Comments
Description
Transcript
218 Ï
Chapter 4, continued 5. 3x 2 1 12x 1 12 5 0 Lesson 4.8 b 2 2 4ac 5 122 2 4(3)(12) 5 0 4.8 Guided Practice (pp. 293–295) One real solution: x 2 5 6x 2 4 } } 212 6 Ï 0 2b 6 Ïb2 2 4ac 5} x 5 }} 2a 2(3) x 2 2 6x 1 4 5 0 } 2b 6 Ïb 2 2 4ac x 5 }} 2a 212 5 22 5} 6 }} 2(26) 6 Ï(26)2 2 4(1)(4) x 5 }}} 2(1) 8x 2 9x 1 11 5 0 2 } 6 6 Ï 20 x5} 2 b2 2 4ac 5 (29)2 2 4(8)(11) 5 2271 < 0 Two imaginary solutions: } 6 6 2Ï 5 x5} 2 } } The solutions are x 5 3 1 Ï 5 ø 5.24 and } x 5 3 2 Ï5 ø 0.76. 4x 2 2 10x 5 2x 2 9 9 7. 7x 2 2 2x 5 5 7x 2 2 2x 2 5 5 0 b2 2 4ac 5 (22)2 2 4(7)(25) 5 144 > 0 } 2b 6 Ïb 2 4ac x 5 }} 2a 2 Two real solutions: } } 2b 6Ïb2 2 4ac }} 2(22) 6 Ï144 x 5 }} 5 }} 2a 2(7) 2(212) 6 Ï(212)2 2 4(4)(9) x 5 }}} 2(4) 2 6 12 } 1 5 6 5} 6 }7 5 1, 2}7 5} 7 14 12 6 Ï 0 x5} 8 8. 4x 2 1 3x 1 12 5 3 2 3x 3 x 5 }2 3 The solution is }2. 4x 2 1 6x 1 9 5 0 b2 2 4ac 5 62 2 4(4)(9) 5 2108 < 0 Two imaginary solutions: 7x 2 5x 2 2 4 5 2x 1 3 } } 2b 6Ï b2 2 4ac 2a 26 6 Ï 2108 2(4) x 5 }} 5 }} 25x 1 5x 2 7 5 0 2 } 2b 6 Ïb2 2 4ac x 5 }} 2a } 26 6 i6Ï 3 } 9. 3x 2 5x 2 1 1 5 6 2 7x 25x 2 1 10x 2 5 5 0 One real solution: } } } 2b 6Ï b2 2 4ac 2a 25 6 i Ï115 x5} 210 210 6 Ï 0 2(25) x 5 }} 5 } 210 } 51 5} 210 5 6 i Ï115 x5} 10 } } 3i Ï 3 b 2 2 4ac 5 102 2 4(25)(25) 5 0 25 6 Ï2115 x 5 }} 210 5 1 i Ï115 3 5} 5 2}4 6 } 8 4 }} 25 6 Ï52 2 4(25)(27) x 5 }} 2(25) } 5 2 i Ï115 and } . The solutions are } 10 10 10. h 5 216t 2 1 v0 t 1 h0 3 5 216t 2 1 50t 1 4 0 5 216t 2 1 50t 1 1 4. 2x 2 1 4x 2 4 5 0 b 2 2 4ac 5 42 2 4(2)(24) 5 48 > 0 Two real solutions: }} 250 6 Ï502 2 4(216)(1) t 5 }} 2(216) } } } 24 6 Ï 48 2b 6Ïb 2 2 4ac 5} x 5 }} 2a 2(2) } 24 6 4Ï3 5} 4 } 5 21 6 Ï3 ø 0.73, 22.73 218 } Ï271 5} 6 i} 16 16 4x 2 2 12x 1 9 5 0 3. } } 2(29) 6 Ï2271 2b 6 Ïb2 2 4ac 5 }} x 5 }} 2a 2(8) x 5 3 6 Ï5 2. 8x 2 5 9x 2 11 6. Algebra 2 Worked-Out Solution Key 250 6 Ï2564 t 5 }} 232 t ø 20.02 or t ø 3.14 Reject the solution 20.02 because the ball’s time in the air cannot be negative. So, the ball is in the air for about 3.14 seconds. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1. Chapter 4, continued 7. 8w 2 2 8w 1 2 5 0 4.8 Exercises (pp. 296–299) }} 2(28) 6 Ï(28)2 2 4(8)(2) w 5 }}} 2(8) Skill Practice 1. You can use the discriminant of a quadratic equation to } 8 6 Ï0 determine the equation’s number and type of solutions. w5} 16 2. Sample answer: 8 w5} 16 When hitting a baseball with a bat, you would need to use the model that accounts for initial vertical velocity because the baseball is launched, not dropped. 1 w 5 }2 3. x 2 2 4x 2 5 5 0 1 }} The solution is }2. 2(24) 6 Ï(24)2 2 4(1)(25) x 5 }}} 2(1) 8. 5p 2 2 10p 1 24 5 0 } 4 6 Ï 36 x5} 2 }} 2(210) 6 Ï(210)2 2 4(5)(24) p 5 }}} 2(5) 466 x5} 2 } 10 6 Ï2380 p5} 10 x5263 } x 5 5, 21 10 6 2i Ï95 p5} 10 The solutions are 5 and 21. } Ï95 4. x 2 2 6x 1 7 5 0 p 5 1 6 i} 5 } }} Ï95 The solutions are 1 1 i } and 1 2 i } . 5 5 } 6 6 Ï8 9. 4x 2 2 8x 1 1 5 0 x5} 2 }} 2(28) 6 Ï(28)2 2 4(4)(1) 2(4) } 6 6 2Ï 2 x5} 2 x 5 }}} } } 8 6 Ï48 x 5 3 6 Ï2 x5} 8 } The solutions are x 5 3 1 Ï 2 ø 4.41 and Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } Ï95 2(26) 6 Ï (26)2 2 4(1)(7) x 5 }}} 2(1) } 8 6 4Ï3 } x5} 8 x 5 3 2 Ï2 ø 1.59. } Ï3 5. t 2 1 8t 1 19 5 0 x516} 2 }} 28 6 Ï82 2 4(1)(19) 2(1) } Ï3 t 5 }} ø 1.87 and The solutions are x 5 1 1 } 2 } } Ï3 28 6 Ï212 t5} x512} ø 0.13. 2 2 } 28 6 2i Ï3 t5} 2 10. 6u 2 1 4u 1 11 5 0 }} } t 5 24 6 i Ï 3 } } The solutions are 24 1 i Ï 3 and 24 2 i Ï3 . 24 6 Ï 42 2 4(6)(11) u 5 }} 2(6) } 24 6 Ï 2248 u 5 }} 12 6. x 2 2 16x 1 7 5 0 }} 2(216) 6 Ï(216)2 2 4(1)(7) x 5 }}} 2(1) } } 24 6 2i Ï 62 u5} 12 1 16 6 Ï228 x5} 2 } Ï62 u 5 2}3 6 i } 6 } 1 16 6 2Ï 57 x5} 2 } Ï62 1 } Ï62 and 2}3 2 i } . The solutions are 2}3 1 i } 6 6 } x 5 8 6 Ï57 } The solutions are x 5 8 1 Ï 57 ø 15.55 } and x 5 8 2 Ï 57 ø 0.45. Algebra 2 Worked-Out Solution Key 219 Chapter 4, continued 11. 3r 2 2 8r 2 9 5 0 23y 2 5 6y 2 10 16. }} 2(28) 6 Ï(28)2 2 4(3)(29) 23y 2 2 6y 1 10 5 0 r 5 }}} 2(3) 8 6 Ï 172 r5} 6 } 6 6 Ï156 y5} 26 } 8 6 2Ï 43 r5} 6 } 6 6 2Ï39 y5} 26 } 4 Ï43 r 5 }3 6 } 3 } Ï39 y 5 21 6 } 3 } Ï43 4 ø 3.52 and The solutions are r 5 }3 1 } 3 } Ï39 } Ï43 4 r 5 }3 2 } ø 20.85 3 ø 1.08 and The solutions are y 5 21 1 } 3 } Ï39 y 5 21 2 } ø 23.08. 3 12. A; 2x 2 2 16x 1 50 5 0 }} 2(216) 6 Ï(216)2 2 4(2)(50) x 5 }}} 2(2) 17. 3 2 8v 2 5v 2 5 2v 25v 2 2 10v 1 3 5 0 }} 2(210) 6 Ï(210)2 2 4(25)(3) } 13. }} 2(26) 6 Ï(26)2 2 4(23)(10) y 5 }}} 2(23) } 16 6 Ï 2144 x5} 4 v 5 }}} 2(25) 16 6 12i x5} 4 v5} 210 x 5 4 6 3i v5} 210 } 10 6 Ï160 } 10 6 4Ï10 } 3w 2 2 12w 5 212 2Ï 10 v 5 21 6 } 5 3w 2 2 12w 1 12 5 0 } 2Ï10 w 2 2 4w 1 4 5 0 ø 0.26 and The solutions are v 5 21 1 } 5 }} 2(24) 6 Ï(24)2 2 4(1)(4) } 2Ï10 w 5 }}} 2(1) v 5 21 2 } ø 22.26. 5 } 18. 7x 2 5 1 12x 2 5 23x 12x 2 1 10x 2 5 5 0 w52 14. x 2 1 6x 5 215 } 210 6 Ï340 x5} 24 x 2 1 6x 1 15 5 0 } }} 210 6 2Ï85 26 6 Ï62 2 4(1)(15) x 5 }} 2(1) x5} 24 } 6} x 5 2} 12 12 2 } 5 26 6 2i Ï6 x5} 2 5 } } } s 2 5 214 2 3s 4x 2 1 3 5 x 2 2 7x 19. 3x 1 7x 1 3 5 0 2 x 5 }} 2(3) 23 6 Ï3 2 4(1)(14) 2 s 5 }} 2(1) } 27 6 Ï 13 } 23 6Ï247 s5} 2 x5} 6 } 7 23 6 i Ï47 s5} 2 } 7 Ï47 2 } Ï13 ø 20.57 and The solutions are x 5 2}6 1 } 6 } Ï47 2 3 2 } Ï47 2 The solutions are 2} 1 i } and 2} 2 i }. Algebra 2 Worked-Out Solution Key } Ï13 x 5 2}6 6 } 6 s 5 } 6 i} 220 }} 27 6 Ï 7 2 2 4(3)(3) }} 3 2 } Ï85 x 5 2} 2} ø 21.18. 12 12 The solutions are 23 1 i Ï6 and 23 2 i Ï6 . 23 2 } Ï85 1} ø 0.35 and The solutions are x 5 2} 12 12 x 5 23 6 i Ï 6 s 2 1 3s 1 14 5 0 } Ï85 5 26 6 Ï224 x5} 15. }} 210 6 Ï102 2 4(12)(25) x 5 }} 2(12) The solution is 2. 7 } Ï13 ø 21.77. x 5 2}6 2 } 6 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 6 Ï0 w5} 2 Chapter 4, continued 20. 6 2 2t 2 5 9t 1 15 23. x 2 2 5x 1 10 5 4 22t 2 9t 2 9 5 0 x 2 2 5x 1 6 5 0 2 }} }} 2(29) 6 Ï(29)2 2 4(22)(29) 2(25) 6 Ï(25)2 2 4(1)(6) t 5 }}} 2(22) x 5 }}} 2(1) } } 9 6 Ï9 5 6 Ï1 t5} 24 x5} 2 963 561 t5} 24 9 x5} 2 3 t 5 2}4 6 }4 x 5 3, 2 The solutions are 3 and 2. 3 t 5 2}2 , 23 Check: x 2 2 5x 1 6 5 0 (x 2 3)(x 2 2) 5 0 3 The solutions are 2}2 and 23. x 2 3 5 0 or x 2 2 5 0 x 5 3 or x 5 2 4 1 9n 2 3n 5 2 2 n 2 21. 24. m 2 1 5m 2 99 5 3m 23n 1 10n 1 2 5 0 2 m 2 1 2m 2 99 5 0 }} 210 6 Ï102 2 4(23)(2) n 5 }} 2(23) }} 22 6 Ï22 2 4(1)(99) m 5 }} 2(1) } 210 6 Ï124 n5} 26 } 22 6 Ï 400 m 5} 2 } 210 6 2Ï31 n5} 26 22 6 20 m5} 2 } Ï31 5 n 5 }3 6 } 3} m 5 9, 211 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Ï31 5 The solutions are n 5 }3 1 } ø 3.52 and 3 } Ï31 5 n 5 }3 2 } ø 20.19. 3 The solutions are 9 and 211. Check: m 2 1 2m 2 99 5 0 (m 2 9)(m 1 11) 5 0 m 2 9 5 0 or m 1 11 5 0 22. z 2 1 15z 1 24 5 232 m 5 9 or m 5 211 z 1 15z 1 56 5 0 2 25. }} 215 6 Ï152 2 4(1)(56) s 2s235s 2 s 2 2 2s 2 3 5 0 z 5 }} 2(1) }} 2(22) 6 Ï(22)2 2 4(1)(23) 2(1) } 215 6 Ï1 z5} 2 s 5 }}} } 2 6 Ï16 215 6 1 z5} 2 s5} 2 z 5 27, 28 s5} 2 264 The solutions are 27 and 28. s 5 3, 21 Check: z 2 1 15z 1 56 5 0 The solutions are 3 and 21. (z 1 8)(z 1 7) 5 0 z1850 z 5 28 or or z1750 z 5 27 Check: s 2 2 2s 2 3 5 0 (s 2 3)(s 1 1) 5 0 s 2 3 5 0 or s 1 1 5 0 s 5 3 or s 5 21 Algebra 2 Worked-Out Solution Key 221 Chapter 4, continued 26. r 2 2 4r 1 8 5 5r 29. 5p 2 1 40p 1 100 5 25 r 2 9r 1 8 5 0 5p 2 1 40p 1 75 5 0 2 }} p 2 1 8p 1 15 5 0 2(29) 6 Ï(29)2 2 4(1)(8) r 5 }}} 2(1) }} 28 6 Ï82 2 4(1)(15) p 5 }} 2(1) } 9 6 Ï 49 r5} 2 } 28 6 Ï 4 967 r5} 2 p 5 23, 25 r 5 8, 1 The solutions are 23 and 25. The solutions are 8 and 1. Check: p 2 1 8p 1 15 5 0 Check: r 2 2 9r 1 8 5 0 ( p 1 3)( p 1 5) 5 0 (r 2 8)(r 2 1) 5 0 p1350 r 2 8 5 0 or r 2 1 5 0 or p 1 5 5 0 p 5 23 or r 5 8 or r 5 1 p 5 25 30. 9n 2 2 42n 2 162 5 21n 27. 3x 2 1 7x 2 24 5 13x 9n 2 2 63n 2 162 5 0 3x 2 2 6x 2 24 5 0 n 2 2 7n 2 18 5 0 x 2 2 2x 2 8 5 0 }} 2(27) 6 Ï(27)2 2 4(1)(218) n 5 }}} 2(1) }} 2(22) 6 Ï(22)2 2 4(1)(28) x 5 }}} 2(1) } 7 6 Ï121 } 7 6 11 5} n5} 2 2 2 6 Ï 36 x5} 2 n 5 9, 22 266 x5} 2 The solutions are 9 and 22. x 5 4, 22 Check: n 2 2 7n 2 18 5 0 (n 2 9)(n 1 2) 5 0 The solutions are 4 and 22. n 5 9 or (x 2 4)(x 1 2) 5 0 n 5 22 31. x 2 8x 1 16 5 0 2 x 2 4 5 0 or x 1 2 5 0 b 2 2 4ac 5 (28)2 2 4(1)(16) 5 0 x 5 4 or x 5 22 28. 45x 2 1 57x 1 1 5 5 One real solution: } } 45x 2 1 57x 2 4 5 0 2(28) 6 Ï0 2b 6 Ïb 2 2 4ac x 5 }} 5} 54 2a 2(1) }} 257 6 Ï572 2 4(45)(24) x 5 }} 2(45) 32. s 2 1 7s 1 11 5 0 } b 2 2 4ac 5 72 2 4(1)(11) 5 5 > 0 257 6 Ï3969 x 5 }} 90 Two real solutions: 257 6 63 x5} 90 27 6 Ï5 2b 6 Ïb 2 2 4ac s 5 }} 5 } ø 22.38, 24.62 1 } 2a 4 , 2}3 x5} 15 2(1) 33. 8p 1 8p 1 3 5 0 2 4 1 The solutions are } and 2}3 . 15 b 2 2 4ac 5 82 2 4(8)(3) 5 232 < 0 Two imaginary solutions: Check: 45x 2 1 57x 2 4 5 0 } 15x 2 1 5 0 or 3x 1 4 5 0 1 or x5} 15 } } 28 6 Ï 232 28 6 4i Ï 2 2b 6 Ïb 2 2 4ac 5} 5} p 5 }} 2a 16 2(8) (15x 2 1)(3x 1 4) 5 0 Algebra 2 Worked-Out Solution Key } 4 x 5 2}3 1 } Ï2 5 2}2 6 i } 4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. n 2 9 5 0 or n1 2 5 0 Check: x 2 2x 2 8 5 0 2 222 28 6 2 5} p5} 2 2 Chapter 4, continued 34. 24w 2 1 w 2 14 5 0 7r 2 2 5 5 2r 1 9r 2 39. b 2 4ac 5 1 2 4(24)(214) 5 2223 < 0 22r 2 2r 2 5 5 0 Two imaginary solutions: b 2 2 4ac 5 (22)2 2 4(22)(25) 5 236 < 0 2 2 } 2 } Two imaginary solutions: 21 6 Ï2223 2b 6 Ïb2 2 4ac w 5 }} 5 }} 2a 2(24) } 2b 6 Ï b 2 2 4ac r 5 }} 2a } 21 6 i Ï223 5} 28 1 } 2(22) 6 Ï236 5 }} 2(22) } Ï223 5 }8 6 i } 8 2 6 6i 5} 24 35. 5x 1 20x 1 21 5 0 2 b 2 2 4ac 5 20 2 2 4(5)(21) 5 220 < 0 1 Two imaginary solutions: } } 220 6 Ï220 2b 6 Ïb 2 2 4ac x 5 }} 5 }} 2a 2(5) 16t 2 2 7t 5 17t 2 9 40. 16t 2 24t 1 9 5 0 2 } (4t 2 3)(4t 2 3) 5 0 220 6 2i Ï 5 5} 10 4t 2 3 5 0 } Ï5 5 22 6 i } 5 3 t 5 }4 8z 2 10 5 z 2 2 7z 1 3 36. 3 5 2}2 6 }2 i 3 The solution is }4. 2z 2 1 15z 2 13 5 0 b 2 2 4ac 5 15 2 2 4(21)(213) 5 173 > 0 7x 2 3x 2 5 85 1 2x 2 1 2x 41. 25x 1 5x 2 85 5 0 2 Two real solutions: } x 2 2 x 1 17 5 0 } 215 6 Ï173 2b 6 Ïb 2 2 4ac z 5 }} 5} 2a 2(21) }} 2(21) 6 Ï (21)2 2 4(1)(17) x 5 }}} 2(1) } 215 6 Ï173 5} 2(21) } 1 6 Ï267 x5} 2 } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 15 6 Ï 173 5} 2 } 1 6 i Ï 67 x5} 2 ø 14.08, 0.92 37. 8n 2 2 4n 1 2 5 5n 2 11 1 8n 2 2 9n 1 13 5 0 1 Two imaginary solutions: } } 2(29) 6 Ï2335 2b 6 Ïb 2 4ac n 5 }} 5 }} 2a 2(8) 2 } 9 6 i Ï335 5} 16 1 } i Ï67 4(x 2 1)2 5 6x 1 2 42. 4(x 2 2x 1 1) 5 6x 1 2 2 4x 2 2 8x 1 4 5 6x 1 2 4x 2 2 14x 1 2 5 0 2x 2 2 7x 1 1 5 0 } Ï335 6 i} 5} 16 16 }} 2(27) 6 Ï(27)2 2 4(2)(1) 2(2) x 5 }}} 38. 5x 2 1 16x 5 11x 2 3x 2 } 7 6 Ï 41 8x 2 1 5x 5 0 b 2 2 4ac 5 52 2 4(8)(0) 5 25 > 0 Two real solutions: } } 25 6 Ï 25 2b 6 Ïb 2 2 4ac x 5 }} 5} 2a 2(8) 25 6 5 } i Ï 67 and }2 2 } . The solutions are }2 1 } 2 2 b 2 2 4ac 5 (29)2 2 4(8)(13) 5 2335 < 0 9 } i Ï67 x 5 }2 6 } 2 x5} 4 } 7 1 Ï 41 ø 3.35 and The solutions are x 5 } 4 } 7 2 Ï41 ø 0.15. x5} 4 5 5 0, 2}8 5} 16 Algebra 2 Worked-Out Solution Key 223 continued 25 2 16v 2 5 12v(v 1 5) 43. 46. 1.1(3.4x 2 2.3)2 5 15.5 25 2 16v 5 12v 1 60v 2 11(3.4x 2 2.3)2 5 155 2 228v 2 2 60v 1 25 5 0 23 17 x2} 1} 10 2 5 2 28v 1 60v 2 25 5 0 2 Î155 11 23 17 155 }x 5 } 6Î } 10 5 11 5 23 155 } 6Î } 2 x5} 17 1 10 11 23 5 155 Î} x5} 6} 34 17 11 }x 2 } 5 6 } 14v 2 5 5 0 or 2v 1 5 5 0 5 v5} 14 } 5 v 5 2}2 or } 5 5 and 2}2 . The solutions are } 14 44. } 3 4 3 2 } y 2 2 6y 5 } y 2 9 6y 2 24y 5 3y 2 36 6y 2 2 27y 1 36 5 0 }} 23 2(29) 6 Ï(29)2 2 4(2)(12) y 5 }}} 2(2) 19.25 5 8.5(2r 2 1.75)2 } Î 9 6 i Ï 15 } } } i Ï 15 3 3x 2 1 }2 x 2 4 5 5x 1 }4 7 8 7 } iÏ2618 7 }} 2(22) 6 Ï(22)2 2 4(12)(219) x 5 }}} 2(12) } 2 6 Ï 916 x5} 24 } 2 6 2Ï 229 x5} 24 1 6 Ï 229 x5} 12 } 1 1 Ï229 The solutions are x 5 } ø 1.34 and 12 48. 4.5 5 1.5(3.25 2 s)2 3 5 (3.25 2 s)2 } 6Ï 3 5 3.25 2 s } s 5 3.25 6 Ï3 } The solutions are s 5 3.25 1 Ï 3 ø 4.98 and } s 5 3.25 2 Ï3 ø 1.52. 49. The solutions are imaginary, not real. 3x2 1 6x 1 15 5 0 }} 26 6 Ï62 2 4(3)(15) x 5 }} 2(3) } 26 6 Ï 2144 5 }} 6 26 6 12i 5} 6 5 21 6 2i The solutions are 21 1 2i and 21 2 2i. 224 Algebra 2 Worked-Out Solution Key } iÏ 2618 The solutions are }8 1 } and }8 2 } . 68 68 12x 2 2 2x 2 19 5 0 ø 21.18. x5} 12 } iÏ2618 68 }6}5r 12x 2 1 18x 2 16 5 20x 1 3 } } 7 4 9 } 7 } 6 i } 5 2r and }4 2 } . The solutions are }4 1 } 4 4 9 77 Î7734 7 1 77 } 6 }i Î } 5 r 8 2 34 } i Ï 15 } 7 2 6 2} 5 2r 2 }4 34 y 5 }4 6 } 4 i Ï15 2} 5 1 2r 2 }4 2 34 77 y5} 4 9 } 5Ï1705 2} ø 20.43. x5} 34 187 47. } 9 6 Ï 215 y5} 4 1 2 Ï 229 } 5Ï 1705 23 1} ø 1.78 and The solutions are x 5 } 34 187 2y 2 2 9y 1 12 5 0 45. } 5Ï1705 23 6} x5} 34 187 2 9 } 23 10 17 5 (14v 2 5)(2v 1 5) 5 0 155 5} 11 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 4, Chapter 4, continued 50. The quadratic equation must be written in standard form before applying the quadratic formula. x 1 6x 1 8 5 2 2 x 1 6x 1 6 5 0 2 }} 26 6 Ï62 2 4(1)(6) x 5 }} 2(1) } 26 6 Ï12 x5} 2 } 26 6 2Ï3 x5} 2 } x 5 23 6 Ï 3 } The solutions are x 5 23 1 Ï 3 ø 21.27 and } x 5 23 2 Ï3 ø 24.73. 51. ax 2 1 bx 1 c 5 0 } 2b 6 Ïb 2 2 4ac x 5 }} 2a Mean of solutions: } } 2b 1 Ïb 2 2 4ac 1 1 2b 2 Ïb 2 2 4ac 2 }}} 2a } 2 22b } 22b b 2a 5 } 5 } 5 2} , which is the formula for the 2 4a 2a axis of symmetry. The axis of symmetry of the graph of y 5 ax 2 1 bx 1 c is the mean of the x-values of two points that lie on the graph that have the same y-value. 52. Because there are two x-intercepts, the discriminant Copyright © by McDougal Littell, a division of Houghton Mifflin Company. is positive. 53. Because there are no x-intercepts, the discriminant 57. x 2 1 8x 1 c 5 0 a. 82 2 4(1)(c) > 0 64 2 4c > 0 24c > 264 c < 16 b. 82 2 4(1)(c) 5 0 64 2 4c 5 0 24c 5 264 c 5 16 c. 82 2 4(1)(c) < 0 64 2 4c < 0 24c < 264 c > 16 58. 2x 2 1 16x 1 c 5 0 a. 162 2 4(21)(c) > 0 256 1 4c > 0 4c > 2256 c > 264 b. 162 2 4(21)(c) 5 0 256 1 4c 5 0 4c 5 2256 c 5 264 c. 162 2 4(21)(c) < 0 256 1 4c < 0 4c < 2256 c < 264 59. 3x 2 1 24x 1 c 5 0 a. 242 2 4(3)(c) > 0 576 2 12c > 0 is negative. 212c > 2576 54. Because there is one x-intercept, the discriminant is zero. c < 48 55. C; b. 24 2 4(3)(c) 5 0 2 2x 2 1 5x 1 c 5 0 576 2 12c 5 0 b2 2 4ac 5 52 2 4(2)(c) 5 223 212c 5 2576 25 2 8c 5 223 28c 5 248 c56 c 5 48 c. 24 2 4(3)(c) < 0 2 576 2 12c < 0 56. x 2 2 4x 1 c 5 0 212c < 2576 a. (24)2 2 4(1)(c) > 0 16 2 4c > 0 24c > 216 c<4 b. (24)2 2 4(1)(c) 5 0 16 2 4c 5 0 24c 5 216 c54 c. (24)2 2 4(1)(c) < 0 16 2 4c < 0 24c < 216 c>4 c>4 60. 24x 2 10x 1 c 5 0 2 a. (210)2 2 4(24)(c) > 0 100 1 16c > 0 16c > 2100 25 c > 2} 4 b. (210)2 2 4(24)(c) 5 0 100 1 16c 5 0 16c 5 2100 25 c 5 2} 4 Algebra 2 Worked-Out Solution Key 225 Chapter 4, continued c. (210)2 2 4(24)(c) < 0 ax 2 1 bx 1 4 5 0 64. a(21) 1 b(21) 1 4 5 0 100 1 16c < 0 2 a2b1450 16c < 2100 25 c < 2} 4 61. x 2 2 x 1 c 5 0 1 2 a5b24 1 2 4 2 4 a 2}3 1 b 2}3 1 4 5 0 a. (21) 2 2 4(1)(c) > 0 16 9 4 3 }a 2 }b 1 4 5 0 1 2 4c > 0 4 3 16 9 24c > 21 }(b 2 4) 2 }b 1 4 5 0 1 c < }4 16(b 2 4) 2 12b 1 36 5 0 16b 2 64 2 12b 1 36 5 0 b. (21) 2 4(1)(c) 5 0 2 4b 2 28 5 0 1 2 4c 5 0 4b 5 28 24c 5 21 b57 1 c 5 }4 a5b24572453 c. (21)2 2 4(1)(c) < 0 ax 2 1 bx 1 4 5 0 1 2 4c < 0 3x 2 1 7x 1 4 5 0 24c < 21 ax 2 1 bx 1 4 5 0 65. a(21 2 i) 1 b(21 2 i) 1 4 5 0 2 1 c > }4 2ia 1 (21 2 i)b 1 4 5 0 62. b2 2 4ac 5 210 2ia 5 24 2 (21 2 i)b 1 2 7 Sample answer: 5 2 4 }4 (5) 5 25 2 35 2 24 2 (21 2 i)b a 5 }} 2i 5 210 a(21 1 i)2 1 b(21 1 i) 1 4 5 0 7 }x 2 1 5x 1 5 5 0 4 F ax 2 1 bx 1 4 5 0 63. 24 2 (21 2 i)b G 1 (21 1 i)b 1 4 5 0 22i }} 2i a(24)2 1 b(24) 1 4 5 0 4 1 (21 2 i)b 1 (21 1 i)b 1 4 5 0 16a 2 4b 1 4 5 0 (21 2 i 2 1 1 i)b 5 28 16a 5 4b 2 4 22b 5 28 4b 2 4 a5} 16 b54 24 2 (21 2 i)b 24 2 (21 2 i)(4) 5 }} a 5 }} 2i 2i 24 1 4 1 4i 5} 52 2i b21 a5} 4 a(3)2 1 b(3) 1 4 5 0 9a 1 3b 1 4 5 0 ax 2 1 bx 1 4 5 0 b21 1 3b 1 4 5 0 9} 4 1 2 2x 2 1 4x 1 4 5 0 66. 9(b 2 1) 1 12b 1 16 5 0 9b 2 9 1 12b 1 16 5 0 21b 5 27 7 b21 24 3 } } ax 1 bx 1 4 5 0 1 1 2}3x 2 2 }3x 1 4 5 0 226 Algebra 2 Worked-Out Solution Key 29a 1 (3i)b 1 c 5 0 24a 1 (22i)b 1 c 5 0 ib 5 a 29(ib) 1 (3i)b 1 c 5 0 1 5} 5 4 5 2}3 a5} 4 4 2 a(22i)2 1 b(22i) 1 c 5 0 (5i)b 5 5a 1 b 5 2}3 1 a(3i)2 1 b(3i) 1 c 5 0, 29a 1 (3i)b 1 c 5 24a 1 (22i)b 1 c b 5 2} 21 2}3 2 1 ax 2 1 bx 1 c 5 0 (29i)b 1 (3i)b 1 c 5 0 (26i)b 1 c 5 0 c 5 6ib You can see from the equations a 5 ib and c 5 6ib, that a, b, and c cannot be real numbers. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22ia 1 (21 1 i)b 1 4 5 0 Chapter 4, continued ax 2 1 bx 1 c 5 0 67. c. Because the x-coordinate of the vertex is 80, the horizontal distance h the motorcycle has traveled when it reaches its maximum height is 80 feet. b c x 2 1 }a x 1 }a 5 0 b 1 1 d. y 5 2} (80)2 1 } (80) 1 20 5 30 640 4 c x2 1 } a x 5 2} a Because the y-coordinate of the vertex is 30, the motorcycle’s maximum height k above the ground is 30 feet. x2 1 } 5 2}a 1 1 } a x 1 1} 2a 2 2a 2 b 2 b b 2 c 2c b2 4a x2 1 1 } 5} a 1 }2 2a 2 b 2 24ac 1 b 2 4a b 1x 1 } 2a 2 5} 2 b 1x 1 } 2a 2 5} 2 2 2 71. S 5 20.000013E 2 1 0.042E 2 21 10 5 20.000013E 2 1 0.042E 2 21 0 5 20.000013E 2 1 0.042E 2 31 }}} b2 2 4ac 4a Î 20.042 6 Ï(0.042)2 2 4(20.000013)(231) E 5 }}}} 2(20.000013) } b } 20.042 6 Ï 0.000152 b 2 2 4ac 4a x1} 56 } 2 2a E 5 }} 20.000026 E ø 1141.2 or E ø 2089.57 } b Ïb 2 2 4ac x 5 2} 6} 2a 2a You would expect to find 10 species of ants at elevations of 1141.2 meters and 2089.57 meters. } 2b 6 Ïb2 2 4ac x 5 }} 2a 72. a. 4* 1 3w 5 900 3w 5 900 2 4* Problem Solving 4 w 5 300 2 }3* 68. h 5 216t 2 1 v0 t 1 h0 0 5 216t 2 2 50t 1 7 b. *w 5 12,000 }} 2(250) 6 Ï(250) 2 4(216)(7) 2 t 5 }}} 2(216) 12,000 *5} w w 5 300 2 }3 1 } w 2 4 12,000 } 50 6 Ï2948 t5} 232 16,000 w 5 300 2 } w Copyright © by McDougal Littell, a division of Houghton Mifflin Company. t ø 23.26 or t ø 0.13 w 2 5 300w 2 16,000 Reject the solution 23.26 because the ball’s time in the air cannot be negative. So the defensive player’s teammates have about 0.13 second to intercept the ball before it hits the ground. w 2 2 300w 1 16,000 5 0 }} 2(2300) 6 Ï(2300)2 2 4(1)(16,000) w 5 }}} 2(1) 69. C; } 300 6 Ï26,000 w 5 }} 2 s 5 858t 1 1412t 1 4982 2 } 50,000 5 858t 2 1 1412t 1 4982 300 6 20Ï65 0 5 858t 1 1412t 2 45,018 2 w ø 230.62 or w ø 69.38 }}} 21412 6 Ï(1412)2 2 4(858)(245,018) 2(858) t 5 }}} 12,000 230.62 When w ø 230.62: * ø } ø 52.03 }} 21412 6 Ï156,495,520 t 5 }} 1716 12,000 69.38 When w ø 69.38: * ø } ø 172.96 t ø 6.47 or t ø 28.11 Reject the solution 28.11. The number of subscribers reached 50 million 6 years after 1990, or 1996. 70. a. The motorcycle’s height r when it lands on the ramp is The possible dimensions of each section are 230.62 feet by 52.03 feet or 69.38 feet by 172.96 feet. 73. x 5 20t y 5 216t 2 1 21t 1 6 20 feet. 1 1 b. y 5 2}x 2 1 }x 1 20 640 4 } 5 150 6 10Ï65 w 5 }} 2 a. t 0 0.25 0.5 0.75 1 2}4 b } 5 80 x 5 2} 5 2a 1 21 2} 640 2 x 0 5 10 15 20 y 6 10.25 12.5 12.75 11 Because the x-coordinate of the vertex is 80, the distance d between the ramps is 2(80), or 160 feet. (x, y) 1 (0, 6) (5, 10.25) (10, 12.5) (15, 12.75) (20, 11) Algebra 2 Worked-Out Solution Key 227 Chapter 4, b. continued Lesson 4.9 y 4.9 Guided Practice (pp. 301–303) 16 1. y > x 2 1 2x 2 8 12 Test (0, 0): y > x 2 1 2x 2 8 0 > 02 1 2(0) 2 8 y 2 8 (0, 0) 21 x 0 > 28 4 0 0 5 10 15 x 20 c. No, the player does not make the free throw. The shot is too high. It goes over the backboard. 2. ya2x 2 2 3x 1 1 74. a. h 5 216t 1 v0 t 1 921 2 The maximum height of 1081 feet occurs at the vertex. v0 v0 b t 5 2} 5 2} 5} 2a 32 2(216) v0 2 v0 1 2 (1, 2) 2÷0 21 1 2 v02 v0 ya2x 2 2 3x 1 1 2(1)2 2 3(1) 1 1 2a 1 1 v0 } 1 921 5 1081 h 5 216 } 32 32 2 Test (1, 2): y x 3. y < 2x 2 1 4x 1 2 1} 1 921 5 1081 2} 64 32 Test (0, 0): y < 2x 2 1 4x 1 2 0 < 2(0)2 1 4(0) 1 2 y v02 } 5 160 0<2 64 v02 5 10,240 2 } v0 5 6Ï 10,240 5 6101 21 (0, 0) x The initial velocity is about 101 feet per second. } b. When v0 5 Ï 10,240 : 4. yqx 2 y < 2x 2 1 5 1081 5 216t 2 1 Ï 10,240 t 1 921 } 0 5 216t 2 1 Ï10,240 t 2 160 } }}} } } } y Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } Ï 1 Ï10,240 22 2 4(216)(2160) t 5 }}}} 2Ï 10,240 6 2(216) 1 } } 2Ï 10,240 6 Ï 0 232Ï10 t 5 }} 5} 5 Ï 10 ø 3.16 232 232 The time given by the model is longer than the time given in the brochure. The model is not extremely accurate. 21 2x 2 1 2xa 5. 2x 2 1 2x 2 3a0 2x 2 1 2x 2 3 5 0 }} 22 6 Ï22 2 4(2)(23) x 5 }} 2(2) Mixed Review for TAKS 75. D; } 21 6 Ï 7 908 1 908 1 (2x 1 50)8 1 2x8 1 (3x 2 5)8 5 5408 5} 2 7x 1 225 5 540 76. F; x } x s 1 a 5 725 4s 1 6a 5 3650 2x 2 1 2x 2 3 23 9 21 2 Ï 7 22 } 2 1 21 23 0 } x 2x 2 1 2x 2 3 0 21 1 Ï7 } 1 23 0 1 2 2 9 } } 21 2 Ï7 21 1 7 The solution of the inequality is } axa} . 2 Ï 2 228 Algebra 2 Worked-Out Solution Key