Comments
Description
Transcript
443
Chapter 8, continued 1 45. 4th expression: 1 1 }} 1 2 1 }} 1 Mixed Review for TAKS 46. B; 21} 1 2 1 }1 a 2 1 b2 5 c 2 2 1 }2 x 2 1 (x 1 4)2 5 202 1 5th expression: 1 1 }} 1 2 x 1 x 2 18x 1 16 5 400 2 1 }} 1 2x 2 1 8x 2 384 5 0 2 1 }} 1 21} 1 } 2b 6 Ïb 2 2 4ac 2 1 }1 x 5 }} 2a 2 1 }2 1 1 2 1 }2 2 1 }2 }} 28 6 Ï82 2 4(2)(2384) 2(2) 2 1 1 }1 5 1 1 }1 + }2 5 }} } 28 6 Ï 3136 5} 4 2 2 2 511} 5 1 1 }5 5 1}5 5 1.4 411 1 1 28 6 56 5} 4 11} 5 1 1 }2 1 2 1 }1 2 1 }5 2 1 }2 x 5 12 1 5 1 1 }2 + }5 5 1 1 } 10 1 2 2 1 }5 5 12 5 12 47. G; } 5 1 1 } 5 1} 5 1.416 1 1 21} 1 21} 12 x 5 216 Because x must be positive, x 5 12. So, the length of the shorter leg is 12 centimeters. 5 5 or 3x 2 4y 5 218 5x 1 2y 5 24 35 3 23 y53 2 1 }2 1 3x 2 4y 5 218 12 12 } } 511} 5 + 12 5 1 1 24 1 5 3x 2 4(3) 5 218 21} 12 12 3x 2 12 5 218 3x 5 26 12 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 511} 5 1} ø 1.4137931 29 29 1 1 29 1 x 5 22 The solution is (22, 3). 1 29 511} 511} +} 1 1 }} 1 12 12 2 1 }} 21} 2 1 } 29 21} 1 29 2 1 }1 2 1 }2 Lesson 8.6 8.6 Guided Practice (pp. 590–592) 29 511} 58 1 12 29 2 x27 3 5x 1. }5} 511} 70 3(x 2 7) 5 2(5x) 29 5 1} ø 1.4142857 70 3x 2 21 5 10x 1 1 2 1 }} 1 21} 70 27x 2 21 5 0 511} 1 1 }} 1 29 2 1 }} 1 12 226y 5 278 1 1 }} 511} 5 1 2 1 }1 15x 2 20y 5 290 215x 2 6y 5 27x 5 21 x 5 23 21} 1 Check: 2 1 }1 2 1 }2 1 3 5(23) 21} 70 70 3 215 2 210 }0} 70 511} 511} 140 1 29 169 70 2 23 2 7 }0} 70 511} +} 29 70 1 1 2}5 5 2}5 5 1} ø 1.4142012 169 } The expressions approach Ï 2 ø 1.4142135 . . .. Algebra 2 Worked-Out Solution Key 443 Chapter 8, 5 x23 24 x13 7 2 3 x 7 3 5. }5} 24(x 2 3) 5 5(x 1 3) }1}53 1 24x 1 12 5 5x 1 15 7x 1 6 5 6x 29x 1 12 5 15 x1650 29x 5 3 x 5 26 3 x5} 29 Check: 1 3 26 7 2 }1}03 x 5 2}3 Check: 1 2 7 2 }2}03 5 24 }0} 1 1 2}3 1 3 2}3 2 3 6 2 }03 5 24 353 }0} 8 10 } 2} 3 3 4 2 }1}52 3 x 6. 3 3 2}2 5 2}2 3. 6 1 4x 5 6x 3x 1 56 5 7x 4 x 5 14 Check: 0 5 2(x 2 4)(x 1 1) or 24x 5 256 x53 0 5 2(x 2 2 3x 2 4) x54 24x 1 56 5 0 22x 5 26 0 5 2x 2 2 6x 2 8 8 3 6 2 2x 5 0 11x 1 8 5 2x 2 1 5x or 51 }1} x 7x1 }7 1 }x 2 5 7x(1) 11x 1 8 5 x(2x 1 5) x2450 8 3 7 7. 3x1 }x 1 }3 2 5 3x(2) 2 x 1 }5} 11x 1 8 2x 1 5 Check: 8 14 }1}02 4 3 }1}01 6 3 }1}01 2 3 x1150 x 5 21 3 7 3 7 }02 Check x 5 4: 1 2(4) 1 5 2 2x }2 1 }x 5 2x(3) 252 4 11(4) 1 8 4 7 151 }0} 3 2 8. 1 4 }0} 13 52 4 3x 2 3 1 8 5 2x 1 2 21 11(21) 1 8 3x 1 5 5 2x 1 2 }0} 1 3 21 23 1 3 1 3 x1552 }0} }5} 4. 7.5 100 0.2(10) 10 1 x }5} 7.5(10 1 x) 5 100(0.2)(10) 75 1 7.5x 5 200 7.5x 5 125 50 ø 16.7 x5} 3 You should mix about 16.7 ounces of pure silver with the jewelry silver. 444 Algebra 2 Worked-Out Solution Key x11 3(x 2 1) 1 2(4) 5 2(x 1 1) Check x 5 21: 1 2(21) 1 5 x11 x21 2(x 2 1)1 }2 1 } 5 2(x 2 1)1 } x 2 12 x 2 12 3 1 1 }5} 13 13 4 x21 }1}5} x 5 23 Check: 3 2 4 23 2 1 23 1 1 23 2 1 }1}0} 4 24 3 2 22 24 }1}0} 3 2 1 2 }210} 1 2 1 2 }5} Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2. continued Chapter 8, 5 2x 3x x11 9. continued 3 2x 848t 2 1 3220 115t 1 1000 11. }2}5} 5 S(t) 5 }} 2 848t 2 1 3220 115t 1 1000 2x(x 1 1)1 } 2} 5 2x(x 1 1)1 } 2x 2 x11 2x 2 3x 3 4.5 5 }} 2 4.5(115t 2 1 1000) 5 848t 2 1 3220 2x(3x) 2 5(x 1 1) 5 3(x 1 1) 2 517.5t 2 1 4500 5 848t 2 1 3220 6x 2 5x 2 5 5 3x 1 3 6x 2 2 8x 2 8 5 0 4500 5 330.5t 2 1 3220 2(3x 2 4x 2 4) 5 0 2 1280 5 330.5t 2 3.87 ø t 2 2(3x 1 2)(x 2 2) 5 0 3x 1 2 5 0 2 x 5 2}3 or x2250 or x52 2 Check x 5 2}3 : The total sales of entertainment software were about $4.5 billion about 2 years after 1995, or in 1997. 8.6 Exercises (pp. 592–595) Skill Practice 1 2 2 3 2}3 5 3 }2}0} 2 2 2 } 23 1 1 2 2}3 2 2}3 1 2 5 22 1.97 ø t x12 x 1. When you write } 5 } as 5x 5 3(x 1 2), you are 5 3 1 2 cross-multiplying. 3 }2}0} 4 1 4 } 2}3 2}3 3 2. The solution x 5 4 is extraneous because after substituting this value into the original equation you 15 9 26 1 } 0 2}4 4 9 9 2}4 5 2}4 5 3 4 3 4 3 4 coordinate plane. If the graphs intersect at a possible solution, then it is a solution. If the graphs do not intersect at a possible solution, then it is an extraneous solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. }2}0} 5x x22 }5} 4(x 1 6) 5 5(2x) 4x 1 24 5 10x 10 x22 }571} 26x 1 24 5 0 (x 2 2)1 } 5 (x 2 2)1 7 1 } x 2 22 x 2 22 10 5x 9(x 1 2) 5 4(3x) 9x 1 18 5 12x 23x 1 18 5 0 26x 5 224 23x 5 218 x54 x56 Check: Check: 5 4 }0} 416 2(4) }0} 4 8 5 10 1 2 1 2 }0} x52 Check: 10 222 10 0 }071} Division by 0 is undefined, so the equation has no solution. 6. 6 x21 9 3(6) 4 612 9 18 4 8 1 2 1 2 }0} } 5 } }071} 4 x12 }5} 5x 5 7x 2 14 1 10 22x 5 24 10 0 9 3x 5. 5x 5 7(x 2 2) 1 10 5x 5 7x 2 4 5(2) 222 5 x16 4 2x 4. }5} 10. 4 3. Graph both sides of the original equation in the same 3(2) 5 3 }2}0} 2(2) 211 2(2) 5 4 5 is undefined, so 4 is an extraneous solution. Check x 5 2: 6 3 4 obtain } 0} l }0 0 }0. Division by zero 424 424 }5} 9 x11 }5} 6(x 1 1) 5 9(x 2 1) 6x 1 6 5 9x 2 9 23x 1 6 5 29 23x 5 215 x55 Algebra 2 Worked-Out Solution Key 445 Chapter 8, continued 10. Check: 9 511 x(x) 5 2(x 2 2 2) }0} x 2 5 2x 2 1 2 }0} 6 4 9 6 2x 2 5 2 3 2 3 2 x2 5 1 }5} 7. x 5 61 2 x21 8 3x 2 2 }5} 8(x 2 1) 5 2(3x 2 2) 8x 2 8 5 6x 2 4 Check x 5 1: Check x 5 21: 1 21 } 0} 1 12 2 2 } 0} 2 21 (21) 2 2 1 21 21 21 2x 5 4 21 5 21 x52 4(x 2 4) 11. Check: 151 4 } 5} x14 x 2 1 2x 2 8 4(x 2 4)(x 1 4) 5 4(x 2 1 2x 2 8) 8 2 }0} 221 3(2) 2 2 8 4 4(x 2 2 16) 5 4x 2 1 8x 2 32 4x2 2 64 5 4x2 1 8x 2 32 2 1 }0} 264 5 8x 2 32 252 232 5 8x 24 5 x 3 x }5} x11 x11 8. Check: x(x 1 1) 5 3(x 1 1) 4(24 2 4) 4 24 1 4 (24) 1 2(24) 2 8 4(28) 4 }0} 0 0 }} 0} 2 x 2 1 x 5 3x 1 3 x 2 2 2x 2 3 5 0 (x 2 3)(x 1 1) 5 0 x2350 or x53 or Division by 0 is undefined, so x 5 24 is an extraneous solution and the equation has no solution. x1150 x 5 21 Check x 5 3: Check x 5 21: 3 311 }0} 3 311 }0} 3 4 3 4 21 21 1 1 1 0 } 5 } 3 21 1 1 3 0 3x 9 12. } 5} x 2 2 3x x 2 2 6x 1 9 9(x 2 2 3x) 5 3x(x 2 2 6x 1 9) 9x 2 2 27x 5 3x3 2 18x 2 1 27x 0 5 3x 3 2 27x 2 1 54x 2} 0 } 0 5 3x(x 2 2 9x 1 18) Division by 0 is undefined, so x 5 21 is an extraneous solution and x 5 3 is the only solution. x x23 }5} x12 x15 9. (x 2 3)(x 1 2) 5 x(x 1 5) x 2 2 x 2 6 5 x 2 1 5x 26x 2 6 5 0 26x 5 6 x 5 21 Check: 21 2 3 21 }0} 21 1 5 21 1 2 24 4 21 21 }01 } 0 21 2x 2 8 5 24 21 1 }0} 21 5 21 446 21 x Algebra 2 Worked-Out Solution Key 0 5 3x(x 2 6)(x 2 3) x50 or x2650 or x2350 x50 or x56 or x53 Check x 5 0: 9 0 2 6(0) 1 9 3(0) }} 0} 2 2 9 9 0 2 3(0) 0 0 }Þ} Division by 0 is undefined, so 0 is an extraneous solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6 521 x x 22 } 5} 2 Chapter 8, continued }225} 3(6) 9 6 2 6(6) 1 9 }} 0} 2 2 5 x(x 1 3)1 }x 2 2 2 5 x(x 1 3)1 } x 1 32 6 2 3(6) 9 9 2 x13 5 x 16. Check x 5 6: 18 18 2 5(x 1 3) 2 2x(x 1 3) 5 2x }0} 5x 1 15 2 2x 2 2 6x 5 2x 151 22x 2 2 x 1 15 5 2x Check x 5 3: 0 5 2x 2 1 3x 2 15 3(3) 9 }} 0} 32 2 6(3) 1 9 32 2 3(3) 9 0 }} 23 6 Ï32 2 4(2)(215) x 5 }} 2(2) 9 0 }0} } 23 6 Ï129 5} 4 Division by 0 is undefined, so 3 is an extraneous solution. The only solution is x 5 6. } 23 1 Ï129 6 3 13. A; } 5 } x21 x12 Check x 5 } : 4 5 2 } } 2 2 0 }} } 23 1 Ï 129 23 1 Ï129 } }13 4 4 3(x 2 1) 5 6(x 1 2) 3x 2 3 5 6x 1 12 23x 2 3 5 12 0.39297 5 0.39297 } 23x 5 15 23 2 Ï129 Check x 5 } : 4 x 5 25 5 14. x 1 }x 1 x 2 5 5x 4 23.39297 5 23.39297 2 4 1 x 5 5x 3 x17 1 2x 17. x 2 2 5x 1 4 5 0 21 x }1}5} 2x(x 1 7)1 } 1} 5 2x(x 1 7)1 } x 1 72 2x x 2 3 1 (x 2 1)(x 2 4) 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 } } 2 2 0 }} } 23 2 Ï 129 23 2 Ï129 } }13 4 4 4 }1x55 x 21 x2150 or x2450 x 1 7 1 3(2x) 5 22(x 1 7) x51 or x54 x 1 7 1 6x 5 22x 2 14 Check x 5 1: Check x 5 4: 7x 1 7 5 22x 2 14 4 }1105 1 4 }1405 4 9x 1 7 5 214 41105 11405 555 1 6 2 3x 15. 7 x 5 2}3 555 Check: 4 3x }1}5} 1 9x 5 221 2 1 2 41x58 x54 3 1 1 2 4 6x } 1 }6 5 6x } 3x 3x 1 2 1 2 3(4) 1 6 4 3(4) 2 12 1 6 4 12 1 3 1 3 }1}0} }1}0} 3 3 9 3 6 14 3 7 3 7 3 7 }1}0} 14 14 7 } 2} 3 3 3 Check: 21 }1}0} 7 7 7 2}3 1 7 2}3 2 2} 3 2} 1} 0 }7 14 14 }0} }5} }5} Algebra 2 Worked-Out Solution Key 447 continued } 21 2 Ï 79 3x x12 1 x22 18. }125} : Check x 5 } 3 } 21 2 Ï 79 1} 223 3 5 }}} 0 2 1 }} 2 21 2 Ï 79 21 2 Ï 79 21 2 Ï 79 1} 222 1} 2 1 1} 226 3 3 3 (x 2 2)(x 1 2)1 } 1 2 2 5 (x 2 2)(x 1 2)1 } x22 x 1 22 3x 1 } x 1 2 1 2(x 2 2)(x 1 2) 5 3x(x 2 2) x 1 2 1 2(x2 2 4) 5 3x2 2 6x 3.18882 5 3.18882 x 1 2 1 2x 2 2 8 5 3x 2 2 6x 2 0 5 x 2 7x 1 6 or x2150 x56 or x51 x(x 1 6)1 } 1 }x 2 5 x(x 1 6)1 } x16 x16 2 x11 Check x 5 1: 3(6) 1 }120} 622 612 3(1) 1 }120} 122 112 18 1 }120} 4 8 9 4 x 2 1 2x 1 6 5 2x2 1 x 0 5 x2 2 x 2 6 0 5 (x 2 3)(x 1 2) 151 x23 x22 5 x 1x26 } 521} 2 x23 5 }} 5 2 1 } x22 (x 1 3)(x 2 2) x2350 or x53 or x1250 x 5 22 Check x 5 3: Check x 5 22: 2(3) 1 1 1 311 }1}0} 3 316 316 }1}0} 4 9 1 3 7 9 1 x23 5 [(x 1 3)(x 2 2)] 2 1 } x22 7 9 7 9 1 5 5 2(x 1 3)(x 2 2) 1 (x 1 3)(x 2 3) 5 5 2(x 2 1 x 2 6) 1 x 2 2 9 2 23 3 3 x21 x23 }1}5} x(x 2 3)1 } 1 }x 2 5 x(x 2 3)1 } x23 x 2 32 1 2 2 5 5 2x 1 2x 2 12 1 x 2 9 x21 2x 1 x 2 3 5 x(x 2 1) 5 5 3x 2 1 2x 2 21 3x 2 3 5 x 2 2 x 2 0 5 3x 1 2x 2 26 0 5 x 2 2 4x 1 3 }} 22 6 Ï22 2 4(3)(226) x 5 }} 2(3) 0 5 (x 2 3)(x 2 1) } 22 6 Ï316 5 } 6 } 22 6 Ï4 + 79 5 }} 6 x2350 or x2150 x53 or x51 Check x 5 3: } 2 323 1 3 321 323 2 0 1 3 2 0 }1}0} 22 6 2Ï79 5} 6 } 2(21 6 Ï 79 ) }1}0} 5 }} 6 Division by 0 is undefined, so 3 is an extraneous solution. } 21 6 Ï79 5} 3 Check x 5 1: } 21 1 Ï79 : Check x 5 } 3 5 }}} 021 } } 21 1 Ï79 21 1 Ï 79 } 2 1 } 26 3 3 2 1 2 1 1 } 2 2 21 1 Ï 79 } 23 3 }} } 21 1 Ï 79 } 22 3 1.41118 5 1.41118 2 123 1 1 121 123 }1}0} 2 22 0 22 }110} 21 1 1 0 0 050 The only solution is x 5 1. 448 1 2}4 5 2}4 1 x 2 x23 21. 2(22) 1 1 22 1 6 2}4 2 }2 0 } 4 } 5 } 2 1 22 22 1 1 22 1 6 }1}0} 5 (x 1 3)(x 2 2) + }} (x 1 3)(x 2 2) 1 2x 1 1 x2 1 x 1 x 1 6 5 2x2 1 x 3 1 }120} 21 3 } 5 } 19. 1 x(x 1 1) 1 x 1 6 5 x(2x 1 1) Check x 5 6: 9 4 2x 1 1 1 x11 }1}5} x x16 x16 20. 0 5 (x 2 6)(x 2 1) x2650 } } Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 8, Chapter 8, continued 5 2x 1 2 x21 6x x14 22. }145} Check x 5 2}2: (x 1 4)(x 2 1)1 } 1 4 2 5 (x 1 4)(x 2 1)1 } x14 x21 2 6x 2x 1 2 5 2}2 1 9 10 }130} 5 5 2}2 2}2 2 4 6x(x 2 1) 1 4(x 1 4)(x 2 1) 5 (x 1 4)(2x 1 2) 6x2 2 6x 1 4(x2 1 3x 2 4) 5 2x2 1 10x 1 8 13 2 } 6x2 2 6x 1 4x2 1 12x 2 16 5 2x2 1 10x 1 8 24 1 3 0 } 13 2} 2 10x 2 1 6x 2 16 5 2x 2 1 10x 1 8 8x 2 2 4x 2 24 5 0 21 5 21 4(2x2 2 x 2 6) 5 0 Check x 5 8: 4(2x 1 3)(x 2 2) 5 0 2x 1 3 5 0 3 x 5 2}2 or x2250 or x52 10 8 819 824 }130} 17 4 17 4 }5} 3 24. Check x 5 2}2 : 1 2 3 3 6 2}2 2 2 2}2 1 2 } 1 4 0 }} 3 3 2}2 1 4 2}2 2 1 1 2 29 6 x23 5 x 18 x(x 2 3) 6 x23 5 x }2}5} F 18 2 6x 5 5x 2 15 2 18 2 11x 5 215 2 5 211x 5 233 }5} x53 Check x 5 2: Check: Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6(2) 2(2) 1 2 }140} 214 221 12 6 18 3 2 3(3) 6 323 5 3 6 0 5 3 } 2}0} 2 6 1 18 0 }140} }2}0} 656 Division by 0 is undefined, so 3 is an extraneous solution and the equation has no solution. x19 10 }135} x24 x 23. 1 2 1 10 x19 x(x 2 4) } 1 3 5 x(x 2 4) } x x24 10(x 2 4) 1 3x(x 2 4) 5 x(x 1 9) 10x 2 40 1 3x 2 2 12x 5 x 2 1 9x 3x 2 2 2x 2 40 5 x 2 1 9x 2 25. x15 x x13 x25 x25 x23 x x13 x15 (x 2 3)(x 2 5) } 1} 5 (x 2 3)(x 2 5) } x25 x25 x23 }1}5} 1 2 5 x 5 2}2 x2850 or x58 2 x 2 2 2x 2 15 1 x2 2 3x 5 x2 1 2x 2 15 2x 2 2 5x 2 15 5 x2 1 2x 2 15 x 2 2 7x 5 0 (2x 1 5)(x 2 8) 5 0 or 1 (x 2 5)(x 1 3) 1 x(x 2 3) 5 (x 2 3)(x 1 5) 2x2 2 11x 2 40 5 0 2x 1 5 5 0 5 18 2 6x 5 5(x 2 3) 1 4 0 }5 2} 5 2 5 G 6 18 x(x 2 3) x(x 2 3) } 2 } 5 x(x 2 3)1 }x 2 x23 21 }140} 5 5 } 2}2 2 18 18 x 2 3x } 2}5} 2 x(x 2 7) 5 0 x50 or x2750 x50 or x57 Check x 5 0: Check x 5 7: 0 013 015 }1}0} 025 023 025 }1}0} 3 23 0 25 5 25 }1}0} 21 1 0 0 21 713 723 7 725 10 4 7 2 715 725 12 2 }1}0} 656 21 5 21 Algebra 2 Worked-Out Solution Key 449 Chapter 8, continued 26. Cross-multiplying was used incorrectly. The original 31. The statement is sometimes true. By solving the equation is not expressed as a proportion, so you must solve the equation by multiplying each side of the equation by the LCD, 2x 2. 3 4 x x x2a 3 x2a }5} 2 3(x 2 a) 5 x(x 2 a) 2x 2 } 1}2 5 2x 2(1) 2x 0 5 x(x 2 a) 2 3(x 2 a) 3x 1 8 5 2x 2 0 5 (x 2 3)(x 2 a) 27. The student simply added numerators and denominators x2350 or x2a50 x53 or x5a on the left side of the equation. Both sides of the equation should have been multiplied by the LCD, 6x. Check x 5 3: Check x 5 a: 6x1 }x 1 } 5 6x1 } 62 x2 3 3 } 5 } 32a 32a }0} 23 5 45 3 a2a 30 1 23x 5 270 3 0 2 x23 1 (x 2 3)(x 1 1) } 5 }} F 2 1 (x 2 3)(x 1 1)1 } 5 (x 2 3)(x 1 1) }} x 2 32 (x 2 3)(x 1 1) 2(x 1 1) 5 1 2x 1 2 5 1 G Because division by 0 is undefined, x 5 a is an extraneous solution. So, the only solution is x 5 3. However, when a 5 3, the equation has one possible solution, x 5 3. Substituting this into the equation 3 x23 x x23 3 323 3 323 } 5 }, you obtain }0} 2x 5 21 3 0 2 3 29. Sample answer: The equation } 5 } can be solved x11 x using cross-multiplication because each side of the equation is a single rational expression. The equation 6 4 3 } 1 } 5 } can be solved by multiplying each side of 7 7x x the equation by the LCD of the fractions because the equation is not expressed as a proportion. 30. The statement is always true. By solving the equation, you obtain the following. Because division by 0 is undefined, x 5 3 is an extraneous solution. So, when a 5 3, the original equation has no solution. 32. The statement is always true. By solving the equation, you obtain the following. 1 x2a 2 x1a 2a x 2a 1 x2a 2 x1a 2a (x 1 a)(x 2 a) }5}1} 2 2 } 5 } 1 }} 1 (x 1 a)(x 2 a)1 } x 2 a2 x 1 }5} x2a x2a F 2a 2 }} 5 (x 1 a)(x 2 a) } x 1 a 1 (x 1 a)(x 2 a) x 2 a 5 x(x 2 a) 0 5 x(x 2 a) 2 (x 2 a) x 1 a 5 2(x 2 a) 1 2a 0 5 (x 2 1)(x 2 a) x 1 a 5 2x 2 2a 1 2a x2150 or x2a50 x51 or x5a Check x 5 1: 1 12a } 5 } a5x Check x 5 a: 1 a2a a a2a }0} 1 0 a 0 Because division by 0 is undefined, x 5 a is an extraneous solution. Algebra 2 Worked-Out Solution Key G x 1 a 5 2x }0} 450 3 0 } 0 }. 1 x 5 2}2 1 12a 3 0 }0} 1 2 }5} x23 x 2 2 2x 2 3 28. C; 3 a2a Check: 1 a2a 2a a 2a 2 a1a }0}1} 2 2 1 0 a 2a 2a 0 }0}1} Because division by 0 is undefined, x 5 a is an extraneous solution. So, the original equation has no solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 equation, you obtain the following. Chapter 8, continued Problem Solving 33. 36. a. 37 1 x 90 }5} 44 1 x 100 Work rate + Time 5 Work done 90(44 1 x) 5 100(37 1 x) } Friend 3960 1 90x 5 3700 1 100x 260 5 10x 5 hours 5 hours 5 8 5 } room t } room 5 5t 1 40 5 b. The sum } 1 } or } represents the total work t 8t 8 26 5 x done by you and your friend while working together for 5 hours. You need to put 26 consecutive serves into play in order to raise your service percentage to 90%. c. Because the total work done is 1 room, set the sum Distance for skater 2 Distance for skater 1 34. a. }} 5 }} Skater 2 speed Skater 1 speed from part (b) to 1 and solve for t. 5t 1 40 8t }51 8 x 9 x 1 4.38 }5} 5t 1 40 5 8t x is the speed of skater 2. 40 5 3t 8 9 b. } 5 } x x 1 4.38 40 3 }5t 9x 5 8(x 1 4.38) 40 1 Your friend would take } hours or 13}3 hours to paint 3 9x 5 8x 1 35.04 the room when working alone. x 5 35.04 The speed of skater 2 is 35.04 kilometers per hour and the speed of skater 1 is 35.04 1 4.38 5 39.42 kilometers per hour. c. Skater 1 traveled 9 kilometers at a rate of 39.42 kilometers per hour. To find how long the skater skated, use the distance formula d 5 rt and solve for t. 37. w * * *1w 1 * * *1 1 }5} }F 5} * 1 1 5 *2 0 5 *2 2 * 2 1 }} d 5 rt 2(1) 6 Ï(21)2 2 4(1)(21) 0.228 ø t Because the ratio must be positive, Because skater 1 traveled 9 kilometers in the same amount of time it took skater 2 to travel 8 kilometers, both skaters skated for about 0.228 hour or 60(0.228) ø 13.7 minutes. *5} . 2 635t 2 2 7350t 1 27,200 35. } 1 6 Ï5 5} * 5 }}} 2 2(1) 9 5 39.42t Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 room 8 hours 1 room } t hours You n 5 }} 2 t 2 11.5t 1 39.4 635t 2 2 7350t 1 27,200 720 5 }} 2 t 2 11.5t 1 39.4 720(t 2 2 11.5t 1 39.4) 5 635t 2 2 7350t 1 27,200 720t 2 2 8280t 1 28,368 5 635t 2 2 7350t 1 27,200 2 85t 2 930t 1 1168 5 0 }} 2(2930) 6 Ï(2930) 2 4(85)(1168) 2(85) 2 t 5 }}} } 930 6 Ï 467,780 t 5 }} 170 t ø 9.49 or t ø 1.45 Because 9.49 is not in the domain (0ata9), t ø 1.45 is the only solution. So, the total number of CDs shipped was about 720 million about 1 year after 1994, or in 1995. } 1 1 Ï5 } 1 1 Ï5 } } 1 1 Ï5 2 * }5}5} 1 2 w Average monthly bill 38. a. Average price per minute 5 }}} Average number of minutes g(x) 20.27x3 1 1.40x2 1 1.05x 1 39.4 28.25x 1 53.1x 2 7.82x 1 138 f (x) 5 } 5 }}} 3 2 h(x) b. Because 1998 is 0 years since 1998, x 5 0. 20.27(0)3 1 1.40(0)2 1 1.05(0) 1 39.4 f (0) 5 }}} 3 2 28.25(0) 1 53.1(0) 2 7.82(0) 1 138 39.4 5} ø 0.29 138 The average price per minute in 1998 was about $.29. c. Use a graphing calculator and enter the function 20.27x 3 1 1.4x 2 1 1.05x 1 39.4 28.25x 1 53.1x 2 7.82x 1 13.8 f (x) 5 }}} . 3 2 Then, using the table feature, you see that f (4) ø 0.11375. So, the average price per minute fell to 11 cents about 4 years after 1998, or 2002. Algebra 2 Worked-Out Solution Key 451 Chapter 8, continued Mixed Review for TAKS 39. B; 1 1 1 x24 x14 1 5. } 1 } 5 } + } 1 } + } x24 x14 x24 x24 x14 x14 x24 1 }} 5 }} (x 1 4)(x 2 4) (x 2 4)(x 1 4) 1 5 }} (x 1 4)(x 2 4) 2x 2}3 y 5 2x 1 12 4x 1 3 2 2 4x 1 3 6. } 1} 5 }} 1} x24 x24 (x 1 4)(x 2 4) x 2 2 16 y 5 26x 2 36 y 5 mx 1 b 4x 1 3 The coordinates of the y-intercept of the line 40. G; 6x 2 1 6x 2 1 4 4 7. } 2 }} 5} 2 }2 x15 x15 x 2 1 10x 1 25 (x 1 5) 4 x 2 1 9x 1 20 x 2 2 3x 2 4 x 2 11x 1 28 x 1 8x 1 15 (x 1 5)(x 1 4) (x 2 4)(x 1 1) + }} 5 }} (x 2 7)(x 2 4) (x 1 5)(x 1 3) (x 1 5)(x 1 4)(x 2 4)(x 1 1) 5 }}} (x 2 7)(x 2 4)(x 1 5)(x 1 3) x 2 1 12x 1 36 4. }} 4 (x 2 2 36) x 2 2 8x 1 12 x 2 1 12x 1 36 x 2 8x 1 12 1 x 2 36 (x 1 6)(x 1 6) 1 (x 1 6)(x 2 6) 5 }} +} 2 2 5 }} + }} (x 2 6)(x 2 2) 5 }}} (x 2 6)(x 2 2)(x 1 6)(x 2 6) x16 (x 2 6) (x 2 2) Algebra 2 Worked-Out Solution Key 6x 2 1 (x 1 5) 4x 1 20 6x 2 1 (x 1 5) (x 1 5) 4x 1 20 2 (6x 2 1) 5 }2 2 }2 5 }} 2 (x 1 5) 4x 1 20 2 6x 1 1 5 }} (x 1 5)2 22x 1 21 (x 1 5) 5} 2 x24 x21 8. 10 x17 }5} (x 2 4)(x 1 7) 5 10(x 2 1) x2 1 3x 2 28 5 10x 2 10 x2 2 7x 2 18 5 0 (x 2 9)(x 1 2) 5 0 x2950 or x59 or Check x 5 9: 924 921 10 917 }0} 5 8 10 16 5 8 5 8 }0} (x 1 4)(x 1 1) 5 }} (x 2 7)(x 1 3) x15 5} + } 2 }2 x15 x15 3(x 2 6) +} 5 }} 2 2 2x 1 8 6x 1 11 5} x(x 1 5) x 2 1 8x 1 15 x 2 1 9x 1 20 3. }} 4} 2 x2 2 3x 2 4 x 2 11x 1 28 4x 1 3 5 }} (x 1 4)(x 2 4) (x 2 6)(x 1 4) 3x(x 2 2) x 2 2 2x 2 24 3x 2 2 6x 1. } + } 5 }} +} (x 1 5)(x 2 2) x2(x 1 4) x2 1 3x 2 10 x 3 1 4x 2 (x 2 6)(x 1 4)(3x)(x 2 2) 5 }}} (x 1 5)(x 2 2)(x)(x)(x 1 4) (x 2 8)(x 2 2) 5 }} x11 2(x 1 4) 5 }} 1 }} (x 1 4)(x 2 4) (x 1 4)(x 2 4) Quiz 8.4–8.6 (p. 595) x 2 2 10x 1 16 x 2 1 x 2 2 10x 1 16 2. }} + (x 2 1) 5 }} +} 2 1 x2 2 1 x 21 (x 2 8)(x 2 2)(x 2 1) 5 }} (x 1 1)(x 2 1) 4x 1 3 }5} Check x 5 22: 22 2 4 22 2 1 10 22 1 7 }0} 26 23 10 5 }0} 252 x1250 x 5 22 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. The sum of the measures of the interior angles of a hexagon is (n 2 2) + 1808 5 (6 2 2) + 1808 5 7208. The missing angle in the hexagon is 7208 2 1128 2 1388 2 1008 2 1008 2 1388 5 1328. Because the missing angle of the hexagon is supplementary to the x8 angle, x 5 180 2 132 5 48. 5 }} 2 x14 5 }} 1 }} (x 1 4)(x 2 4) (x 1 4)(x 2 4) 1 22x 2 }3 y 5 12 are (0, 236). (x 1 6)(x 1 6) 2 5 }} 1} +} x24 x14 (x 1 4)(x 2 4) b 5 236 452 x14 1 22x 2 }3 y 5 12 Chapter 8, 2x 2 1 x22 x24 x22 9. continued }2}52 2} 5 2(x 2 2) (x 2 2)1 } x22 2 x22 x11 5 2x 1 9 x 2 4 2 (2x 2 1) 5 2x 2 4 5(x 1 2) 1 x(x 1 1) 5 x(2x 1 9) x 2 4 2 2x 1 1 5 2x 2 4 5x 1 10 1 x 2 1 x 5 2x 2 1 9x 2x 2 3 5 2x 2 4 x 2 1 6x 1 10 5 2x 2 1 9x 0 5 x 2 1 3x 2 10 23x 2 3 5 24 0 5 (x 1 5)(x 2 2) 23x 5 21 x1550 1 x 5 }3 Check: 1 }24 3 } 1 }22 3 1 2 1 3 } 1 }22 3 x 5 25 2 11 02 1 5 0 5 (x 2 2 4)(x 2 2) 0 5 (x 1 2)(x 2 2)(x 2 2) or x2250 or x52 Check x 5 22: 22 1 1 22 2 2 } 0} 2 5 2 2(2) 1 9 212 5 2 Check x 5 2: 211 222 } 0} 2 3 0 }0} Division by 0 is undefined, so x 5 2 is an extraneous solution. Because both possible solutions are extraneous, the original equation has no solution. 3 4 13 4 13 4 13 4 }1}0} }5} x23 x12 12. x21 3x 2 1 }5} (x 2 3)(3x 2 1) 5 (x 1 2)(x 2 1) 3x 2 2 10x 1 3 5 x 2 1 x 2 2 2x 2 2 11x 1 5 5 0 (2x 2 1)(x 2 5) 5 0 2x 2 1 5 0 1 x 5 }2 21 24 Division by 0 is undefined, so x 5 22 is an extraneous solution. 12 0 1 3 211 212 }0} 2 24 1 3 }1}0} 0 5 x 2(x 2 2) 2 4(x 2 2) 3(2) 1 6 1 Check x 5 2: 0 5 x 3 2 2x 2 2 4x 1 8 0 0 4 }5} 3x 2 2 12 5 x 3 1 x 2 2 4x 2 4 (22) 2 4 21 21 1 }3 0 }3 (3x 1 6)(x 2 2) 5 (x 2 2 4)(x 1 1) 3(22) 1 6 2(25) 1 9 25 1 2 21 1 } 0} 23 23 x11 3x 1 6 } 5} x22 x2 2 4 x 5 22 x52 24 1 2}3 252 x1250 or 25 1 1 25 1 2 5 25 }2}02 10. x2250 }1}0} }2}02 5 5 2}3 2}3 11 5 or Check x 5 25: 2 } 21 2} 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2x 1 9 x12 }1}5} x(x 1 2)1 }x 1 } 5 x(x 1 2)1 } x 1 22 x12 2 2x 2 1 x24 x11 x12 5 x 11. or x2550 or x55 1 Check x 5 }2: 1 1 }23 }21 2 2 }0} 1 1 }12 } 21 3 2 2 1 2 5 1 2}2 2}2 }0} 5 1 } } 2 2 21 5 21 Check x 5 5: 523 512 521 3(5) 2 1 }0} 2 7 4 14 2 7 2 7 }0} }5} Algebra 2 Worked-Out Solution Key 453 Chapter 8, x16 x13 2x 2 1 x13 x21 x 13. continued Problem Solving Workshop 8.6 (p. 597) }1}5} x(x 1 3)1 } 1} 5 x(x 1 3)1 } x13 2 x x 1 32 2x 2 1 x21 x16 (x 1 3)(x 2 1) 1 x(2x 2 1) 5 x(x 1 6) x 2 1 2x 2 3 1 2x 2 2 x 5 x 2 1 6x 3x 2 1 x 2 3 5 x 2 1 6x 2x 2 2 5x 2 3 5 0 (2x 1 1)(x 2 3) 5 0 2x 1 1 5 0 1 x 5 2}2 or x2350 or x53 1 Check x 5 2}2 : 1 21 2}2 2 2 1 1 1 2}2 1 6 }1}0} 1 1 1 2}2 1 3 2}2 2}2 1 3 2}2 2 1 3 2}2 11 2 } 5 } 2 } 22 }1}0 5 1 } 2}2 2 4 11 11 5 11 5 80x 2 1 300 1. } 5 4.2 15x 2 1 200 X -6 -5.9 -5.8 -5.7 -5.6 -5.5 -5.4 X=-5.6 Y1 4.2973 4.2717 4.2452 4.2179 4.1897 4.1606 4.1305 X 5.3 5.4 5.5 5.6 5.7 5.8 5.9 X=5.6 Y1 4.0995 4.1305 4.1606 4.1897 4.2179 4.2452 4.2717 x ø 65.6 80x 2 1 300 15x 1 200 y1 5 } , y 2 5 4.2 2 3 2 }5 0 } 5 }5} 321 3 2(3) 2 1 313 316 313 }1}0} 2 3 5 6 9 6 3 2 3 2 }1}0} }5} 14. 12 1 x 0.360 5 } 60 1 x 0.360(60 1 x) 5 12 1 x 21.6 1 0.360x 5 12 1 x 21.6 5 12 1 0.640x 9.6 5 0.640x 15 5 x Using the intersection feature on a graphing calculator, you see that x ø 65.6. 5x 1 5 2. } 52 x2 1 4 X 0 .5 1 1.5 2 2.5 3 X=1 Y1 1.25 1.7647 2 2 1.875 1.7073 1.5385 x 5 1, x 5 1.5 5x 1 5 x 14 y1 5 } , y2 5 2 2 You have to get 15 consecutive hits to raise your batting average to 0.360. Using the intersection feature on a graphing calculator, you see that x 5 1 and x 5 1.5. 454 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Check x 5 3: Chapter 8, continued 9x 1 2 3. } 5 20.75 x25 X 5 6 7 8 9 10 11 X=9 14x 2 1 60 5x 1 7 y1 5 } , y 2 5 3.5 2 Y1 ERROR 56 32.5 24.667 20.75 18.4 16.833 x59 9x 1 2 y1 5 } , y 5 20.75 x25 2 Using the intersection feature on a graphing calculator, you see that x 5 9. 6x 2 4. } 5 18 2x 2 3 X Y1 0 -6 24 18 19.2 21.429 24 0 1 2 3 4 5 6 X=3 Using the intersection feature on a graphing calculator, you see that x ø 63.2 848x 2 1 3220 6. 4.5 5 }} 115x 2 1 1000 X 0 1 2 3 4 5 6 X=2 Y1 3.22 3.6484 4.5288 5.3327 5.9113 6.3019 6.5658 Because x 5 2 represents the number of years after 1995, total sales of entertainment software were about $4.5 billion in 1997. 848x 2 1 3220 115x 1 1000 y1 5 }} , y 2 5 4.5 2 x53 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6x 2 y1 5 } , y 5 18 2x 2 3 2 Using the intersection feature on a graphing calculator, you can see that x ø 2, which represents 1997. 6.60 7. a. 5 5 } d 1 33 Using the intersection feature on a graphing calculator, you see that x 5 3. 14x 2 1 60 5. } 5 3.5 5x 2 1 7 X 3 3.1 3.2 3.3 3.4 3.5 3.6 X=3.2 Y1 3.5769 3.5339 3.4942 3.4574 3.4235 3.3919 3.3627 X -3.5 -3.4 -3.3 -3.2 -3.1 -3 -2.9 X=-3.2 Y1 3.3919 3.4235 3.4574 3.4942 3.5339 3.5769 3.6236 x ø 63.2 X 95 96 97 98 99 100 101 X=99 Y1 5.1563 5.1163 5.0769 5.0382 5 4.9624 4.9254 At a depth of 99 feet, the recommended percent of oxygen in the air that a diver breathes is 5%. 660 b. y1 5 }, y2 5 10 x 1 33 Using the intersection feature on a graphing calculator, you can see that x 5 33. So, at a depth of 33 feet, the recommended percent of oxygen in the air that a diver breathes is 10%. Algebra 2 Worked-Out Solution Key 455 Chapter 8, continued 8.6 Extension (p. 600) 22x 2 3 5. } > 0 x24 5 1. } < 0 x22 X -2 -1 0 1 2 3 4 X=-2 X -3 -2.5 -2 -1.5 -1 -.5 0 X=-3 Y1 -1.25 -1.667 -2.5 -5 ERROR 5 2.5 6. x25 x13 }>1 x25 x13 X 2.5 3 3.5 4 4.5 5 5.5 X=2.5 Y1 5.3333 9 20 ERROR -24 -13 -9.333 The value of y is undefined when x 5 4 and appears to be positive between x 5 21.5 and x 5 4. The solution is 21.5 < x < 4. The value of y is undefined when x 5 2 and appears to be negative when x < 2. The solution is x < 2. 2. Y1 -.4286 -.3077 -.1667 0 .2 .44444 .75 x 2 2 4x 1 8 x21 }<x x 2 2 4x 1 8 x21 }2x<0 }21>0 Y1 2 2.6667 4 8 ERROR -8 -4 The value of y is undefined when x 5 23 and appears to be positive when x < 23. The solution is x < 23. 3. x 2 2 3x 1 2 x23 }<x x 2 2 3x 1 2 x23 }2x<0 X 0 1 2 3 4 5 6 X=0 10 4. } > 0 x12 Y1 .06748 .04878 .0303 .01205 -.006 -.0238 -.0414 The value of y is undefined when x 5 1 and appears to be negative when x < 1 and when x is greater than 2 8 approximately 2.67. Test 2}3 by entering x 5 }3 into the 8 table. You will see that when x 5 }3 then y 5 0. So, you 2 can conclude that the solution is x < 1 or x > 2}3 . 4 7. 2} < 0 x15 The graph lies below the x-axis when x > 25. So, the solution is x > 25. 4 8. } < 0 x23 Y1 -5 -10 ERROR 10 5 3.3333 2.5 The value of y is undefined when x 5 22 and appears to be positive when x > 22. The solution is x > 22. 456 X 2.63 2.64 2.65 2.66 2.67 2.68 2.69 X=2.63 Y1 -.6667 -1 -2 ERROR 2 1 .66667 The value of y is undefined when x 5 3 and appears to be negative when x < 3. The solution is x < 3. X -4 -3 -2 -1 0 1 2 X=-4 Y1 -19.67 -28 -53 ERROR 47 22 13.667 Algebra 2 Worked-Out Solution Key The graph lies below the x-axis when x < 3. So, the solution is x < 3. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. X -7 -6 -5 -4 -3 -2 -1 X=-7 X .7 .8 .9 1 1.1 1.2 1.3 X=.7 Chapter 8, continued 8 9. } q4 x2 1 1 8 y1 5 } x2 1 1 3 13. } > 0 x12 Critical x-value: x1250 y2 5 4 x 5 22 Test x 5 23: Test x 5 21: 3 } >0 23 1 2 3 } >0 21 1 2 23 > 0 Using the intersect feature, the graph of y1 lies on or above the graph of y2 when 21axa1. The solution is 21axa1. 20 10. } <2 x2 1 1 20 y1 5 } x2 1 1 24 23 3>0 22 0 21 1 2 The solution is x > 22. 1 2} a22 x15 14. 1 1 2a0 2} x15 21 1 2(x 1 5) x15 }}a0 y2 5 2 2x 1 9 x15 }a0 Critical x-values: 2x 1 9 5 0 x1550 9 x 5 2}2 Using the intersect feature, the graph of y1 lies below the graph of y2 when x < 23 and when x > 3. The solution is x < 23 or x > 3. 19 Test x 5 26: : Test x 5 2} 4 Test x 5 24: 21 } < 22 } < 22 19 2} 15 4 } < 22 21 26 1 5 3x 1 2 11. } < 22 x21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 5 25 1 < 22 3x 1 2 y1 5 } x21 21 24 1 5 24 < 22 21 < 22 9 22 y2 5 22 26 25 24 23 22 21 0 9 The solution is 25 < xa2}2 . 2 x12 15. 1 x13 }>} 2 x12 1 x13 }2}>0 Using the intersect feature, the graph of y1 lies below the graph of y2 when 0 < x < 1. The solution is 0 < x < 1. 3x 1 2 12. } > x x21 3x 1 2 y1 5 } x21 y2 5 x 2(x 1 3) 2 (x 1 2) (x 1 2)(x 1 3) }} > 0 2x 1 6 2 x 2 2 (x 1 2)(x 1 3) }} > 0 x14 (x 1 2)(x 1 3) }} > 0 Critical x-values: x1450 x 5 24 (x 1 2)(x 1 3) 5 0 x1250 x 5 22 or x 1 3 5 0 or x 5 23 Using the intersect feature, the graph of y1 lies above the graph of y2 when x < 20.45 and when 1 < x < 4.45. The solution is x < 20.45 or 1 < x < 4.45. Algebra 2 Worked-Out Solution Key 457 Chapter 8, continued 7 Test x 5 25: Test x 5 2}2: 2 1 } > } 25 1 2 25 1 3 } > } 7 7 2}2 1 2 2}2 1 3 2 2 1 2}3 > 2}2 3 Test x 5 2}2: } > } 5 5 2}2 1 2 2}2 1 3 25 4 > }3 24 23 22 5 x24 1 x14 Test x 5 3: 5 4 } q} 013 012 } q} 5 313 22 4 312 5 6 4 5 }q} 21 0 1 2 3 2 x16 23 x23 }>} 3 x23 2(x 2 3) 1 3(x 1 6) (x 1 6)(x 2 3) 2x 2 6 1 3x 1 18 (x 1 6)(x 2 3) }} > 0 4x 1 24 }} < 0 (x 2 4)(x 1 4) 5x 1 12 (x 1 6)(x 2 3) }} > 0 Critical x-values: (x 2 4)(x 1 4) 5 0 4x 5 224 Critical x-values: x2450 or x 1 4 5 0 x54 x 5 26 or Test x 5 27: Test x 5 25: 5 1 } <} } <} 5 25 2 4 27 1 4 5 1 2} < 2}3 11 Test x 5 5: } <} 5 1 } < } 1 014 524 1 1 0 1 2 3 4 5 The solution is x < 26 or a24 < x < 4. 5 4 }q} x13 x12 4 5 } 2 }q0 x12 x13 5(x 1 2) 2 4(x 1 3) (x 1 3)(x 1 2) }}q0 5x 1 10 2 4x 2 12 (x 1 3)(x 1 2) }}q0 x22 (x 1 3)(x 1 2) }}q0 Algebra 2 Worked-Out Solution Key x1650 12 x 5 2} 5 or x 2 3 5 0 x 5 26 or 5 22.4 Test x 5 27: Test x 5 23: 23 2 } > } 27 1 6 27 2 3 } > } 2 23 1 6 3 2 3 22 > } 10 514 5 < }9 (x 1 6)(x 2 3) 5 0 5x 5 212 1 25 1 4 Test x 5 0: 27 26 25 24 23 22 21 5x 1 12 5 0 x 5 24 5 2}9 < 21 2}4 < }4 458 10q28 }} > 0 5x 1 20 2 x 1 4 (x 2 4)(x 1 4) 17. 4 Test x 5 0: 2 x16 }} < 0 5 5 }1}>0 5(x 1 4) 2 (x 2 4) (x 2 4)(x 1 4) 5 024 } q} 5 5 2}2 1 3 2}2 1 2 4 24 1 2 18. }} < 0 27 2 4 5 The solution is 23 < x < 22 or xq2. }2}<0 4x 1 24 5 0 x 5 22 } q} 23 1 x14 }<} 5 x24 x1250 Test x 5 2}2: }q2 The solution is 24 < x < 23 or x > 22. 16. or Test x 5 24: 5 3 0 21 x1350 23 23 2 3 1 2 }>} Test x 5 0: Test x 5 4: 23 2 } > } 016 023 } > } 2 416 1 3 23 423 1 5 }>1 } > 23 22.4 27 26 25 24 23 22 21 0 1 2 3 4 5 The solution is 26 < x < 22.4 or x > 3. x53 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 26 x52 25q22 2 24 > 2 (x 1 3)(x 1 2) 5 0 5 24 1 3 2 1 } > } 3 3 2}2 1 2 2}2 1 3 1 x2250 x 5 23 or 4 2}3 > 22 5 Test x 5 2}2 : 2 Critical x-values: 1 Chapter 8, continued 43x 1 50 23680 t 2 50 19. } > 80 y1 5 } , y2 5 47 x 23680 t 2 50 } 2 80 > 0 X 4 5 6 7 8 9 10 X=4 Y1 0 1.7778 3.6364 5.5814 7.619 9.7561 12 The value of y is 0 when x 5 4 and appears to be positive when 5axa8 (the domain is 0axa8). So, the number of eggs produced was greater than 80 billion from 1999 to 2002. Using the intersect feature, the graph of y1 lies below the graph of y2 when xq12.5. So, the average monthly cost is at most $47 after 13 or more months. 22. a. Let c be the number of calendars. Average Desired cost cost per < per calendar calendar Your phone Second phone < plan average plan average 20. 710 1 4.50c c } < 5 1 0.05m } < 0.07 m 10 710 1 4.50x b. y1 5 }, y2 5 10 x 5 1 0.05m m } 2 0.07 < 0 5 1 0.05m 2 0.07m m }} < 0 5 2 0.02m m }<0 Using the intersect feature, the graph of y1 lies below the graph of y2 when x > 129.09. So, 130 or more calendars need to be printed to bring the average cost per calendar below $10. Critical m-values: 5 2 0.02m 5 0 m50 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 20.02m 5 25 m 5 250 Test m 5 50: Test m 5 300: 5 1 0.05(50) 50 5 1 0.05(300) 300 } < 0.07 }} < 0.07 1 15 } < 0.07 0.15 < 0.07 0 50 100 710 1 4.50x c. y1 5 }, y2 5 6 x 150 200 250 300 Using the intersect feature, the graph of y1 lies below the graph of y2 when x > 473.33. So, 474 or more calendars need to be printed to bring the average cost per calendar below $6. The solution is m > 250. So, you must talk more than 250 minutes each month so that your average cost is less than $.07 per minute. 21. 43t 1 50 t }a47 43t 1 50 } 2 47a0 t Mixed Review for TEKS (p. 601) 1. B; Distance for car Speed of car Distance for truck Speed of truck }} 5 }} X 11 11.5 12 12.5 13 13.5 14 X=11 Y1 .54545 .34783 .16667 0 -.1538 -.2963 -.4286 120 x 1 10 100 x }5} 120x 5 100(x 1 10) 120x 5 100x 1 1000 20x 5 1000 The value of y is 0 when x 5 12.5 and appears to be negative when x > 12.5. So, the average monthly cost is at most $47 after 13 or more months. x 5 50 The speed of the truck is 50 miles per hour. Algebra 2 Worked-Out Solution Key 459 Chapter 8, continued 2. H; Distance against current Distance with current }} 1 }} 5 time Speed with current Speed against current 2 2 x13 x23 2(x 2 3) 2(x 1 3) }} 1 }} 5 1.25 (x 1 3)(x 2 3) (x 1 3)(x 2 3) 2(x 2 3) 1 2(x 1 3) }} 5 1.25 (x 1 3)(x 2 3) } 1 } 5 1.25 2x 2 6 1 2x 1 6 x 29 4x } 5 1.25 x2 2 9 }} 5 1.25 2 1.25(x 2 2 9) 5 4x 1.25x 2 2 11.25 5 4x 1.25x 2 2 4x 2 11.25 5 0 4(1.25x 2 2 4x 2 11.25) 5 0 5. B; Volume of rectangular prism: V 5 *wh 5 (6x)(6x)(8x 2 3) 5 36x 2(8x 2 3) Volume of cylinder: V 5 :r 2h 5 :(3x)2(8x 2 3) 5 :(9x 2)(8x 2 3) 5x 2 16x 2 45 5 0 The ratio of the volume of the rectangular prism to the 4 volume of the inscribed cylinder is } F . : Volume of cube 5 s 3 5 (2r)3 5 8r 3 (5x 1 9)(x 2 5) 5 0 5x 1 9 5 0 9 x 5 2}5 or x2550 or x55 4 }:r 3 Volume of sphere 3 }} 5 } 3 Volume of cube 8r 4 3 } }: 5 8 Because x must be positive, x 5 5. Your speed in still water is 5 miles per hour. 4 1 5 }3 : + }8 3. D; : 50 5} 6 t5} 1} s15 s 50s s(s 1 5) 50s 1 250 s 1 5s 100s 1 250 5} s 2 1 5s 50s s 1 5s 5} 1} 2 2 The expression that represents the total time of the 100s 1 250 . cyclist’s round trip is } s 2 1 5s 4. F; Amount of zinc % zinc Amount of copper 5 }} 2 Amount of zinc x 25 5 } 2x 0.45 x 0.45(25) 5 0.451 } 2 x2 0.45 11.25 5 x 2 0.45x 11.25 5 0.55x 20.45 ø x You need about 20.45 ounces of zinc to make brass. ø 0.52 The ratio of the volume of the sphere to the volume of the cube is about 0.52. Chapter 8 Review (pp. 603–606) 1. If two variables x and y are related by an equation of a the form y 5 }x where a Þ 0, then x and y show inverse variation. z 2. The expression } represents the constant of variation. xy p (x) 3. A function of the form f (x) 5 } where p(x) and q(x) q(x) are polynomials and q(x) Þ 0 is called a rational function. complex fractions. 2 x11 } x24 2 3 5. When you rewrite the equation } 5 } as x21 x 3(x 2 1) 5 2x, you are cross-multiplying. a 6. y 5 } x a 5 y 5 }x 5 5 5 }1 5} 23 55a 5 2}3 5 y 5 }x Algebra 2 Worked-Out Solution Key 1 x } 4. Sample answer: The fractions } and }} are 2 1 3 }14 }1} x x11 5 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 50(s 1 5) s(s 15) 5}1} 460 4 : : (9x 2)(8x 2 3) 4 6. Volume of sphere 5 } :r 3 3 2 50 36x 2(8x 2 3) Volume of prism Volume of cylinder }} 5 }} 5 }F