Comments
Description
Transcript
F G
Chapter 3, continued F G 3. C; 175 270 BA 5 [ 0.03 0.05 0.08] 370 225 200 255 5 [0.03(175) 1 0.05(370) 1 0.08(200) 0.03(270) 1 0.05(225) 1 0.08(255)] 2. A solution (x, y, z) of a system of linear equations in three variables is called an ordered triple. 3. The product of two matrices is defined when the number of columns in the first matrix is the same as the number of rows in the second matrix. 4. y 2 5 [39.75 39.75] (5, 1) x 22 Mary and Mark each made a total of $39.75 in commission. 4. H; H 1 N 1 3O 5 63 The lines appear to intersect at (5, 1). 2N 1 O 5 44 F G Check: 2(5) 2 1 0 9 2H 1 O 5 18 1 1 3 A5 0 2 1 2 0 1 1 0 2 1 2 0 det A 5 { 5 1 3(1) 0 8 9 5 9 5. { 3 1 1 1 0 2 1 2 0 2 858 y x 21 (24, 22) 5 (2 1 2 1 0) 2 (12 1 0 1 0) 5 28 { 1 63 3 0 44 1 2 18 1 1 63 0 44 2 18 { The lines appear to intersect at (24, 22). Check: 2(24) 2 3(22) 0 22 22 5 22 N 5 }} 28 (44 1 126 1 0) 2 (264 1 18 1 0) 5 14 5 }}} 28 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 24 1 (22) 0 26 6. 26 5 26 y (0, 6) The atomic weight of nitrogen is 14. 5. Let c 5 bushels of corn. 1 Let s 5 bushels of soybeans. x 22 Let w 5 bushels of wheat. 2.35c 1 5.40s 1 3.60w 5 4837 The lines appear to intersect at (0, 6). c 1 s 1 w 5 1700 Check: 3(0) 1 6 0 6 F GF G F G G c 2 3.25s 2 3.25w 5 0 2.35 5.40 3.60 c 4837 1 1 s w 5 1700 0 0.7647 0.2353 0.5556 21.4690 0.1634 1 1 A21 5 F 23.25 23.25 0 F G 20.5556 1.7042 20.3987 1300 X 5 A21B 5 190 210 The farmer harvested 210 bushels of wheat. Chapter 3 Review (pp. 222– 226) 1. A system of linear equations with at least one solution is consistent, while a system with no solution is inconsistent. 20 1 2(6) 0 12 6 5 6 7. 12 5 12 3x 1 2y 5 5 32 6x 1 4y 5 10 22x 1 3y 5 27 33 26x 1 9y 5 81 13y 5 91 y57 3x 1 2(7) 5 5 l x 5 23 The solution is (23, 7). 8. 3x 1 5y 5 5 2x 2 3y 5 16 33 9x 1 15y 5 15 35 10x 2 15y 5 80 19x 5 95 x55 3(5) 1 5y 5 5 l y 5 22 The solution is (5, 22). Algebra 2 Worked-Out Solution Key 163 Chapter 3, 2x 1 3y 5 9 2x 1 3y 5 23x 1 y 5 25 15. 6x 2 y 1 4z 5 6 9 9x 2 3y 5 275 3 (23) 11x 6x 2 y 1 4z 5 2x 1 2y 2 5z 5 242 26x 2 6y 1 15z 5 126 3 (23) 27y 1 19z 5 132 5 266 x 2x 2 3y 1 z 5 31 5 26 2(26) 1 3y 5 9 l y 5 7 22x 2 6y 1 2z 5 32 24y 2 3z 5 10. r 5 price of regular gasoline. 27y 1 19z 5 132 p 5 price of premium gasoline. 2r 1 p 5 0.30 24y 2 3z 5 20 3 14 28y 1 21z 5 2140 3 (27) 97z 5 214r 1 14p 5 4.2 z54 6x 2 (28) 1 4(4) 5 6 l x 5 23 p 5 2.12 2r 1 2.12 5 0.30 l r 5 1.82 The solution is (23, 28, 4). Regular gas costs $1.82 per gallon and premium gas costs $2.12 per gallon. 16. 5x 1 y 2 z 5 40 2x 1 3y 1 z 5 16 12. 2x 1 3y > 6 2x 1 2ya5 25x 1 15y 1 5z 5 80 35 2x 1 3y 1 z 5 16 10y 1 5z 5 60 1 1 y 2 z 5 40 x 1 7y 1 4z 5 44 y y 5x 1 16y 1 4z 5 120 2x 2 ya8 x 388 27y 1 19(4) 5 132 l y 5 28 24p 5 50.88 11. 4x 1 y < 1 20 228y 1 76z 5 528 34 14r 1 10p 5 46.68 21 62 2x 1 2y 2 5z 5 242 2x 1 2y 2 5z 5 242 The solution is (26, 7). 14r 1 10p 5 46.68 6 x 21 16y 1 4z 5 120 35 10y 1 5z 5 60 34 280y 2 20z 5 2600 40y 1 20z 5 240y 13. x 1 3yq5 59 y 2x 1 2y < 4 240 5 2360 16(9) 1 4z 5 120 l z 5 26 y 5x 1 9 2 (26) 5 40 l x 5 5 The solution is (5, 9, 26). 17. w 5 number of wind instruments. 1 x s 5 number of string instruments. 21 14. p 5 number of percussion instruments. x 2 y 1 z 5 10 Equation 1: w 1 s 1 p 5 15 23x 1 5y 2 z 5 218 22x 1 4y Equation 2: w 5 2(s 1 p) 5 28 Equation 3: s 5 3 4x 1 4x 1 y 2 2z 5 15 23x 1 5y 2 z 5 218 3 (22) y 2 2z 5 15 10x 2 9y 22x 1 4y 5 28 35 10x 2 9y 5 51 w 5 2(3 1 p) l w 5 6 1 2p (6 1 2p) 1 3 1 p 5 15 l p 5 2 6x 2 10y 1 2z 5 36 w 5 6 1 2(2) l w 5 10 5 51 210x 1 20y 5 240 10x 2 9y 5 51 11y 5 11 y51 Ten students play wind instruments, three play string instruments, and two play percussion. 18. 22x 1 4(1) 5 28 l x 5 6 F GF GF F G F GF GF F G 4 25 2 1 3 21 3 27 4 5 5 6 2 1 1 z 5 10 l z 5 5 The solution is (6, 1, 5). 19. 21 8 2 23 1 7 24 6 21 5 5 164 Algebra 2 Worked-Out Solution Key G 4 1 (21) 25 1 3 2 1 (27) 314 3 22 25 7 21 1 7 8 1 (24) 216 23 1 (21) 6 4 8 24 G Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9. continued Chapter 3, 20. continued F GF GF F F GF F F G F GF F GF F F G 10 24 5 0 2 1 9 2 10 2 0 5 7 522 10 213 5 21. 22 3 5 21 6 22 5 5 22 3 6 8 23. 8 5 28 0 29 620 22 2 (29) 2 24 0 7 7 6 23(22) 23(3) 23(6) 8 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 25. 8(5) 8(21) 8(6) 8(22) 32 5 5 27. 7] 0 25 1 25 4 23 28 48 216 7 4 3 6 12 4(5) 1 (21)(3) 1(5) 1 7(3) 17 220 10 26 46 82 33. G 6 23 5 2 1 0 G G 22(5) 1 5(21) 0(6) 1 3(2) 0(23) 1 3(0) 0(5) 1 3(21) 215 6 0 23 G G { 2 25 y G 11 5 9 25 24 1 5} 213 22 1 5 } 5 13 } 2 13 2} 13 4 13 1 } } 5 13 } 11 2 } 13 1 2} 13 9 4 13 5 7 1 The solution is (7, 1). F GF G F G F GF 3 A 22(23) 1 5(0) 6 x 1 x 21 2 y 21 22(6) 1 5(2) 22 4 X 5 A21B 5 34. 5 1 A 1(4) 1 7(6) 3 1 0 0 1 0 50 1 70 20 F GF G F G F GF G F GF G F G 21 1(22) 1 7(12) 0 { 0 0 0 50 70 20 1 ft2 4(4) 1 (21)(6) 22 G (1750 in.2) 1 } ø 12.2 ft2 144 in.2 2 4(22) 1 (21)(12) G G 2 8 1 32. Area 5 6} 2 10 5 22 G 319.99 549.99 You will need approximately 12.2 square feet of material. 1(25) 1 (25)(23) 1 5 31. 21(2) 1 (21)(29)] 1(0) 1 (25)(4) 21 6,389,810 GF 5 1750 square inches 11(25) 1 7(23) 220 6,869,810 1 G G 5000 5 6}2 [(0 1 0 1 0) 2 (3500 1 0 1 0)] 11(0) 1 7(4) 4 5 G 30. 28 276 5 26. 40 G G 4000 10,000 109.99 { { 5 24(8) 2 5(2) 5 242 3 25 { 2 6 { 5 3(6) 2 2(25) 5 28 3 0 { 1 6 { 5 3(6) 2 1(0) 5 18 24 5 2 7 5 29 218 8(4) 64 6 8000 F 26 29 F GF F F F GF F F F GF F F 11 215 5 8(8) 5 [21(8) 1 (21)(26) 5 [22 GF 6000 Warehouse 2 6,389,810 29. 23(5) F F 5000 Total Value ($) Warehouse 1 6,869,810 G 21 2 (28) 5 24. [21 21] G 5 525 5 6 22 21 5 G 28. AB 5 327 5 4 26 127 G 22 2 (24) 5 22. 23 3 24 7 2 24 2 9 5 1 2 21 5 }7 1 3 X5A B5 12 1 } 2 7 2}7 1 7 } 5 3 7 } G F GF G F G 1 2 7 2}7 21 1 7 } 3 7 12 } 21 21 } 5 22 5 The solution is (22, 5). Algebra 2 Worked-Out Solution Key 165 Chapter 3, F GF G F G F GF G F GF G F G 3 2 x 4 23 y 1 A21 5 2} 17 5 211 8 23 22 3 17 } 21 X5A B5 5 3 24 3 } 17 2 } 17 4 17 3 17 4. y 2 17 211 8 3 4 } 2} 17 17 5 21 24 (4, 0) 2 The lines appear to intersect at (4, 0). Check: 3(4) 2 0 0 12 6. x 2 3yq9 1 }x 2 ya 3 y22 3x 2 y 5 2 1 y 1 x 21 (1, 1) 1 1 24 5 24 5. 2x 1 y < 6 Chapter 3 Test (p. 227) y 24 1 8(0) 0 24 12 5 12 The solution is (21, 24). 1. x 3x 2 y 5 12 } 2} } 2x 1 8y 5 24 2 x The solution is a line. 7. x 2 2ya214 Check: 3(1) 2 1 0 2 y22{x{ 1 5 4(1) 1 1 0 5 252 y 8. 23x 1 4y > 212 yq{x{ The lines appear to intersect at (1, 1). 1 y y 555 26x 2 2y 5 214 1 1 x 2 (4, 25) 9. 3x 1 y 5 29 x 32 26 5 26 y 1 7x 26(4) 2 2(25) 0 214 214 5 214 3 x 2 2 y 5 23 x 5 228 x 5 24 3(24) 1 y 5 29 l y 5 3 The solution is (24, 3). 10. 2x 1 3y 5 22 3 (22) 1 6x 1 2y 5 218 x 2 2y 5 210 x 2 2y 5 210 The lines appear to intersect at (4, 25). Check: 4 1 2(25) 0 26 x 21 22 x 1 2y 5 26 3. x 22 4x 1 y 5 5 2. y 24x 2 6y 5 4 4x 1 7y 5 26 4x 1 7y 5 26 y 5 22 2x 2 3y 5 15 The lines do not intersect, so there is no solution. 2x 1 3(22) 5 22 l x 5 2 The solution is (2, 22). 11. x 1 4y 5 226 l x 5 226 2 4y 25x 2 2y 5 214 25(226 2 4y) 2 2y 5 214 18y 5 2144 y 5 28 x 1 4(28) 5 226 l x 5 6 The solution is (6, 28). 166 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 35. continued Chapter 3, continued 12. x 2 y 1 z 5 23 3 2 2x 2 2y 1 2z 5 26 4x 1 2y 2 z 5 4x 1 2y 2 z 5 2 6x 2x 2 y 1 5z 5 4 1 z 5 24 4x 2 2y 1 10z 5 8 32 4x 1 2y 2 4x 1 2y 2 z 5 2 8x 6x 1 z 5 24 16. C 2 3B 5 2 5 z5 2 5 46 246x 5 x 5 21 6(21) 1 z 5 24 l z 5 2 The solution is (21, 4, 2). 19. AC 5 3 x1 y1 z5 2x 1 3y 1 2z 5 28 5 4y 1 3z 5 25 5y 1 z 5 2 3 (23) 215y 2 3z 5 26 5 4y 1 3z 5 25 4y 1 3z 5 25 211y 5 211 x 1 1 1 (23) 5 3 l x 5 5 F F F Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 1 y 1 3z 5 19 4x 2 10y 2 2z 5 24y 2 z 5 14 4x 1 4y 1 12z 5 76 24x 1 6y 1 24x 1 6y 1 z 5 220 z 5 14 56 252y 2 13z 5 182 3 13 5 F 1 2 5 22. A(C 2 B) 5 5 5 5 4 3 ,} . The solution is 1 2}3 , 2} 3 32 15. 2A 1 B 5 2 5 17 26 23. F GF G F GF G 1 22 4 23 1 3 5 21 0 2(1) 1 3 2(22) 1 5 2(4) 1 (21) 2(23) 1 0 3 6 22 1 G 4(3) 1 (21) 4(22) 1 3 4(2) 1 6 4(0) 1 (22) 4(21) 1 1 0 G 11 25 14 22 23 8 26 10 15 G 5 5 24. 1 7 26 25. (F G F G)F 1 22 4 23 1 F GF 5 21 3 22 21 0 2 0 21 3 3 21 3 22 3 23 2 0 21 4 G 4(3) 1 3(0) G G 4(22) 1 3(21) 3(21) 1 (23)(2) 3(3) 1 (23)(0) 3(22) 1 (23)(21) 2x 2 5 2} 2 } 5 19 l x 5 2} 4 4 21 4(21) 1 4 4(21) 1 3(2) 26 26 3 G 254 213 241 2} 2 z 5 14 l z 5 } 32 3 17 3 15 226 222 17 y 5 2} 3 17 1 4(8) 1 (23)(15) 5 238 242y GF 4(26) 1 (23)(10) 10y 1 13z 5 56 10y 1 13z 5 56 13 1(8) 1 (22)(15) z 5 220 10y 1 13z 5 24y 2 215 27 5 1(26) 1 (22)(10) 5 34 24x 1 6y 1 z 5 220 34 2 0 21 4 23 The solution is (5, 1, 23). 24x 1 6y 1 z 5 220 21 3 22 1 22 21. (A 1 B)D 5 32 8 2 3(5) 15 2 3(0) the number of rows in E. 5(1) 1 z 5 2 l z 5 23 2x 2 5y 2 z 5 17 26 2 3(3) 10 2 3(21) 20. Not possible; the number of columns in D does not equal y51 14. 5 21 0 G F GF G F F G 5 21 2 y 1 2 5 23 l y 5 4 13. 3 23 10 15 18. 4D 1 E 5 4 8x 1 9z 5 10 8x 1 9z 5 10 8 26 17. Not possible; A and D do not have the same dimensions. 1 9z 5 10 254x 2 9z 5 36 3 (29) F G F G F GF F G F G(F G F G) F GF G F G F G 2 12 211 29 9 1 22 23 26 4 23 1 22 4 23 8 10 15 29 2 3 5 21 0 3 11 15 1(29) 1 (22)(11) 1(3) 1 (22)(15) 4(29) 1 (23)(11) 4(3) 1 (23)(15) 231 227 269 233 { { 5 3(1) 2 (4)(22) 5 11 24 5 { 2 21 { 5 (24)(21) 2 (5)(2) 5 26 3 22 4 1 21 3 1 21 3 0 2 23 0 2 5 (4 2 45 1 0) 2 (10 1 3 1 0) 5 1 22 5 1 5 254 { { Algebra 2 Worked-Out Solution Key 167 Chapter 3, 2 0 21 2 0 5 23 2 5 23 4 1 4 6 1 { { F GF G F G F GF G F GF G F G 1 5 (236 1 0 2 20) 2 (3 1 16 1 0) 5 275 27. 3 4 x 4 5 y 6 5 3 24 6 X 5 A21B 5 4 23 7 x 1 23 5 y 7 1 23 A21 5 }1 21 X5A B5 c 5 2a 216 23 7 21 2 23 7 236 21 2 216 24 5 F 5 4 GF G F G F GF G F GF G F G 3 x 29 26 y 12 2 1 26 23 A21 5 2}3 9 5 5 2 1 5 23 2}3 1 X 5 A21B 5 25 5 5 12 23 2}3 2 25 The solution is (2, 25). 30. F GF G F G F GF G F GF G F G 3 2 x 21 4 y 21 A 1 5} 14 5 4 22 1 21 X5A B5 3 15 5 1 1 2 7 2}7 1 } 14 3 } 14 } 2 7 2}7 15 1 } 14 3 } 14 233 5 9 26 The solution is (9, 26). 31. f 5 amount invested in 5% interest bond. s 5 amount invested in 7% interest bond. f 1 s 5 15,000 0.05f 1 0.07s 5 880 F 1 0.05 0.07 168 GF G F G 1 15,000 f s 5 Algebra 2 Worked-Out Solution Key 880 6500 3a 1 s 5 800 14a 1 5s 5 3775 3a 1 s 5 800 3 (25) 14a 1 5s 5 3775 215a 2 5s 5 24000 14a 1 5s 5 2a 3775 5 2225 a 5 225 c 5 2(225) 5 450 450 1 225 1 s 5 800 l s 5 125 There were 450 children’s tickets, 225 adult tickets, and 125 senior citizen tickets sold. 33. b 5 speed of boat. c 5 speed of current. b 1 c 5 34 b 2 c 5 28 2b 5 62 b 5 31 233 } 8500 3(2a) 1 8a 1 5s 5 3775 25 5 5 3c 1 8a 1 5s 5 3775 2a 1 a 1 s 5 800 The solution is (24, 4). 29. 880 236 5 21 2 15,000 50 c 1 a 1 s 5 800 F GF G F G F GF G F GF G F G 2 27 3.5 250 22.5 50 22.5 s 5 number of senior citizen tickets. 3 The solution is (22, 3). 28. F 1 a 5 number of adult tickets. 22 5 20.05 3.5 250 5 32. c 5 number of children’s tickets. 4 23 4 25 4 25 5 X 5 A21B 5 GF G GF G F G 0.07 21 The investor should invest $8500 in 5% interest bonds and $6500 in 7% interest bonds. 7 5 24 1 A21 5 2}1 F A21 5 } 0.02 31 1 c 5 34 l c 5 3 The boat travels 31 miles per hour in still water. The speed of the current is 3 miles per hour. TAKS Practice (pp. 230 –231) 1. B; Choice B represents the front view of the pyramid. 2. G; (x, y) l (4x, 4y) R(21, 4) l R9(24, 16) The coordinates of vertex R9 are (24, 16). Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 26. continued Chapter 3, continued 3. B; 9. A; The front view shows that the solid has four levels of cubes. Use the Linear Pair Postulate and the fact that the interior angles in a pentagon add up to 5408. The top view shows that the first level has 11 cubes. (180 2 5x) 1 (180 2 3x) 1 (180 2 5x) 1 The front and side views show that the second level has 3 cubes. (180 2 9x) 1 (180 2 2x) The front and side views show that the third and fourth levels each have 1 cube. 224x 5 2360 So, the total number of cubes needed to construct the solid is 11 1 3 1 1 1 1 5 16 cubes. The value of x is 15. 4. J; SA 5 SA (top) 1 SA (bottom) 1 SA (front) 1 SA (back) 1 2SA (side) 5 540 x 5 15 10. H; 1 V 5 }3Bh 1 5 3(40)(12) 1 36(40) 1 3(8)(40) 1 24(40) 1 Original pyramid: 36 5 }3 Bh New pyramid: V 5 }3 B(2h) 5 21 }3Bh 2 5 2(36) 5 72 1 2[8(36) 1 8(24) 1 8(12)] 5 5952 The solid has a surface area of 5952 square inches. The volume of the new pyramid is 72 cubic centimeters. 11. C; 5. C; 3x 1 2y 5 8 x 2 4y 5 216 3(0) 1 2(4) 0 8 0 2 4(4) 0 216 858 3 4 2 7 1 2 9 4 } }x 2 1 5 } 3 2 4 7 }x 2 1 5 } 216 5 216 6. H; 5 2 4 7 }x 5 } Let t 5 gross of top-selling DVD. 35 x5} 8 Let s 5 gross of second top-selling DVD. 35 t 1 s 5 600.9 t 5 s 1 39.9 l s 5 t 2 39.9 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 t 1 (t 2 39.9) 5 600.9 2t 5 640.8 t 5 320.4 The top-selling DVD grossed $320.4 million. 7. C; y 2 y1 5 m(x 2 x1) 2 y 2 1 5 }5 (x 2 (24)) 2 8 2 13 The solution of the equation is x 5 } . 8 12. G; Total charge 5 Base cost 1 Hourly cost + Hours worked c 5 20 1 5h 13. Let r 5 regular tickets. Let m 5 matinee tickets. 6r 1 4m 5 6000 r 5 890 1 m 6(890 1 m) 1 4m 5 6000 10m 5 660 y 5 }5 x 1 }5 1 1 y 5 }5 x 1 } 5 m 5 66 The theater sold 66 matinee tickets. 5y 5 2x 1 13 Cumulative Review, Chs. 1–3 (pp. 232–233) 22x 1 5y 5 13 1. 3x 2 2 5x 2 2 8x 1 12x 1 3x 5 22x 2 1 7x The equation 22x 1 5y 5 13 passes through the point 2 (24, 1) and has slope }5 . 8. J; The range could be used to determine that the temperatures varied by 258F. 2. 15x 2 6x 1 4x 1 10y 2 3y 5 13x 1 7y 3. 3x 1 6 2 4x 2 1 3x 1 9 5 24x 2 1 6x 1 15 4. 6x 2 7 5 22x 1 9 8x 5 16 x52 Check: 6(2) 2 7 0 22(2) 1 9 555 Algebra 2 Worked-Out Solution Key 169 Chapter 3, continued 13. {x 2 4{ < 5 5. 4(x 2 3) 5 16x 1 18 4x 2 12 5 16x 1 18 25 < x 2 4 < 5 212x 5 30 25 1 4 < x < 5 1 4 21 < x < 9 5 x 5 2}2 5 5 Check: 41 2}2 2 3 2 0 16 1 2}2 2 1 18 222 5 222 7 3 1 } x 1 3 5 2} x 2 } 6. 2 2 3 7 3 1 } x 1 } x 5 2} 2 3 2 2 3 3 6 21 2 } x 1 } x 5 2} 2 } 6 2 2 6 9 23 }x 5 2} 2 6 9 6 x 5 2}2 } 23 27 } x 5 223 22 6 8 1 0 x 1 3a215 or x 1 3q15 xa218 or xq12 0 6 12 15. {6x 1 1{ < 23 223 < 6x 1 1 < 23 223 2 1 < 6x < 23 2 1 24 22 <x<} 2} 6 6 11 1 24 < x < } 3 2 7. {x 1 3{ 5 5 x1355 or x 1 3 5 25 x52 or x 5 28 8. {4x 2 1{ 5 27 4x 2 1 5 27 or 4x 2 1 5 227 4x 5 28 or 4x 5 226 or 13 x 5 2} 2 9. {9 2 2x{ 5 41 9 2 2x 5 41 or 9 2 2x 5 241 22x 5 32 or 22x 5 250 or x 5 25 10. 6(x 2 4) > 2x 1 8 11 3 26 24 0 22 2 4 6 25 2 2 7 16. (3, 2), (21, 25), m 5 } 5 } 21 2 3 4 The line rises. 23 2 4 7 17. (27, 4), (5, 23), m 5 } 5 2} 12 5 2 (27) The line falls. 4 2 (26) 10 18. (24, 26), (24, 4), m 5 } 5 } 0 24 2 (24) No slope; the line is vertical. 5 323 0 2 19. 2}, 3 , }, 3 , m 5 } 5 } 50 23 5 4 3 2 } } 2 1 2} 2 12 4 1 21 2 3 The line is horizontal. 20. 21. y y 1 6x 2 24 > 2x 1 8 21 4x > 32 x>8 0 11. 2 4 x 1 6 8 10 x 21 12 22. 3ax 2 2a8 y 3 1 2axa8 1 2 5axa10 1 22 21 1 3 5 7 9 x 11 12. 2x < 26 or x12>5 x < 23 or x>3 23. 24. y y 2 1 25 170 23 21 1 Algebra 2 Worked-Out Solution Key 3 5 21 x 21 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 x 5 216 4 218 212 26 7 27 3 1 27 1 3 0 2}2 2} 2 }2 Check: }3 2} 23 23 60 60 }5} 23 23 x57 2 14. {x 1 3{q15 1 2 1 0 Chapter 3, 25. continued 26. y 23x 2 7(4) 5 222 l x 5 22 y 1 22 2 4 1 2z 5 24 l z 5 1 x 21 The solution is (22, 4, 1). 1 34. B 2 3A 5 x 22 5 27. 28. y y 5 1 x 21 30. y y 1 1 x The relation is a function. 31. 4x 2 3y 5 32 The relation is not a function. 4x 2 3y 5 22x 1 y 5 214 5 x 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. The solution is (5, 24). 18x 5 36 24 5 4 x 5 }3 5 16 4 5 }3 2 2y 5 24 l y 5 } 3 4 16 The solution is }3 , } . 3 1 2 1 33. 2x 1 3y 1 z 5 9 5 2 x 2 y 1 2z 5 24 x 2 y 1 2z 5 24 3 (22) 24x 2 6y 2 2z 5 218 23x 2 7y 3x 1 3x 1 y 2 4z 5 26 2x 1 3y 1 z 5 9 34 5 222 y 2 4z 5 26 3 11 11x 1 13y 5 30 33 9 219 2 210 3 21 1 1 4 5 2 24 8 8 24 2 27 12 F GF G F GF G (F G F G)F G F GF G F G F G 1 5 6 6 2 27 12 2(1) 2 (24) 2(5) 2 8 2(6) 2 (27) 2(6) 2 12 8 24 5 6 2 19 0 6 22 2 27 12 3 21 1 4 22 2 3 21 28 8 5 5 2 2 6 24 F (F G F 3 21 5 30 y54 8 27 12 21 7 1 0 24 22 14 22 3 21 21(1) 1 7(22) 5 F G)F G 1 0 24 22 3 21 21(0) 1 7(3) G F GF F GF 215 21 23 230 42 26 3 1 38. A21 5 2} 1 24 21 39. A 90 238y 5 2152 24 2 G 21(24) 1 7(21) 22(1) 1 14(22) 22(0) 1 14(3) 22(24) 1 14(21) 233x 2 77y 5 2242 33x 1 39y 5 1 5 F GF 8x 1 12y 1 4z 5 36 11x 1 13y 23x 2 7y 5 222 2 2 3(4) 37. (B 1 C)D 15x 2 6y 5 212 3x 1 6y 5 4 21 2 3(6) 4 5 16 4x 2 3(24) 5 32 l x 5 5 3x 1 6y 5 36 1 22(3) 1 2(5) 22(21) 1 2(2) 5 28(3) 1 8(5) 28(21) 1 8(2) 4 y 5 24 32. 5x 2 2y 5 24 3 3 6 5 2 3(1) 5 32 2y 5 22 3 2 3(22) 36. (C 2 A)B 5 24x 1 2y 5 228 32 2 22 6 52 21 5 23 (F G F G) F G x 52 29. 3 21 35. 2(A 1 B) 2 C 1 21 F G F G F G F G 21 40. A 1 24 3 3 5} F 24 5 29 1 1 10 24 5 2} 5 6 5 22 22 G 23 4 4 25 4 2}3 23 1 2 G F G 1 5 G G 1 5 2} 10 } 2 5 } } 1 5 Algebra 2 Worked-Out Solution Key 171 Chapter 3, G 1 41. A21 5 } 24 22 28 0 1 42. Area 5 6} 15 2 8 0 10 25 25 { F G 1 5 2}3 1 2} 12 1 2}3 5 2} 24 1 0 0 1 15 10 1 8 25 { 46. m 7 0 Recovered material (millions of tons) F 28 continued 5 6 0 6 5 5 0 0 1 5 6}2 [(0 1 0 1 375) 2 (80 1 0 1 0)] 5 147.5 R W 43. a. } 5 } T R 2 1 A2 Best-fitting line approximation: m 5 2.5t 1 52 47. s > 213, j a 263, s 1 j > 472.5 The estimate shows that the Red Sox won about 98 games, which is the same as the actual number of games won. 44. a. g 5 21 2 4t (0, 21) Clean and jerk weight (kg) j W ø 97.9 400 300 200 100 0 18 0 100 200 300 400 Snatch weight (kg) s 12 6 0 (5.25, 0) 0 2 4 6 8 t Time (hours) c. Domain: 0ata5.25 Range: 0aga21 c 5 kp 3900 5 k(78,000) k 5 0.05 c 5 0.05p When p 5 125,000: c 5 0.05(125,000) c 5 6250 If a house sells for $125,000, the real estate agent’s commission will be $6250. Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Gasoline (gallons) t 8 In 2010, about 92 million tons of material will be recovered. 162(949)2 b. W 5 }} (949)2 1 (768)2 172 6 m 5 92 TR2 W5} 2 R 1 A2 45. 4 Years since 1994 When t 5 16: m 5 2.5(16) 1 52 2 g 24 2 Sample answer: The area of the playground is 147.5 square yards. b. 0