Comments
Description
Transcript
Chapter 1, {
Chapter 1, continued 4. G; 34 1 3x 5 112 Check: 5 1 5{ 0 291 2} {21 2} 11 2 11 2 5 { 45 { 0} 11 45 11 45 } 5 } { 45 0 2} 45 7 2} 7 10 35 }1} 7 7 { 4he solution is2} Reject } because it is an 11 7 11 5 }Þ 5 extraneous solution. or p < 29 or p17>2 p > 25 {2q 2 3{a3 15.95 5. C; } ø 5.4 2.95 If you rent at least six videos, you will save money. 6. H; d 5 depth (ft) 0 5 12 2 1.5t 1.5t 5 12 t58 The pool will be empty in 8 hours. 0a2qa6 7. C; Choice A: sides 2, 4, 9 l 2 1 4 > 9 0aqa3 Choice B: sides 3, 6, 9 l 3 1 6 > 9 12. {5 2 r{q4 Choice C: sides 5, 10, 9 l 5 1 10 > 9 5 2 ra24 or 5 2 rq4 2ra29 or rq9 5 1 9 > 10 2rq21 or ra1 Final Final a0.8 + Current 1 0.2 + exam grade grade score 85 a0.8 + 83 1 0.2 + x 85a66.4 1 0.2x 18.6a0.2x 10 1 9 > 5 8. Let x 5 hours doing office work. Let y 5 hours doing outside work. Equation 1: 8x 1 9y 5 399 Equation 2: x 1 y 5 45 l x 5 45 2 y Substitute for x in Equation 1: 8(45 2 y) 1 9y 5 399 y 5 39 93ax You need to get a final exam score of 93 or better. 14. Acceptable weights for the container: {w 2 1.5{a0.025 20.025 a w 2 1.5 a 0.025 1.475 a w a 1.525 Mixed Review for TEKS (p. 59) 1. B; Let c 5 gallons in city. Let h 5 gallons on highway. Equation 1: 60c 1 51h 5 675 Equation 2: c 1 h 5 12 l c 5 12 2 h Substitute for c in Equation 1: 60(12 2 h) 1 51h 5 675 29h 5 245 h55 Five gallons of gas were used on the highway. You worked 39 hours outside that week. 1 9. a 1 b 1 } (a 1 b) 5 72 2 3 2 3 2 } a 1 } b 5 72 3 2 } (a 1 b) 5 72 a 1 b 5 48 1 1 medium 5 }2 (a 1 b) 5 }2 (48) 5 24 The second longest piece is 24 inches long. Chapter 1 Review (pp. 61– 64) 1. In a power, the exponent represents the number of times the base is used as a factor. 2. If substituting a number for a variable in an equation results in a true statement, then the number is a solution of the equation. 3. An extraneous solution is an apparent solution that 2. J; {w 2 3.5{ a 0.25 3.5 2 0.25awa3.5 1 0.25 3.25awa3.75 3. A; 2369aTa2297 38 45 The kicker made 26 field goals. d 5 12 2 1.5t p 1 7 < 22 23a2q 2 3a3 13. 7 x 5 26 t 5 time (h) 10. {p 1 7{ > 2 11. 3x 5 78 5 Algebra 2 Worked-Out Solution Key must be rejected because it does not satisfy the original equation. 4. Like terms: 3x 2 and 2x 2; 40 and 27 1 5. Sample answer: 5x 1 10 and 101 } 2x 1 1 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 10 55 2} 1} 11 11 5 {21 }7 2 1 5{ 0 291 }7 2 Chapter 1, continued 6. The procedures are similar when adding and subtracting, Check: and when multiplying and dividing with positives. The procedures are different when multiplying and dividing with negatives; the inequality symbol reverses, but this process has no effect on an equation. 7m 1 38 5 25m 2 16 71 2}2 21 38 0 251 2}2 22 16 9 9 45 63 7. Inverse property of multiplication 1 38 0 } 2} 2 2 16 2 8. Identity property of addition }5} 10. 25x 1 14 2 17 2 6x 5 25x 2 6x 1 14 2 17 21. 48j 1 25 5 12j 2 11 5 19x 2 3 36j 5 236 5 26y 1 3x j 5 21 12. 6(n 2 2) 2 8n 1 40 5 6n 2 12 2 8n 1 40 22. 8(2n 2 5) 5 3(6n 2 2) 5 22n 1 28 16n 2 40 5 18n 2 6 13. 5(2b 1 3) 1 8(b 2 6) 5 10b 1 15 1 8b 2 48 240 5 2n 2 6 5 10b 1 8b 1 15 2 48 234 5 2n 5 18b 2 33 217 5 n 14. 3g 1 9g 2 2 12g 2 1 g 5 9g 2 2 12g 2 1 3g 1 g Check: 5 23g 2 1 4g 8(2n 2 5) 5 3(6n 2 2) 15. 7t 4 1 7t 2 2 2t 2 2 9t 4 5 7t 4 2 9t 4 1 7t 2 2 2t 2 8(2(217) 2 5) 0 3(6(217) 2 2) 8(234 2 5) 0 3(2102 2 2) 5 22t 4 1 5t 2 1 + 5+ + 0.40 Number of 1 Base charge miles x 1 2.50 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. An expression for the cost of the ride is 2x 1 2.5. 17. 24x 1 16 5 12 Check: 1 241 2}6 21 16 0 12 1 x 5 2}6 24 1 16 0 12 12 5 12 Check: 26y 5 224 26y 1 15 5 29 26(4) 1 15 0 29 224 1 15 0 29 y54 29 5 29 19. 4(q 2 5) 5 16 Check: 4q 2 20 5 16 4(q 2 5) 5 16 4(9 2 5) 0 16 4q 5 36 4(4) 0 16 q59 20. 16 5 16 7m 1 38 5 25m 2 16 12m 1 38 5 216 12m 5 254 9 m 5 2}2 8(239) 0 3(2104) 2312 5 2312 Percent Total Price of Price of + 1 5 sales tax cost jacket jacket 0.06 + x 1 x 5 79.49 23. 24x 1 16 5 12 24x 5 24 18. 26y 1 15 5 29 48j 1 25 5 12j 2 11 48(21) 1 225 0 12(21) 2 11 248 1 25 0 212 2 11 223 5 223 5 6n 2 8n 2 12 1 40 5 + Cost per }5 mile Check: 36j 1 25 5 211 11. 6y 1 12x 2 12y 2 9x 5 6y 2 12y 1 12x 2 9x 16. 13 2 13 2 9. Distributive property 1.06x 5 79.49 x 5 74.99 The cost before taxes is $74.99. 24. Cost per pound 1 Cost Pounds + of green 1 per pound peppers + x 1 4 Pounds Total + of orange 5 cost peppers + (3 2 x) 5 4.50 x 14(3 2 x) 5 4.50 x 1 12 2 4x 5 4.50 23x 5 27.50 x 5 2.5 You bought 2.5 pounds of green peppers and 3 2 2.5 5 0.5 pound of orange peppers. 25. 10x 1 y 5 7 y 5 7 2 10x When x 5 3: y 5 7 2 10(3) y 5 7 2 30 y 5 223 Algebra 2 Worked-Out Solution Key 39 Chapter 1, continued 26. 8y 2 3x 5 18 s 2 2:r 2 5 2:rh 8y 5 18 1 3x 3 s 2 2:r 2 2:r }5h 9 3 9 3 When r 5 5 cm and s 5 400 cm 2: When x 5 2: y 5 }4 1 }8(2) 400 2 2:(5) 2 y 5 }4 1 }4 h 5 }} 2:(5) y53 h5} 10 : 400 2 50 : 27. xy 2 6y 5 215 40 y(x 2 6) 5 215 h5} 25 : 15 h ø 7.73 y 5 2} x26 The height h is about 7.73 centimeters. 15 When x 5 5: y 5 2} 526 32. y 5 15 4x 5 6y 1 9 1 58}3 5 r 4x 2 9 5 6y 2 3 d 5 rt 175 5 r(3) 1 The average speed of the train is 58}3 miles per hour. 3 2 }x 2 } 5 y 3 2 When x 5 9: y 5 }3 (9) 2 }2 3 y 5 6 2 }2 9 y 5 }2 33. Base fee 1 180 1 Mileage Miles + rate over 150 0.25 Total cost 5 + (x 2 150) 5 293 180 1 0.25x 2 37.5 5 293 0.25x 1 142.5 5 293 29. 5x 2 2y 5 10 0.25x 5 150.5 5x 5 10 1 2y x 5 602 5x 2 10 5 2y Your family drove 602 miles while on vacation. 5 2 34. 2x 2 3 < 21 }x 2 5 5 y 5 When x 5 26: y 5 }2 (26) 2 5 y 5 215 2 5 y 5 220 30. x 2 3xy 5 1 2x < 2 x<1 4 24 22 0 2 0 2 4 6 28 26 24 22 4 35. 7 2 3xq211 23xq218 xa6 x 5 1 1 3xy x 2 1 5 3xy 8 36. 15x 1 8 > 9x 2 22 x21 }5y 3x 6x 1 8 > 222 25 2 1 When x 5 25: y 5 } 3(25) 26 y5} 215 2 5 y5} 6x > 230 x > 25 0 37. 13x 1 24a16 2 3x 16x 1 24a16 16xa28 1 xa2}2 40 Algebra 2 Worked-Out Solution Key 22 21 0 1 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9 y 5 }4 1 }8x 28. s 5 2:rh 1 2:r 2 31. Chapter 1, 38. continued 25 < 10 2 x < 5 Check: 25 2 10 < 10 2 x 2 10 < 5 2 10 {81 2}5 21 1{0 31 2}5 2 1 215 < 2x < 25 8 15 > x > 5 5 < x < 15 5 0 8 12 0 2} 1} 11 11 { 11 {2} {2}35 {0 2}35 0 2} 11 11 { {} } Þ 2} } Þ 2} 1 40. 2x 1 3x > 10 0 22 2x 1 10 > 3x 5x > 10 2 4 3x 1 10 > 2x 10 > x x>2 x < 10 xa4 3 11 or x 2 5q1 or xq6 2 4 6 8 45. {5 2 2y{ > 7 or 3p 1 2 5 27 or 5 2 2y < 27 3p 5 29 or or 5 2 2y > 7 22y < 212 or 22y > 2 y>6 or p 5 23 Check: 0 24 5 {31 }3 2 1 2{ 0 7 {3(23) 1 2{ 0 7 {5 1 2{ 0 7 {7{ 0 7 {29 1 2{ 0 7 {27{ 0 7 757 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3 11 1 x 2 5a21 0 757 9q 2 5 5 2q or 7q 2 5 5 0 or 11q 2 5 5 0 7q 5 5 or 11q 5 5 5 9q 2 5 5 22q { 6z 1 5q225 6za20 and 6zq230 10 za} 3 10 25 a z a } 3 and zq25 33 22 2 { 35 10 0} 2} 11 { 11 11 {} 55 10 10 10 0} 11 { 11 {2} 10 10 10 7 10 11 }5} 10 11 }5} 43. {8r 1 1{ 5 3r or 5r 1 1 5 0 or 5r 5 21 1 r 5 2}5 or or 2 4 25.5 a C a 26.5 So, the acceptable circumference of a volleyball should be between 25.5 inches and 26.5 inches. Chapter 1 Test (p. 65) } 1 7 1. 22, 2}, 6.5, Ï 30 , } 4 3 7 1 3 24 23 22 21 8r 1 1 5 3r 0 {C 2 26{a0.5 {}7 2}7 { 0 }7 {}7 { 0 }7 and 47. C 5 Circumference 5 5 91 } 2 5 0 21 } 11 2 11 2 45 1 2 6z 1 5a25 24 Check: { 8 1 q5} 11 5 5 91 }7 22 5 0 21 }7 2 4 25 5 or q 5 }7 y < 21 46. {6z 1 5{a25 42. {9q 2 5{ 5 2q 10 7 3 x > 210 41. {3p 1 2{ 5 7 45 3 44. {x 2 5{q1 x 1 10 > 0 2 < x < 10 { 3 no solution. 24 5 p 5 }3 11 Both 2}5 and 2} are extraneous solutions. There is 11 29a3xa9 3p 5 5 3 5 3 5 2axa 3p 1 2 5 7 8 1 3 16 39. 28a3x 1 1a10 5 1 {2}5 1 }5 {0 2}5 15 4 1 1 0 31 2} 11 2 11 2 {81 2} { 1 8r 1 1 5 23r 11r 1 1 5 0 11r 5 21 1 r 5 2} 11 0 30 .5 6 1 2 3 4 5 6 7 } 3 9 2. }, 0.8, 25.5, 2Ï 10 , 2} 4 2 25.5 2 10 3 24 26 25 24 23 22 21 9 2 0.8 0 1 2 3 4 5 Algebra 2 Worked-Out Solution Key 41 3. continued 5 1 (x 2 5) 5 x 5 1 (x 1 (25)) 5 x Definition of subtraction 5 1 ((25) 1 x) 5 x Commutative property of addition (5 1 (25)) 1 x 5 x 01x5x x5x 4. Given 14. 6k 1 7 5 4 1 12k 1 2 10 5 10 }5k 15. 2t 2 2 5 9(t 2 8) Identity property of addition 2t 2 2 5 9t 2 72 22 5 10t 2 72 70 5 10t 75t 16. 12x 2 28y 5 40 228y 5 40 2 12x (3d 1 7) 2 d 1 5 5 2d 1 12 Given 10 11. 12. 13. 42 When x 5 5 and y 5 23: Algebra 2 Worked-Out Solution Key 10 3 10 18 1} y 5 2} 7 7 8 y 5 }7 17. x 1 4y 5 12 4y 5 12 2 x 1 y 5 3 2 }4x 1 When x 5 2: y 5 3 2 }4 (2) 1 y 5 3 2 }2 7. 5n 1 10 2 8n 1 6 5 (5n 2 8n) 1 (10 1 6) 10. 3 1 }7(6) When x 5 6: y 5 2} 7 2d 1 12 5 2d 1 12 Combine like terms. 5 23n 1 16 10m 2 4(3m 1 7) 1 6m 5 10m 2 12m 2 28 1 6m 5 (10m 2 12m 1 6m) 2 28 5 4m 2 28 2 2 11 1 q 2 3q 1 18q 2 2 5 (23q 2 1 18q 2) 1 q 1 (11 2 2) 5 15q 2 1 q 1 9 9t 2 1 14 2 17t 1 6t 2 8t 2 5 (9t 2 2 8t 2) 1 (217t 1 6t) 1 14 5 t 2 2 11t 1 14 5(x 2 3y) 1 2(4y 2 x) 5 5x 2 15y 1 8y 2 2x 5 (5x 2 2x) 1 (215y 1 8y) 5 3x 2 7y 5(2u 1 3w) 2 2(5u 2 7w) 5 10u 1 15w 2 10u 1 14w 5 (10u 2 10u) 1 (15w 1 14w) 5 0 1 29w 5 29w 5n 1 11 5 29 Check: 5(24) 1 11 0 29 5n 5 220 220 1 11 0 29 n 5 24 29 5 29 Check: 2(7) 2 2 0 9(7 2 8) 29 0 9(21) 29 5 29 1 }7x y 52} 7 (3d 1 (2d)) 1 (7 1 5) 5 2d 1 12 Associative property of addition 4x 2 6y 5 4(5) 2 6(23) 5 20 1 18 5 38 6. When x 5 2 and y 5 4: 3x2 2 9y 5 3(2)2 2 9(4) 5 3(4) 2 36 5 12 2 36 5 224 1 3170416 3 5 6k 3d 1 ((2d) 1 7) 1 5 5 2d 1 12 Commutative property of addition 9. 1 Inverse property of addition 3d 1 (7 1 (2d)) 1 5 5 2d 1 12 Associative property of addition 8. 61 }2 2 1 7 0 4 1 121 }2 2 7 5 4 1 6k Associative property of addition (3d 1 7) 1 (2d) 1 5 5 2d 1 12 Definition of subtraction 5. Check: Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 1, 5 y 5 }2 18. 15y 1 2xy 5 230 y (15 1 2x) 5 230 30 y 5 2} 15 1 2x 30 When x 5 5: y 5 2} 15 1 2(5) 30 y 5 2} 25 6 y 5 2}5 19. 25x 2 6 < 19 25x < 25 x > 25 20. x 1 22q23x 2 10 28 26 24 0 22 4x 1 22q210 4xq232 xq28 28 26 24 22 0 Chapter 1, 21. continued 26. {3y 1 4{ > 2 5 < 2x 1 3a11 5 2 3 < 2x 1 3 2 3a11 2 3 3y 1 4 < 22 2 < 2xa8 1 < xa4 0 22 2 4 or 3y < 26 or y < 22 or 6 22. {3d 2 4{ 5 14 or 3d 2 45 14 3d 5 210 or 3d 5 18 or d56 10 d 5 2} 3 24 27. 10 3 2} 24 3 { 0 14 {3(6) 2 4{ 0 14 {210 2 4{ 0 14 {214{ 0 14 {18 2 4{ 0 14 {14{ 0 14 14 5 14 or 3f 1 3 5 24 0 21 2 {}3 z 2 5{ < 2 25 < }3 z 2 5 < 5 2 0 < }3 z < 10 14 5 14 0 < z < 15 28. 35f14 or 22 2 f 1 3 5 2(2f 1 4) or f 1 3 5 2f 1 4 f 1 3 5 22f 2 4 23 25 1 5 < }3 z 2 5 1 5 < 5 1 5 23. {f 1 3{ 5 2f 1 4 21 5 f 3f 5 27 0 26 6 12 18 Number of Cost of Monthly + 1 months router fee 18 + n 1 75 The amount of money you spend in n months is given by 18n 1 75. When n 5 12: 7 f 5 2}3 18n 1 75 5 18(12) 1 75 Check: 5 216 1 75 7 2}3 1 3 { { 0 2 2}7 1 4 3 1 2 14 2 {2{ 0 22 1 4 2 3 2 3 5 291 {21 1 3{ 0 2(21) 1 4 {}3{ 0 2}3 1 4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 y > 2}3 23 Check: 2 3y > 22 2 3d 2 4 5 214 {1 3y 1 4 > 2 252 } Þ 2} 7 The solution is 21. Reject 2}3 because it is an extraneous solution. You spend $291 in 12 months. 29. Cost Hours Labor of 5 of 1 + cost per parts labor hour Total cost 45h 1 240 5 420 45h 5 180 h54 24. {10 2 7g{ 5 2g 10 2 7g 5 22g The repair took 4 hours. 10 2 7g 5 2g 10 5 5g 10 5 9g 25g }5g 30. Your rate 10 9 {10 2 7(2){ 0 2(2) {10 2 71 }9 2 {0 21 }9 2 {10 2 14{ 0 4 {10 2 }9 {0 }9 {24{ 0 4 {}9 {0 }9 10 70 20 20 20 20 20 }5} 9 9 454 25. {x 2 5{a30 1 window 20 min 1 window 15 min } + t min 1 } + Check: 10 + Time 1 Sister’s + Time 5 Windows washed rate 1 15 t min 5 12 windows 1 20 } t 1 } t 5 12 t1} t 5 60(12) 60 1 } 20 2 15 1 1 4t 1 3t 5 720 7t 5 720 720 6 5 102 }7 t5 } 7 It will take about 103 minutes. 230ax25a30 230 1 5ax 2 5 1 5a30 1 5 225axa35 35 225 240 220 0 20 40 Algebra 2 Worked-Out Solution Key 43 Chapter 1, continued 1 31. V 5 } :r 2h; r 5 2, V 5 45 3 3V 5 :r 2h 11. D; 3 4 } (4x 2 12) 1 2(3x 2 7) 5 3x 2 9 1 6x 2 14 3V :r 5 9x 2 23 }2 5 h When r 5 2 in. and V 5 45 in.3: 3V :F r 3(45) 13. C; Point Q will be (22, 22) after the rotation, so Q will be in Quadrant III. h 5 }2 14. ERA 5 9 + earned runs 4 innings pitched h5} 2 :(2 12. F; b 5 375 2 4d 9 + earned runs ) 2.25 5 }} 212 135 h5} F ø 10.7 4: 477 5 9 + earned runs The height h of the cone is about 10.7 inches. } 5 earned runs TAKS Practice (pp. 68–69) 1. D; h 5 1.5 1 3.5t 477 9 53 5 earned runs The pitcher gave up 53 runs. h 5 1.5 1 3.5(12) 5 43.5 In 12 years, the tree will be 43.5 feet tall. 2. H; fee 5 3.9 1 (18 2 10)(0.15) fee 5 3.9 1 8(0.15) 3. D; total cost 5 number of books 3 price of 1 book 1 2 1 } inch 3 6 4. G; (9 picas) } 5 } inches 2 1 pica 1 25 1 6 } } inch (8 picas) 1 pica 4 3 } inches Area 5 1 }2 21 }3 2 5 2 in.2 The area of the square is 2 square inches. 5. A; V(container) 5 :r 2h 5 : (82)(25) ø 5026.55 cm3 4 4 V(scoop) 5 }3:r3 5 }3:(2.5)3 ø 65.45 cm3 5026.55 cm3 65.45 cm Scoops in container 5 } 3 ø 76.8 There are about 77 scoops of ice cream in the container. 6. J; The polyhedron has 7 faces, 15 edges, and 10 vertices. 7. B; m 5 6a 1 3c 2280 5 6a 1 3(260) 1500 5 6a 250 5 a 250 adult tickets were sold. 8. F; 30q6 1 2r 9. A; Area of square 5 * + w 5 4 3 4 5 16 ft2 Area of circle 5 :r2 5 :(22) ø 12.57 ft2 Area left over ø 16 2 12.57 ø 3.43 ft2 About 3 square feet of wood is left over. 10. J; p2 5 942 1 502 } p 5 Ï942 1 502 44 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3 4