 2 25 24 23 22 21 2 3 4 5 e. 2 1 0 3 4 3 or x 2 3 5 210 x 5 13 or Check: {x 2 { 5 10 {13 2 3{ 0 10 {x 2 3{ 5 10 {27 2 3{ 0 10 1 1 2 3 4 5 1 2 2 25 24 23 22 21 3 4 5 2 0 or x 1 2 5 27 x55 or x 5 29 Check: {x 1 2{ 5 7 {5 1 2{ 0 7 {7{ 0 7 2 3 4 5 The solutions are xa22 or xq2. 1 0 1 2 3 757 or 3x 2 2 5 213 3x 5 15 or 3x 5 211 x55 or x 5 2} 3 11 3 4 5 {31 2 3 2 2 2{ 0 13 11 {3(5) 2 2{ 0 13 } {13{ 0 13 13 5 13 {3x 2 2{ 5 13 {15 2 2{ 0 13 1 The solutions are xa1 or xq3. i. {2{ 0 7 x 2 2 5 13 25 24 23 22 21 {x 1 2{ 5 7 {2 1 { 0 7 Check: {3x 2 2{ 5 13 1 h. x1257 7 5 7 The solutions are 5 and 29. The solutions are 24axa2. g. x 5 27 4. {3x 2 2{ 5 0 x 2 3 5 10 The solutions are 13 and 27. 3 25 24 23 22 21 5 5 5 5 The solutions are 1axa3. f. 5 5 5 1 The solutions are 22axa2. 25 24 23 22 21 {25{ 0 5 3. {x 1 2{ 5 7 2 0 {x{ 5 5 {10{ 0 10 {210{ 0 10 10 5 10 10 5 10 The solutions are 24 and 2. d. or x 5 25 2. {x 2 3{ 5 10 3 25 24 23 22 21 x55 The solutions are 5 and 25. 5 The solutions are 1 and 3. c. Check: {x{ 5 5 {5{ 0 5 5 The solutions are 22 and 2. 25 24 23 22 21 1 b. {211 2 2{ 0 13 {213{ 0 13 13 5 13 11 . The solutions are 5 and 2} 3 3 5. {2x 1 5{ 5 x 25 24 23 22 21 0 1 2 3 4 5 2x 1 5 5 3x The solutions are xa24 or xq2. 55x or 2x 1 5 5 23x or 5x 5 25 1. Sample answer: The solutions of the absolute value x 5 21 equations in step 1 are two numerical solutions; no; the equation {x{ 5 k has only 1 solution if k 5 0 and has no solutions if k is negative. Check: {2x 1 5{ 5 3x {2(5) 1 5{ 0 3(5) {2(21) 1 5{ 0 3x 2. Sample answer: The solutions of absolute value inequalities with aare ranges of values between and including two numbers. The solutions of absolute value inequalities with qare ranges of values outside and including two numbers. {x 1 { 5 x {10 1 5{ 0 15 {22 1 5{ 0 23 {15{ 0 15 {3{ 0 23 15 5 15 3 T he solution is 5. Reject 21 because it is an extraneous solution. 30 Algebra 2 Worked-Out Solution Key Þ 23 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. a. 1.7 Guided Practice (pp. 53–55) Chapter 1, continued 12. {7 2 x{a4 6. {4x 2 1{ 5 2x 1 4x 2 1 5 2x 1 9 or 24a7 2 xa4 4x 2 1 5 2(2x 1 9) 2x 5 10 or 4x 2 1 5 22x 2 9 x55 or 6x 5 28 211a2xa23 11qxq3 3axa11 8 4 x 5 2}6 5 2}3 2 {41 2}3 2 2 1{ 0 21 2}3 2 1 9 4 {4(5) 2 1{ 0 2(5) 1 9 {19{ 0 19 { { that must be rejected because it does not satisfy the original equation. 19 19 }5} 3 3 2. The absolute value of x is 2x if the actual value for x is negative. For example, if x 5 24, {x{ 5 4 5 224 5 2x 3. {213 2 1{ 0 14 x 1 4a26 x 1 4q6 xa210 210 26 22 xq2 2 Yes, 213 is a solution of the equation. 6 4. {24 1 6{ 0 10 x 2 7 < 21 2 x 2 > 2x < 6 2x > 8 x<3 x>4 3 4 5 6 9. {3x 1 5{q10 3x 1 5a210 3x 1 5q10 {2{ 0 10 2 Þ 10 No2is not a solution of the equation. 5. {32 2 6(22){ 0 20 {32 1 12{ 0 20 {44{ 0 20 44 Þ 20 No22is not a solution of the equation. 3xa215 3xq5 6. {2(28) 1 6{ 0 10 xa25 xq}5 {216 1 6{ 0 10 {210{ 0 10 3 2 13 25 {214{ 0 14 14 5 14 8. {2x 2 7{ > Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1. An extraneous solution is an apparent solution 7. {x 1 4{q6 10. 12 Skill Practice The solution is 5 and 2}43. 1 0 1.7 Exercises (pp. 55–58) {2}{0} 19 5 19 4 8 2 0 2}3 1 9 2} {20 2 1{ 0 10 1 9 8 {t 2 7.875{a0.375, the unacceptable mat thickness is {t 2 7.875{ > 0.375. {4x 2 { 5 2x 1 9 {x 2 { 5 2x 1 6 13. Because the acceptable mat thickness is Check: 4 23 21 1 10 5 10 3 Yes, 28 is a solution of the equation. 7. {3(1) 2 7{ 0 4 {3 2 7{ 0 4 {24{ 0 4 {x 1 2{ < 6 26 < x 1 2 < 6 28 < x < 4 454 28 24 0 4 8 Yes, 1 is a solution of the equation. 8. {17 2 8(4){ 0 15 11. {2x 1 1{a {17 2 32{ 0 15 {215{ 0 15 2ax 1 a 2axa 2ax a 15 5 15 25 26 22 2 6 Yes, 4 is a solution of the equation. 10 Algebra 2 Worked-Out Solution Key 31 Chapter 1, continued 9. {x{ 5 9 19. {5 2 q{ 5 7 212 or x 5 29 0 26 6 5 2 q 5 27 12 or 52q57 2q 5 212 or 2q 5 2 q 5 12 or 10. {y{ 5 25 The absolute value of a number cannot be negative. No solution. 11. {z{ 5 0 24 z50 2 f52 0 2 4 or f2553 or f58 4 6 212 g2257 g 5 25 or g59 0 26 6 h 2 5 2 h50 0 2 h2454 or h58 6 8 k1356 k 5 29 or k53 3 0 24 4 m 1 5 2 or m1551 or m 5 26 26 24 m 5 24 or n 5 219 or n 1 9 5 10 n51 1 219 0 26 6 18. {6 2 p{ 5 4 6 2 p 5 24 32 or 62p54 2p 5 210 or 2p 5 22 p 5 10 or p52 0 4 4 or 2d 2 5 5 13 2d 5 28 or 2d 5 18 d 5 24 or d59 or 3g 5 27 g 5 27 or g 5 2}3 7 23. {7h 2 10{ 5 4 7h 2 10 5 24 or 7h 2 10 5 4 or 7h 5 14 or h52 24. {3p 2 6{ 5 21 3p 2 6 5 221 or 3p 2 6 5 21 3p 5 215 or 3p 5 27 p 5 25 or p59 or 2q 1 3 5 11 2q 1 3 5 211 2q 5 214 or 2q 5 8 q 5 27 or q54 4r 1 7 5 243 n 1 9 5 210 212 0 26. {4r 1 7{ 5 43 0 22 17. {n 1 9{ 5 10 218 24 r 5 28 25. {2q 1 3{ 5 11 16. {m 1 { 5 28 28 6 or 29 or h 5 }7 k 1 3 5 26 28 r50 7h 5 6 15. {k 1 3{ 5 6 212 2r 5 8 3g 5 21 12 or 4 24 2 r 5 4 or 3g 1 14 5 27 or 3g 1 14 5 7 14. {h 2 4{ 5 or 22. {3g 1 14{ 5 7 25 212 12 2r 5 0 2d 2 5 5 213 or 8 21. {2d 2 5{ 5 13 8 13. {g 2 2{ 5 7 g 2 2 5 27 4 20. {24 2 r{ 5 4 12. {f 2 5{ 5 3 f 2 5 5 23 0 24 2 r 5 24 0 22 24 q 5 22 8 Algebra 2 Worked-Out Solution Key 12 16 4r 5 250 r 5 212.5 or 4r 1 7 5 43 or 4r 5 36 or r59 27. {5 1 2j{ 5 9 5 1 2j 5 29 or 5 1 2j 5 9 2j 5 214 or 2j 5 4 j 5 27 or j52 28. {6 2 3k{ 5 21 6 2 3k 5 221 or 6 2 3k 5 21 23k 5 227 or 23k 5 15 k59 or k 5 25 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x59 Chapter 1, continued 29. {20 2 9m{ 5 7 36. {8x 2 1{ 5 6x 20 2 9m 5 27 or 29m 5 227 m53 30. 29m 5 213 13 m5} 9 1 x 5 228 14x 5 1 or 2x 5 1 or x 5 }2 or 1 }x 2 3 5 10 4 { 1 or } x 5 13 or x 5 52 {8x 2 1{ 5 6x {1 2 { 1 6 8 {}14 2 1{ 0 }14 1 4 2 {81 }2 2 2 1{ 0 61 }2 2 1 6 1 {4 2 1{ 0 3 0 14 14 { {2} { {3{ 0 3 } 3 7 3 7 3 5 3 }5} or 1 }y 1 4 5 6 2 } y 5 210 or }y52 y 5 220 or y54 1 2 1 1 and }2. The solutions are } 14 1 2 37. {4x 1 5{ 5 2x 1 4 2 }z 2 6 5 12 3 { 8x 2 1 5 6x 1 1 8} 21 06 } 14 14 1 }y 1 4 5 6 2 1 } y 1 4 5 26 2 { 4x 1 5 5 22x 2 4 or 4x 1 5 5 2x 1 4 6x 5 29 or 2x 5 21 or x 5 2}2 9 x 5 2}6 2 }z 2 6 5 12 3 2 }z 2 6 5 212 3 2 }z 5 26 3 2 }z 5 18 3 z 5 29 z 5 27 3 Check: {4x 1 5{ 5 2x 1 4 {41 2}2 2 1 5{ 0 2 1 2}2 2 1 4 3 values will produce a negative numerical value. or 3x 2 4 5 x 4x 5 4 or 2x 5 4 x51 or x52 Check: {3x 2 4{ 5 x {3(1) 2 4{ 0 1 {3 2 4{ 0 1 {21{ 0 1 151 {3x 2 4{ 5 x 3(2) 2 4{ 0 2 { {6 2 4{ 0 2 {2{ 0 2 151 3 {26 1 5{ 0 23 1 3 {21{ 0 1 34. {3x 2 4{ 5 x 3x 2 4 5 2x 1 x 5 2}2 33. No, {5x 2 10{ 5 245 has no solutions. No absolute Copyright © by McDougal Littell, a division of Houghton Mifflin Company. or Check: {8x 2 1{ 5 6x 1 4 8x 2 1 5 26x 1 x5} 14 {}4x 2 3 {5 10 } x 5 27 32. or or 1 }x 2 3 5 210 4 31. 20 2 9m 5 7 252 {4x 1 5{ 5 2x 1 4 {41 2}2 2 1 5{ 0 21 2}2 2 1 4 1 1 {22 1 5{ 0 21 1 4 {3{ 0 3 353 3 1 The solutions are 2}2 and 2}2. The solutions are 1 and 2. 35. {x 1 24{ 5 27x x 1 24 5 7x or 24 5 6x or 45x or Check: {x 1 24{ 5 27x {4 1 24{ 0 27(4) {28{ 0 228 28 Þ 228 x 1 24 5 27x 24 5 28x 23 5 x {23 1 24{ 5 27(23) {21{ 0 21 {21{ 0 21 21 5 21 The solution is 23. Reject 4 because it is an extraneous solution. Algebra 2 Worked-Out Solution Key 33 continued 38. {9 2 2x{ 5 10 1 3x 41. When the equation was written as two equations, the 9 2 2x 5 210 2 3x or x 5 219 or negative sign was not distributed properly. 9 2 2x 5 10 1 3x {5x 2 9{ 5 x 1 3 21 5 5x 1 2}5 5 x Check: {9 2 2x{ 5 10 1 3x {9 2 2(219){ 0 10 1 3(219) {9 1 38{ 0 10 2 57 {47{ 0 247 47 Þ 247 {9 2 2x{ 5 10 1 3x { { 6x 5 6 or x51 47 15 1 { 1 or x 5 2}6 28 15 0 7 2 1 2} 2 { 4 75 0 15 71} 82} 4 4 { { 43 43 4 43 } 5 } 43 6 6 7 3x 1 7 5 5x 7 5 2x 10 or na or 10 11 12 7 35 {2}8 1 7{ 5 2}8 21 35 35 5 2} 8 8 35 35 } Þ 2} 8 8 { { } 7 The solution is }2. Algebra 2 Worked-Out Solution Key or da27 or 28 {3x 1 7{ 5 5x 31 } 1 7 5 51 2}8 2 8 2 { d 1 4a23 }5x Check: {3x 1 7{ 5 x { 6 n 2 11a21 7 2 or 27 2 22 n 2 11 q nq12 13 47. {d 1 4{q3 or or 2}8 5 x 9 9 40. D; {3x 1 7{ 5 5x 3x 1 7 5 25x 7 5 28x 8 46. {n 2 11{q1 43 } 5 } 15 1 and 2}6 . The solutions are 2} 4 4 25 26 43 43 4 { 0 24 25 < m < 9 6 {}6 {0 }6 10 27 < m 2 2 < 7 0 7 2 1 2}1 2 5 1 8 2 }6 0 7 1 }6 { {2}4 { 0 }4 43 1 2{ 1 6 8 1 5 2} 6 45. {m 2 2{ < 7 {8 1 5x{ 5 7 2 x 2{ 2 22 44. {k{ > k < 2or k > 4 8 1 5x 5 7 2 x 6x 5 21 {8 1 5x{ 5 7 2 x 15 4 5 25 Check: 8 1 5 2} 2aja 26 or or 555 43. {j{a 39. {8 1 5x{ 5 7 2 x x 5 2} 4 {2 2 7{ 0 6 2 1 {25{ 0 5 10 Þ 210 extraneous solution. 8 1 5x 5 27 1 x 4x 5 215 n 2 7 5 3n 2 1 2 2 7 0 3(2) 2 1 {210{ 0 29 2 1 {210{ 0 210 47 47 5 5 1 } The solution is 2 5. Reject 219 because it is an 34 or x53 Check: {n 2 7{ 5 3n 2 1 {23 2 7{ 0 3(23) 2 1 }5} 4x 5 12 extraneous solution. { { 47 6x 2 9 5 23 The solutions are 1 and 3. {}5 { 0 }5 5x 2 9 5 2x 2 3 or 3 2 9 1 }5 0 10 2 }5 or 4x 2 9 5 3 42. The solution 23 does not work; it is an 1 1 9 2 21 2}5 2 0 10 1 31 2}5 2 5x 2 9 5 x 1 3 { { 7 7 31 }2 2 1 7 5 51 }2 2 { { 35 35 5 } 2 2 35 35 } 5 } 2 2 0 22 22 < f 1 6 < 2 28 < f < 24 35 } 24 dq21 48. {f 1 6{ < 2 {}2 1 7{ 5 }2 21 26 d 1 4q3 210 28 26 24 22 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 1, Chapter 1, continued 57. {7 2 2r{ < 49. {g 2 1{ > 0 g21>0 or 2(g 2 1) > g > or 2g 1 1 > 0 2 < 2 r < 2 < 2r < 12 13 > r > 26 l 26 < r < 13 g<1 13 22 0 21 1 2 50. {h 1 10{a 51. 218 212 26 t>} 5 {w 2 15{ < 30 2.4 230 < 3w 2 15 < 30 0 215 < 3w < 45 59. 25 < w < 15 0 25 5 xa28 or xq2 12axa28 0 60. 4 8 6 1 1 26 < }3m 2 15 < 6 1 9 < }3m < 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2a4ya16 27 < m < 63 2 27 3 20 4 61. 54. {5z 1 1{ > 14 5z 1 1 < 214 or 5z 1 1 > 14 5z < 215 or 5z > 13 or 13 z>} 5 z < 23 63 0 3 40 0 2 1 7 } y 1 2 < 28 16 2 p > 3 or 2p > 213 or p < 13 17 19 280 62. } y < 210 or }y > 6 y < 270 or y > 42 42 0 240 40 80 2 2 5 }n 2 8a2 211a24 2 qa11 2 5 235a2qa213 35qqq13 laqa 13 1 7 {}5n 2 8{ 1 4q12 2 {}5n 2 8{q8 56. {24 2 q{a11 or 2 5 }n 2 8q8 2 5 }na0 or }nq16 na0 or nq40 35 220 8 }y 1 2 > 8 1 7 4 1 7 or 270 or 60 1 55. {16 2 p{ > 3 15 50 {}7 y 1 2{ 2 5 > 3 1 {}7 y 1 2{ > 8 2.6 13 32 1 1 }aya4 2 11 24 {}3m 2 15{ < 6 27 a 4y 2 9 a 7 p > 19 8 1 53. {4y 2 9{a7 19 < p 6 {}2x 2 10{a4 2x 1 6q10 0 24 16 2 p < 23 12 2 2xq4 22 t<} 5 6a}1xa14 or 24 or 2 or 1 4 15 2xa216 0 25t > 212 24a}1 x 2 10a4 10 2x 1 6a210 28 19 2 5t > 7 or 5.2 2 52. {2x 1 6{q10 212 1 8 or 25t < 226 0 26 12 19 2 5t < 27 220 224 6 58. {19 2 5t{ > 7 2ah 1 a 2aha 0 26 16 4 2 32 0 20 40 60 40 Algebra 2 Worked-Out Solution Key 35 Chapter 1, continued 63. C; {6x 2 9{q33 6x 2 9a233 or x 2 9q33 xq42 6xa224 or xa24 or 21 < x < 5 74. 65. Two solutions: c > 0 One solution: c 5 0 No solution: c < 0 66. {x 1 1{q216 The absolute value cannot be a negative number, so this inequality is true for all real numbers. 0 22 2 4 The absolute value cannot be a negative number, so this inequality is never true. There is no solution. 68. The absolute value cannot be a negative number, so the only solution(s) will satisfy the equation {7x 1 3{ 5 0. or x<} a 7x 1 3 5 0 { 2 110.25 { a 0.4 Ideal Actual a Tolerance 2 pH pH { { 76. a. h { p 6.5 {a 2 { Actual weight 2 Ideal weight { w 2 0.85 3 5 {a 0.05 b. 20.05aw 2 0.85a0.05 0.8awa0.9 x 5 18 2 27 0 27 The pill can make up between about 15.2% and 18% of the baseball’s total weight, inclusive. x29>0 or 2(x 2 9) > 0 x>9 or 2x 1 9 > 0 77. Acceptable weights: {w 2 21{a1 Weights that should be rejected: x<9 6 9 {w 2 21{ > 1 12 78. a. Nearsightedness Mild: 21.5x < x 1 1.5 < 1.5 2c < ax 1 b < c 23 < x < 0 2c 2 b < ax < c 2 b Moderate: 21.5 < x 1 4.5 < 1.5 2c 2 b c2b }<x<} a a 71. ax 1 ba2c or 26 < x < 23 ax 1 bqc Severe: 21.5 < x 1 7.5 < 1.5 axa2c 2 b or axqc 2 b 2c 2 b xa} a or c2b xq} 2caax 1 bac 2c 2 baaxac 2 b 2c 2 b c2b a a c2b 2c 2 b }axa} a a }qxq} 36 a Tolerance 90 5 5x 69. {x 2 9{ > 0 72. { x 0.9 5} Maximum: } 100 5 The solution is x 5 2}7 . 70. x ø 15.2 3 3 1 80 5 5.25x x 5 2}7 0 { a Tolerance { 7x 5 23 21 c2b x 0.8 c. Minimum: } 5 } 100 5.25 {7x 1 3{a0 ax > c 2 b Ideal Actual 2 height height 75. 67. {2x 2 1{ < 225 or 2c 2 b x>} a Problem Solving 23 < x 2 2 < 3 24 ax 1 b > c ax < 2c 2 b xq7 64. C; {x 2 2{ < 3 or Algebra 2 Worked-Out Solution Key a 29 < x < 26 Farsightedness Mild: 21 < x 2 1 < 1 0<x<2 Moderate: 21 < x 2 3 < 1 2<x<4 Severe:21 < x 2 5 < 1 4<x<6 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 73. ax 1 b < 2c Chapter 1, b. continued Quiz 1.6 –1.7 (p. 58) Nearsightedness severe 210 mild 26 22 moderate moderate 2 1. 4k 2 17 < 27 4k < 44 6 mild severe k < 11 Farsightedness 8 30 1 60 90 79. Mean of extremes 5 } 5 } 5 45 2 2 { { t { 3 550 1 650 2 15 1200 2 5 { t { a Tolerance 212 24 25 23 r < 27 211 29 27 5. 3(x 2 7) < 6(10 2 x) 3x 2 21 < 60 2 6x Tolerance 5 12,000 2 6008 5 5992 9x 2 21 < 60 {f 2 6008{a5992 9x < 81 1000 1 91,000 Mouse: means of extremes 5 }} 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28 28r > 56 50 12,016 5} 5 6008 2 210 4. 28r 2 11 > 45 16 1 12,000 2 x<9 92,000 5} 5 46,000 2 Tolerance 5 91,000 2 46,000 5 45,000 {f 2 46,000{ a45,000 4 6. 6 8 10 1 2 225 2 4z > 66 2 17z 225 1 13z > 66 13z > 91 82. a. 20.05xax 2 250a0.05x and 26 29pa81 81. Elephant: Mean of extremes 5 } b. 20.05xax 2 250 11 pq29 {a 600 2 9 7 3. 29p 1 15a96 Tolerance 5 650 2 600 5 50 { 12 nq7 a Tolerance 80. Mean of extremes 5 } 5 }5 600 Mean of Actual 2 extremes temperature 11 14nq98 {a 45 2 10 2. 14n 2 8q90 Tolerance 5 60 2 45 5 15 Mean of Actual 2 extremes temperature 9 z>7 x 2 250a0.05x 250a1.05x and 0.95xa250 238ax and xa263 The actual water depth could range from about 238 feet to about 263 feet. Mixed Review for TAKS 83. B; 28(5) 1 6x 5 2(130) 6x 5 120 x 5 20 Anne and her friend washed 20 cars. 84. H; 2(908) 1 2(1158) 1 mBCD 5 5408 mBCD 5 1308 4 6 8 10 1 2 7. {x 2 6{ 5 9 x 2 6 5 29 or x 5 23 or x2659 x 5 15 8. {3y 1 3{ 5 12 3y 1 3 5 212 or 3y 5 215 or 3y 1 3 5 12 3y 5 9 y 5 25 or y53 or 2z 1 5 5 9z or 5 5 7z or }5z 9. {2z 1 5{ 5 29z 2z 1 5 5 29z 11z 1 5 5 0 11z 5 25 5 7 5 z 5 2} 11 Algebra 2 Worked-Out Solution Key 37 Chapter 1, continued 4. G; 34 1 3x 5 112 Check: 5 1 5{ 0 291 2} {21 2} 11 2 11 2 5 { 45 { 0} 11 45 11 45 } 5 } { 45 0 2} 45 7 2} 7 10 35 }1} 7 7 { 4he solution is2} Reject } because it is an 11 7 11 5 }Þ 5 extraneous solution. or p < 29 or p17>2 p > 25 {2q 2 3{a3 15.95 5. C; } ø 5.4 2.95 If you rent at least six videos, you will save money. 6. H; d 5 depth (ft) 0 5 12 2 1.5t 1.5t 5 12 t58 The pool will be empty in 8 hours. 0a2qa6 7. C; Choice A: sides 2, 4, 9 l 2 1 4 > 9 0aqa3 Choice B: sides 3, 6, 9 l 3 1 6 > 9 12. {5 2 r{q4 Choice C: sides 5, 10, 9 l 5 1 10 > 9 5 2 ra24 or 5 2 rq4 2ra29 or rq9 5 1 9 > 10 2rq21 or ra1 Final Final a0.8 + Current 1 0.2 + exam grade grade score 85 a0.8 + 83 1 0.2 + x 85a66.4 1 0.2x 18.6a0.2x 10 1 9 > 5 8. Let x 5 hours doing office work. Let y 5 hours doing outside work. Equation 1: 8x 1 9y 5 399 Equation 2: x 1 y 5 45 l x 5 45 2 y Substitute for x in Equation 1: 8(45 2 y) 1 9y 5 399 y 5 39 93ax You need to get a final exam score of 93 or better. 14. Acceptable weights for the container: {w 2 1.5{a0.025 20.025 a w 2 1.5 a 0.025 1.475 a w a 1.525 Mixed Review for TEKS (p. 59) 1. B; Let c 5 gallons in city. Let h 5 gallons on highway. Equation 1: 60c 1 51h 5 675 Equation 2: c 1 h 5 12 l c 5 12 2 h Substitute for c in Equation 1: 60(12 2 h) 1 51h 5 675 29h 5 245 h55 Five gallons of gas were used on the highway. You worked 39 hours outside that week. 1 9. a 1 b 1 } (a 1 b) 5 72 2 3 2 3 2 } a 1 } b 5 72 3 2 } (a 1 b) 5 72 a 1 b 5 48 1 1 medium 5 }2 (a 1 b) 5 }2 (48) 5 24 The second longest piece is 24 inches long. Chapter 1 Review (pp. 61– 64) 1. In a power, the exponent represents the number of times the base is used as a factor. 2. If substituting a number for a variable in an equation results in a true statement, then the number is a solution of the equation. 3. An extraneous solution is an apparent solution that 2. J; {w 2 3.5{ a 0.25 3.5 2 0.25awa3.5 1 0.25 3.25awa3.75 3. A; 2369aTa2297 38 45 The kicker made 26 field goals. d 5 12 2 1.5t p 1 7 < 22 23a2q 2 3a3 13. 7 x 5 26 t 5 time (h) 10. {p 1 7{ > 2 11. 3x 5 78 5 Algebra 2 Worked-Out Solution Key must be rejected because it does not satisfy the original equation. 4. Like terms: 3x 2 and 2x 2; 40 and 27 1 5. Sample answer: 5x 1 10 and 101 } 2x 1 1 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 10 55 2} 1} 11 11 5 {21 }7 2 1 5{ 0 291 }7 2