Comments
Description
Transcript
Chapter 8, continued
Chapter 8, 7. continued a d a 10 5 }2 1 x 1 5 x2 1 x 1 1 x15 10. } + (x 2 1 x 1 1) 5 } +} 3 1 x3 2 1 x 21 I 5 }2 10 5 a (x 1 5)(x 2 1 x 1 1) x15 5 }} 5} 2 x21 (x 2 1)(x 1 x 1 1) For d 5 15 and a 5 10, x2 2 2x 4x x 2 2 6x 1 8 4x }+} 11. } 4 } 5 2 5x 2 20 5x 2 20 x 2 6x 1 8 x 2 2 2x a d 10 I 5 }2 15 10 I5} 225 I 5 }2 (x 2 4)(x 2 2) x(x 2 2) 4x 5} + }} 5(x 2 4) 4x(x 2 4)(x 2 2) 4 5 }} 5 }5 5x(x 2 4)(x 2 2) I ø 0.04 If you are 15 meters from the stage, the intensity of the sound you hear is about 0.04 watts per square meter. 2x 2 1 3x 2 5 2x 2 1 3x 2 5 1 12. } 4 (2x 2 1 5x) 5 } + } 6x 6x 2x 2 1 5x (2x 1 5)(x 2 1) (2x 1 5)(x 2 1) 5 437.5 1 500 5 937.5 The motorcycle is worth about $938 eight years after it was purchased. x21 6x 5} 5 }} 2 (6x)(x)(2x 1 5) 3500 M(8) 5 } 1 500 8 1 x(2x 1 5) 5 }} +} 6x 3500 8. M(t ) 5 } t 1 500 8.4 Exercises (pp. 577–580) Skill Practice 1. To divide one rational expression by another, multiply the first rational expression by the reciprocal of the second rational expression. 2. A rational expression is simplified when its numerator Lesson 8.4 8.4 Guided Practice (pp. 574–577) 2(x 1 1) 2(x 1 1) 2 1. }} 5 }} 5 } x13 (x 1 1)(x 1 3) (x 1 1)(x 1 3) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (x 2 1 x 1 1) x15 (x 2 1)(x 1 x 1 1) 5 }} +} 2 1 and denominator have no common factors (other than 61). (x 2 7)(x 2 2) x22 x 2 2 9x 1 14 3. B; } 5 }} 5} x12 (x 2 7)(x 1 2) x 2 2 5x 2 14 20(2x 1 1) 2 + 10 + (2x 1 1) 2(2x 1 1) 40x 1 20 2. } 5 } 5 }} 5 } x13 10(x 1 3) 10 + (x 1 3) 10x 1 30 (x 1 2)(x 2 2) x22 x2 2 4 4. A; } 5 }} 5} x17 (x 1 7)(x 1 2) x 2 1 9x 1 14 4 3. The expression } cannot be simplified. x(x 1 2) (x 1 7)(x 2 2) x17 x 2 1 5x 2 14 5. C; } 5 }} 5} x22 (x 2 2)(x 2 2) x 2 2 4x 1 4 x14 1 x14 4. } 5 }} 5} x24 (x 1 4)(x 2 4) x 2 2 16 (x 2 3)(x 1 1) x11 x 2 2 2x 2 3 5. } 5 }} 5} x12 (x 2 3)(x 1 2) x2 2 x 2 6 4x + x x 4x 2 6. } 5} 5} 5x 2 3 4x(5x 2 3) 20x 2 2 12x (x 2 5)(x 1 4) x 2 2 x 2 20 7. } 5 }} (x 1 5)(x 2 3) x 2 1 2x 2 15 2x(x 1 5) 2x 2x 2 1 10x 6. }} 5 }} 5} 3x 1 1 (3x 1 1)(x 1 5) 3x 2 1 16x 1 5 7. New tin: S 5 2(2s)2 1 4(2s)(h) 5 2(4s2) 1 8sh 5 8s2 1 8sh V 5 (2s)2(h) 5 4s2h 4s(2s 1 2h) 8s 2 1 8sh 2s 1 2h 4s(sh) sh 4s h 18x 6y 4 2 + 9 + x4 + x2 + y2 + y2 x 2y 2 3x 5y 2 6xy 2 8. } + } 5} 5 }} 5} 4 8xy 72x 4y 2 2 + 9 + 4 + x4 + y 2 9x3y S V }5} 5}5} 2 2x(x 2 5) 2x 2 10x x 1 3 x13 9. } +} 5 }} +} (x 1 5)(x 2 5) 2x + x x 2 2 25 2x 2 2 2x(x 2 5)(x 1 3) x13 5 }} 5} (2x)(x)(x 1 5)(x 2 5) x(x 1 5) The expression cannot be simplified. (x 1 6)(x 2 4) x24 x2 1 2x 2 24 8. } 5 }} 5} x11 (x 1 6)(x 1 1) x 2 1 7x 1 6 (x 2 8)(x 2 3) x23 x 2 2 11x 1 24 9. }} 5 }} 5} x15 (x 2 8)(x 1 5) x 2 2 3x 2 40 (x 1 2)(x 1 2) x 2 1 4x 1 4 10. } 5 }} (x 2 4)(x 2 1) x 2 2 5x 1 4 The expression cannot be simplified. 2(x2 1 x 2 2) 2(x 1 2)(x 2 1) 2(x 2 1) 2x 2 1 2x 2 4 11. } 5 }} 5 }} 5} x27 (x 1 2)(x 2 7) x 2 2 5x 2 14 x 2 2 5x 2 14 x24 1 x24 12. } 5 }} 5} x 2 1 4x 1 16 x 3 2 64 (x 2 4)(x 2 1 4x 1 16) (x 1 6)(x 2 6) x26 x 2 2 36 13. }} 5 }} 5} x16 (x 1 6)(x 1 6) x 2 1 12x 1 36 3x(x2 1 2x 1 4) 3x 3x 3 1 6x2 1 12x 14. }} 5 }} 5} 3 x22 x 28 (x 2 2)(x2 1 2x 1 4) Algebra 2 Worked-Out Solution Key 433 Chapter 8, continued (4x 2 1)(2x 1 3) 4x 2 1 8x 2 1 10x 2 3 15. }} 5 }} 5} 3x 1 2 (3x 1 2)(2x 1 3) 6x 2 1 13x 1 6 (5x 2 2)(x 1 4) 5x 2 1 18x 2 8 16. }} 5 }} (5x 1 2)(2x 2 1) 10x 2 2 x 2 2 x2 1 3x 2 4 2x 2 1 4x 30. } +} x 2 1 4x 1 4 x 2 2 4x 1 3 (x 1 4)(x 2 1) 2x(x 1 2) 5 }} + }} (x 1 2)(x 1 2) (x 2 3)(x 2 1) 2x(x 1 4)(x 2 1)(x 1 2) The expression cannot be simplified. x 2 2 3x 2 10 31. } + (x2 1 10x 1 21) x 2 2 2x 2 15 18. Variable terms that are not factors were factored out. x2 1 16x 2 80 x 2 16 (x 1 20)(x 2 4) (x 1 4)(x 2 4) x 1 20 x14 }} 5 }} 5 } 2 19. You can only divide out common factors. Since the factors that are divided out are not common factors of the entire numerator and denominator, you cannot divide them out. x 2 1 16x 1 48 x 1 8x 1 16 (x 1 12)(x 1 4) (x 1 4)(x 1 4) x 1 12 x14 }} 5 }} 5 } 2 x 2 2 3x 2 10 x 2 1 10x 1 21 x 2 2x 2 15 (x 2 5)(x 1 2)(x 1 7)(x 1 3) 5 }}} 5 (x 1 2)(x 1 7) (x 2 5)(x 1 3) 5} + }} 2 1 x 2 1 5x 2 36 32. } + (x 2 2 11x 1 28) x 2 2 49 x2 1 5x 2 36 x 2 2 11x 1 28 x 2 49 (x 1 9)(x 2 4)(x 2 4)(x 2 7) (x 1 9)(x 2 4)2 }} 5 }}} 5 x17 (x 1 7)(x 2 7) + }} 5} 2 1 4x 2 1 20x x 2 1 8x 1 16 4x 2 1 20x 33. } + (x2 1 8x 1 16) 5 } +} 1 x 3 1 4x 2 x3 1 4x2 4x(x 1 5)(x 1 4)(x 1 4) 5 }} x + x(x 1 4) 20. B; The numerator and denominator factor (x 1 4)(x 1 2) as }}. The numerator and denominator (x 1 3)(x 2 1) have no common factors (other than 61), so the 4(x 1 5)(x 1 4) x 2 1 6x 1 8 x 1 2x 2 3 5 }} x expression } is in simplified form. 2 30xy4 5x2y3 y3 5x 2y 3 } } }4 34. } 4 5 + 7 3 x y 30xy x7 5x2y6 5 + x2 + y4 + y2 y2 }} }6 5} 8 4 5 2 6 4 5 30x y 5+6+x +x +y 6x 21. P 5 4(2x) 5 8x A 5 (2x)(2x) 5 4x 2 P A 8x 4x 4+2+x 4+x+x 2 x } 5 }2 5 } 5 } 10xy 8x 2y 2z x4z 8x 6y 2z 2 8x 2y2z } } } 35. } 4} 4 5 3 + 10xy 5 3 xz xz 10x 2yz 3 xz 2 4 2 + 4 + x + x + y + y + z2 4x4y 5 }} 5} 2 2 5z 2+5+x +y+z +z (x 1 3)(x 2 2) (x 1 3)(x 2 2) x13 x 36. }} 4 } 5 }} + } x x(x 1 1) x13 x(x 1 1) 22. P 5 x 1 (3x 2 x) 1 x 1 x 1 x 1 x 1 3x 5 x 1 2x 1 7x 5 10x A 5 x(3x) 1 x(x) 5 3x 2 1 x 2 5 4x 2 P A 10x 4x 5+2+x 2+2+x+x 5 2x } 5 }2 5 } 5 } x(x 1 3)(x 2 2) 23. The field in Exercise 21 because the perimeter of the field in Exercise 21 is smaller and the areas of both fields are the same. 5 }} x(x 1 4) 16x(x 2 4) 5} x14 x2 2 14x 1 45 x 2 2 6x 2 27 38. } 4 }} 2 x2 2x 1 2x 5 (x 2 3)(x 1 3) 2(2)(x)(x 1 5)(x 1 1) 2(x 1 1) 4(x 1 5) x(x 1 1) 27. } + } 5 }} 5} x 2(x)(x)(x 1 5) 2(x 1 5) x2 3(x 2 4) 3x 2 12 x 1 6 x16 28. } + } 5 } + } x15 x15 2x 2 8 2(x 2 4) 3(x 1 6) 5 }} 5} 2(x 1 5)(x 2 4) 2(x 1 5) 2(x2 2 16) x15 x15 2x2 2 32 29. } + } 5} + }} 4(x 2 4) (x 1 5)(x 2 5) 4x 2 16 x2 2 25 2(x 1 5)(x 1 4)(x 2 4) x14 5 }} 5} 2(2)(x 2 4)(x 1 5)(x 2 5) 2(x 2 5) 434 Algebra 2 Worked-Out Solution Key 2(x 2 4) 8x 2 x 8x 2 37. } 4 } 5 } + } x14 2(x 2 4) x14 x 16(x)(x)(x 2 4) 5x 3y 4 5 + x3 + y2 + y2 y2 5x 3y y3 } }} } } 24. } + 5 5 5 4 2 3 2 3x 15x y 5+3+x +x+y x 2y 2 15x 2 48x7y4 8 + 6 + x3 + x4 + y4 48x5y 3 x 2y 8x4 25. } +} 5} 5 }} 5} 6x 3y 6 6 + x3 + y4 + y2 y2 y4 6x3y 2 x(x 2 3)(x 1 3)(x 2 2) x(x 2 3) (x 1 3)(x 2 2) 26. } + }} 5 }} x x(x 2 2) x22 3(x 2 4)(x 1 6) x22 5 }} 5} x11 x(x 1 1)(x 1 3) x 2 2 6x 2 27 x2 2x 1 2x x 2 14x 1 45 (x 2 9)(x 1 3) x2 5 }} + }} 2x(x 1 1) (x 2 9)(x 2 5) 5} + }} 2 2 x + x + (x 2 9)(x 1 3) x(x 1 3) 5 }} 5 }} 2x(x 1 1)(x 2 9)(x 2 5) 2(x 1 1)(x 2 5) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 2x(x 1 4) 5 }}} 5 }} (x 1 2)(x 1 2)(x 2 3)(x 2 1) (x 1 2)(x 2 3) 2 x (x 2 5) 2 3(x 2 5) x 2 5x 2 3x 1 15 17. }} 5 }} (x 2 5)(x 2 3) x 2 2 8x 1 15 2 (x 2 3)(x 2 5) x2 2 3 5 }} 5} x23 (x 2 5)(x 2 3) 3 Chapter 8, continued x 2 2 4x 2 5 x 2 2 4x 2 5 1 39. } 4 (x 2 1 6x 1 5) 5 } + } x15 x15 x2 1 6x 1 5 (x 2 5)(x 1 1) 5 }} (x 1 5)(x 1 5)(x 1 1) x25 (x 1 5) 5 }2 4x 1 16 3x 2 1 13x 1 4 3x 2 1 13x 1 4 x12 40. }} 4} 5 }} +} 2 x 1 2 4x 1 16 x2 2 4 x 24 (3x 1 1)(x 1 4) x12 5 }} +} (x 1 2)(x 2 2) 4(x 1 4) (x 1 6)(x 2 6) x 2 2 36 45. y 5 } 5 }} 5 x 1 6 x26 x26 x 2 2 36 is the same as the graph of The graph of y 5 } x26 y 5 x 1 6 except that there is a hole at (6, 12). x2 2 36 y5} x26 y (6, 12) (3x 1 1)(x 1 4)(x 1 2) 5 }} 4(x 1 2)(x 2 2)(x 1 4) 2 3x 1 1 5} 4(x 2 2) x22 x2 2 x 2 2 x 2 2 x 2 2 5x 1 25 41. } 4} 5} +} 2 5x 1 25 x22 x 1 4x 2 5 x 2 1 4x 2 5 (x 2 2)(x 1 1) 5(x 1 5) 5 }} +} (x 1 5)(x 2 1) x22 2 x (2x 2 5)(x 1 2) 2x2 2 x 2 10 46. y 5 } 5 }} 5 2x 2 5 x12 x12 2x 2 2 x 2 10 } The graph of y 5 is the same as the graph x12 5(x 2 2)(x 1 1)(x 1 5) of y 5 2x 2 5 except that there is a hole at (22, 29). 5(x 1 1) y5} x12 5 }} (x 1 5)(x 2 1)(x 2 2) 5} x21 2x 2 2 x 2 10 2 x 2 2 8x 1 15 42. } 4 (x 2 2 x 2 20) x2 1 4x y x 21 2 x 2 8x 1 15 1 x 1 4x x 2 x 2 20 (x 2 5)(x 2 3) x23 5 }} 5 }2 x(x 1 4)(x 2 5)(x 1 4) x(x 1 4) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5} +} 2 2 x 2 1 12x 1 32 x 2 2 49 x 2 1 4x x 2 1 12x 1 32 43. }} 4 } 5 }} +} 2 6x 1 42 6x 1 42 x 2 49 x 2 1 4x (x 1 8)(x 1 4) (x 1 7)(x 2 7) 5 }} + }} 6(x 1 7) x(x 1 4) (22, 29) 47. Let a and b be the unknown side lengths of the triangle. (x 1 8)(x 2 7) 5 }} 6x (x 1 7)(x 1 3) x 2 1 10x 1 21 44. y 5 }} 5 }} 5 x 1 7 x13 x13 2 x 1 10x 1 21 is the same as the graph The graph of y 5 }} x13 of y 5 x 1 7 except that there is a hole at (23, 4). 6x 15x 2 2 a 5 (6x) 1 (8x)2 2 2 a 5 36x 1 64x b2 5 (15x)2 1 (8x)2 2 b2 5 225x 2 1 64x 2 a2 5 100x2 b2 5 289x 2 a 5 10x b 5 17x P 5 10x 1 17x 1 6x 1 15x 5 48x 1 1 1 A 5 }2 (6x 1 15x)(8x) 5 }2 (21x)(8x) 5 }2 (168x 2) 5 84x 2 x 2 1 10x 1 21 y 5 }} x13 P A 48x 84x 4 + 12 + x 7 + 12 + x + x 4 7x } 5 }2 5 } 5 } y Problem Solving (23, 4) 2 22 b a 8x (x 1 8)(x 1 4)(x 1 7)(x 2 7) 5 }}} 6x(x 1 7)(x 1 4) x 1 1 1 48. Vp 5 }Bh 5 } (2r)2h 5 } (4)r 2h 3 3 3 1 Vc 5 }3 :r 2h 1 }(4)r 2h Vp 3 4 }5}5} : 1 Vc }:r 2h 3 Algebra 2 Worked-Out Solution Key 435 Chapter 8, Total Average Gross 4 5 attendance amount ticket sales P S 5 26420t 1 292,000 5} ø 0.382 124.02 2407t 1 7220 5.92t 2 131t 1 1000 5 }} 4 }} 2 2 6.02t 2 125t 1 1000 26420t 1 292,000 5.92t 2 2 131t 1 1000 5.92(7)2 2 131(7) 1 1000 2407(7) 1 7220 2(27.8) c. The paint can is the most efficient, then the coffee can, }} + }} 2 6.02(7) 2 125(7) 1 1000 247,060 and the soup can is the least efficient. The lower the efficiency ratio, the more that can be put into the can, while using less material to make the can. 373.08 5} +} ø 50.21 419.98 4371 53. S 5 4:r 2 1 2:r* The average amount a person paid per ticket in 1999 was $50.21. k1 + H2 + H + V 2 k1 + HV 2 hg k1H3V2 }} } 50. a. } 5 } 5 5 k2 hr k2 + H2 k2H2 k1HV 2 4 V 5 }3:r3 1 :r 2* 4: r 2 1 2:r* S 1 r1 }3r 1 * 2 3r 1 }3r 1 * F 2 k2 Mixed Review for TAKS 1 54. A; V2 5 } kH The shorter runner has the advantage. The larger the height the smaller the fraction representing velocity. 4 51. a. Vsphere 5 }:r 3 3 6(2r 1 * ) r (4r 1 3* ) 3y[4 2 ( y 1 2)] 1 5y( y 2 3) 5 3y[2y 1 2] 1 5y 2 2 15y 5 23y 2 1 6y 1 5y 2 2 15y 5 2y 2 2 9y Vcylinder 5 :r2h 55. H; 4 3 }:r 3 5 :r 2h 0.16x 5 6800 x 5 42,500 3 } + }2 5 h About 42,500 students attend the University of Texas. 4 3 }r 5 h Graphing Calculator Activity 8.4 (p. 581) b. Ssphere 5 4:r 2 1 2 4 Scylinder 5 2:r 2 1 2:rh 5 2:r 2 1 2:r }3r 8 14 5 2:r 2 1 }3 :r 2 5 } :r 2 3 Ssphere 6 4:r 2 c. } 5 } 5 }7 14 2 Scylinder }:r 3 Because 6 < 7, the spherical tank uses less material. 2:r 2 1 2:rh S 52. a. } 5 } V :r 2h 2:r(r 1 h) 2(r 1 h) 5} 5} : +r+r+h rh 2(r 1 h) 2(3.4 1 10.2) S b. Soup can: } 5 } 5 }} rh (3.4)(10.2) V 2(13.6) 5} ø 0.784 34.68 436 3[2(2r 1 * )] 2 5} 5} 5} 4 4 k1HV 2 5 k2 :r :r 2: r(2r 1 * ) } 5 }} 5 } 4 4 V } : r 3 1 : r 2* : r 2 }3 r 1 * 3 2(2r 1 * ) b. } 5 1 k2 4 3 2(8.4 1 19.4) 5} ø 0.341 162.96 6.02t 2 125t 1 1000 For 1999, t 5 7: 2(r 1 h) S 5} 5 }} Paint can: } rh (8.4)(19.4) V 5 }} + }} 2 2407t 1 7220 26420(7) 1 292,000 2(7.8 1 15.9) 2(23.7) A 4 2(r 1 h) S 5} 5 }} Coffee can: } V rh (7.8)(15.9) Algebra 2 Worked-Out Solution Key x(x 2 5) x x2 2 5x 1. } 5 }} 5} x22 (x 2 5)(x 2 2) x2 2 7x 1 10 X 1 2 3 4 5 6 7 X=1 Y1 -1 ERROR 3 2 ERROR 1.5 1.4 Y2 -1 ERROR 3 2 1.6667 1.5 1.4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 49. continued Chapter 8, continued 3x(x 1 2) 3x 3x 2 1 6x 2. } 5 }} 5} x24 (x 2 4)(x 1 2) x 2 2 2x 2 8 X -2 -1 0 1 2 3 4 X=-2 Y1 ERROR .6 0 -1 -3 -9 ERROR Y2 1 .6 0 -1 -3 -9 ERROR 4x 2 2 8x x 1 3 x22 4x 2 2 8x 5. } 4 } 5 } + } x13 5x 1 15 x 2 2 5x 1 15 4x(x 2 2)(x 1 3) 4x 5 }} 5} 5 5(x 1 3)(x 2 2) X -3 -2 -1 0 1 2 3 X=-3 Y1 ERROR -1.6 -.8 0 .8 ERROR 2.4 Y2 -2.4 -1.6 -.8 0 .8 1.6 2.4 (x 1 1)(x 1 4) x11 x 2 1 5x 1 4 3. } 5 }} 5} x23 (x 1 4)(x 2 3) x 2 1 x 2 12 X -4 -3 -2 -1 0 1 2 X=-4 Y1 ERROR .33333 .2 0 -.3333 -1 -3 Y2 .42857 .33333 .2 0 -.3333 -1 -3 x 2 2 3x 2 10 x2 1 2x 2 3 6. } +} x2 1 3x 1 3 x2 1 x 2 2 (x 2 5)(x 1 2) (x 1 3)(x 2 1) (x 1 2)(x 2 1) 5 }} + }} 2 x 1 3x 1 3 (x 2 5)(x 1 2)(x 1 3)(x 2 1) (x 2 5)(x 1 3) (x 1 3x 1 3)(x 1 2)(x 2 1) x 1 3x 1 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 }}} 5 }} 2 2 (x 1 3)(x 2 1) x21 x13 x21 4. } +} 5 }} 5} x13 5x 2(x 1 3) 5x 2 5x 2 X -3 -2 -1 0 1 2 3 X=-3 Y1 ERROR -2.4 -.4 0 0 .8 3.6 X -2 -1 0 1 2 3 4 X=-2 Y1 ERROR -12 -5 ERROR -1.154 -.5714 -.2258 Y2 -7 -12 -5 -2.286 -1.154 -.5714 -.2258 Y2 -7.2 -2.4 -.4 0 0 .8 3.6 Lesson 8.5 8.5 Guided Practice (pp. 582–585) 5 725 2 1 7 1. } 2 } 5 } 5 } 5 } 12x 12x 12x 6x 12x 3 1 211 1 2 2. }2 1 }2 5 } 5 }2 5 }2 3x 3x 2 3x x 3x 3x x 4x 2 x 4x 3. } 2 } 5 } 5 } x22 x22 x22 x22 2(x 2 1 1) 2x 2 1 2 2 2x 2 4. } 1} 5} 5} 52 2 2 2 x 11 x 11 x2 1 1 x 11 5. 5x 3 10x 2 2 15x 5 5x(2x 2 3) LCM 5 5x 3(2x 2 3) Algebra 2 Worked-Out Solution Key 437