Comments
Description
Transcript
Chapter 1, continued
Chapter 1, continued 8. 11y 1 2xy 5 9 5. 4x 1 9 < 25 y (11 1 2x) 5 9 4x < 16 x<4 9 y5} 11 1 2x 2 4 6 4 6 8 24 22 0 6. 1 2 3x q 214 9 y5} 11 1 2(25) 23x q 215 x a5 9 y5} 11 2 10 0 9 y 5 }1 2 7. 5x 2 7 a6x 2x 2 7 a0 2x a7 x q 27 y59 9. 0 13 26 39 113 113 113 25 22 1 4 13 1313 y 5 13x y 5 3x 2 5 28 11. 26 8. 3 2 x > x 2 9 Fee for 5 1.5 + later lessons 5 1.5 + x Total amount 315 Number Fee for 1 of later + later lessons lessons 1 9 + x The first lesson costs 1.5(30) 5 $45 and each additional lesson costs $30. Cost per 5 calla lily Total Cost 52 Number Cost + of calla 1 per lilies peony Number + of peonies + + (12 2 x) 3.50 5 x 1 5.50 52 5 3.5x 1 5.5(12 2 x) 28 75x 1. x > 25 8 0 22 0 212 210 28 26 24 22 3 2 4 or x 2 3 q 7 x q 10 or 5 7 12. 3x 2 1 < 21 9 or 11 2x 1 5 q 11 3x < 0 or 2x q 6 x<0 or xq3 0 21 1 2 3 13. 15 aC a30 2 15 a}5(F 2 32) a30 2. x a3 9 0 2 4 27 aF 2 32 a54 6 59 aF a86 3. 23 ax < 1 23 21 4 211 ax a3 1.6 Guided Practice (pp. 41– 44) 4. x < 1 6 23 a2x a11 Lesson 1.6 22 4 10. 28 a2x 2 5 a6 x a5 You bought 7 calla lilies and 12 2 7 5 5 peonies. 0 24 11. x 1 4 a9 52 5 3.5x 1 66 2 5.5x 24 2 28 < 2x < 12 24 < x < 6 214 5 22x 26 0 9. 21 < 2x 1 7 < 19 30 5 x 12. 3 2 2x > 29 22x > 212 x<6 22 315 5 10.5x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 22 When x 5 25: 22 0 21 1 Skill Practice or x q 2 0 1 1.6 Exercises (pp. 44–47) 2 3 1. The set of all points on a number line that represent solutions of an inequality is called the graph of the inequality. Algebra 2 Worked-Out Solution Key 25 Chapter 1, continued 2. Subtraction 18. 5ax < 10 If a, b, and c are real numbers and a > b, then a 2 c > b 2 c. 3 If a, b, and c are real numbers, c > 0, and a > b, then ac > bc. Division (positive) If a, b, and c are real numbers, c > 0, and a > b, then a b } > }. c c 1 2 4 6 20. xa21 or x > 1 22 0 21 1 2 21. x > 22 or x < 25 25 If a, b, and c are real numbers, c < 0, and a > b, then ac < bc. 24 23 22 21 22. x 1 4 > 10 x>6 Division (negative) If a, b, and c are real numbers, c < 0, and a > b, then a b } c<} c. 0 2 4 6 8 23. x 2 3a25 xa22 3. x > 4 0 22 2 4 23 6 22 0 21 1 24. 4x 2 8q24 4. x < 21 4xq4 26 24 22 2 0 2 24 22 0 2 xq1 5. xa25 1 0 21 26 2 3 25. 15 2 3x > 3 6. xq3 23x > 212 2 4 6 x<4 8 7. 6qx 0 22 0 2 4 6 2 4 6 26. 11 1 8xq7 8 8xq24 8. 22 < x 1 24 0 22 2 xq2}2 4 9. xq23.5 24 22 23 22 21 0 1 2 3 4 10. x < 2.5 0 12. xa0 or x > 2 13. x < 22 or x > 4 14. 23 < xa9 1 xa6 0 2 3 4 16. 2axa5 2 2 4 6 8 28. 2x 2 6 > 3 2 x 3x 2 6 > 3 3x > 9 4 6 x>3 8 17. 23 < x < 4 22 5 2 3 27. 4 1 }xa13 2 3 }xa9 2 2 xa9 }3 15. C; x < 21 or xq3 0 1 1 2 11. 23axa1 23 22 21 0 21 0 0 2 Algebra 2 Worked-Out Solution Key 4 2 4 6 8 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 26 9 0 22 Multiplication (negative) 24 7 19. x < 0 or x > 2 Multiplication (positive) 0 5 Chapter 1, continued 39. 29. 4x 1 14 < 3x 1 6 23 < 4 2 xa3 23 2 4 < 4 2 x 2 4a3 2 4 x 1 14 < 6 27 < 2xa21 x < 28 28 26 24 7 > xq1 0 22 0 30. 5 2 8xa19 2 10x 5 1 2xa19 40. 2xa14 4 6 2 1 1 < 3x 2 1 1 1a6 1 1 3 < 3xa7 2 4 6 1 < xa}7 8 3 31. 21x 1 7 < 3x 1 16 1 23 18x 1 7 < 16 0 18x < 9 41. 1 x < }2 21 1 8 2 < 3x 2 1a6 xa7 0 2 1 2 3 4 24a2 1 4x < 0 24 2 2a2 1 4x 2 2 < 0 2 2 0 1 2 26 a4x < 22 3 3 1 2}2ax < 2}2 32. 18 1 2xa9x 1 4 18a7x 1 4 23 14a7x 2ax 2 4 4 23a}3xa1 2x 2 8 > 4x 1 6 4 28 > 2x 1 6 1 2 1 2 4 4 23 }3 axa1 }3 214 > 2x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 0 2 3a}3x 1 3 2 3a4 2 3 3 33. 2(x 2 4) > 4x 1 6 24axa}4 27 > x 28 0 21 0a}3x 1 3a4 42. 1 0 21 22 3 26 24 1 0 22 13 34. When divided by a negative number, the inequality must be reversed. 24 0 22 43. x 1 1 < 23 2x 1 8a6x 2 4 xq3 24 35. The inequality should not reverse with subtraction. or x>2 0 22 44. x 2 4a26 10 1 3x > 5x 4 or x 2 2 > 0 x < 24 24xa212 2 2 4 or x 1 2 > 5 or xa22 x>3 10 > 2x 24 5>x 36. Sample answer: 2x 1 3 > 13 and x 1 5 > 10 37. 45. 2x 2 3a24 22 38. 4 3x 1 1q4 4 8 3xq3 or xa2}2 26 < x < 3 0 or 1 25 2 1 < x 1 1 2 1 < 4 2 1 24 2 2xa21 25 < x 1 1 < 4 28 0 22 0 21 46. 2 1 3x < 213 2ax 2 3a6 xq1 1 or 2 4 1 2x > 7 3x < 215 2 1 3ax 2 3 1 3a6 1 3 x < 25 5axa9 2x > 3 3 or x > }2 1 3 5 7 9 12 11 26 24 22 0 2 Algebra 2 Worked-Out Solution Key 27 Chapter 1, 47. 0.3x 2 0.5 < 21.7 continued or 55. a. Lowland elevations: 0ae < 0.4xq2.4 b. Alpine elevations: 2000ae < 2429 0.3x < 21.2 x < 24 0 24 48. 2x 2 4q1 4 or Subalpine elevations: 1400ae < 2000 xq6 Alpine and subalpine elevations: 1400ae < 2429 8 c. Elevations not in mountain zone: 2 2 5xa28 2xq5 0 a e < 500 or 2429 > eq1400 25xa210 xa25 56. D; xq2 25 28 0 24 4 49. 2(x 2 4) > 2x 1 1 8 18 50. 4x 2 5a4(x 1 2) 2x 2 8 > 2x 1 1 4x 2 5a4x 1 8 28 ò 1 all real numbers 51. 2(3x 2 1) > 3(2x 1 3) 30 An inequality is 18 1 3(t 2 2)a30. 57. 50aFa95 5 18a}9 Ca63 5 Cost per 1 class 5 is m < 45 or m > 70. Number Amount you + of a can spend classes + x a 100 5xa50 xa10 c. Let k 5 1.61m. 45ama70 1.61(45)a1.61ma1.61(70) 72.45aka112.7 An inequality for the legal speeds (in kilometers per hour) is 72.45aka112.7. m < 45 You can attend up to ten classes. Amount Camera Number Cost of + of days a you can 1 cost videotapes spend per day 35 1 45 + x a 250 45xa215 43 xa} 9 7 xa4}9 You can rent the video camera for 4 complete days or fewer. Temperature Gear Inequality 608F to 658F Full wetsuit 60aT < 65 658F to 728F Full leg wetsuit 65aT < 72 728F to 808F Wetsuit trunks 72aT < 80 808F or warmer No special gear 80aT or 1.61m < 1.61 (45) or k < 72.45 or m > 70 1.61m > 1.61(70) k > 112.7 An inequality for the illegal speeds (in kilometers per hour) is k < 72.45 or k > 112.7. 59. a. Amy: (0.65)84 1 (0.15)80 1 (0.20)wq85 Brian: (0.65)80 1 (0.15)100 1 (0.20)xq85 Clara: (0.65)75 1 (0.15)95 1 (0.20)yq85 Dan: (0.65)80 1 (0.15)90 1 (0.20)zq85 b. Amy: (0.65)84 1 (0.15)80 1 (0.20)wq85 54.6 1 12 1 (0.2)wq85 (0.2)wq18.4 wq92 Brian: (0.65)80 1 (0.15)100 1 (0.20)xq85 52 1 15 1 (0.2)xq85 (0.2)xq18 xq90 28 a is 45ama70. 52. 54. (t 2 2) b. An inequality for the illegal speeds (in miles per hour) Problem Solving 53. + 3 Amount a you can spend 58. a. An inequality for the legal speeds (in miles per hour) 22 ò 9 no solution 1 1 10aCa35 6x 2 2 > 6x 1 9 50 Hours Cost st + after 1 1 per two hours hour 50a}9 C 1 32a95 25a8 no solution Fee to join Cost for 1st two hours Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28 or Chapter 1, continued Problem Solving Workshop 1.6 (pp. 48–49) Clara: (0.65)75 1 (0.15)95 1 (0.20)yq85 1. An equation is y 5 200 2 35x. 48.75 1 14.25 1 (0.2)yq85 y < 2500 (0.2)yq22 200 2 35x < 2500 yq110 235x < 2700 Dan: x > 20 (0.65)80 1 (0.15)90 1 (0.20)z q 2. Using a table: 1 1 zq85 Total cost (0.2)zq19.5 zq97.5 y c. A grade of 85 or better is possible for Amy, Brian, and Dan. Clara needs at least a 110 score on her final exam and this is impossible because the maximum test score is 100 points. X 13 14 15 16 17 18 19 X=18 Number Cost Minimum Cost Number Maximum per of per + you can a 1 + of flash a you can daylight daylight flash spend camera cameras camera cameras spend a 2.75 + 1 4.25 + (20 2 x)a x 1 1 Cost per chocolate 0.75 + Number of chocolates + x Entering y 5 3 1 0.75x into a graphing calculator and scrolling through the table of values shows that y 5 16.5 when x 5 18. So, you can buy 18 chocolates or fewer. 60. 65 Cost 5 of card 5 3 Y1 12.75 13.5 14.25 15 15.75 16.5 17.25 75 Using a graph: 65a2.75x 1 4.25(20 2 x)a75 Entering y 5 (3 1 0.75xa16.5) into a graphing calculator and using the trace feature suggests that the inequality is true when xa18. 65a2.75x 1 85 2 4.25xa75 65a85 2 1.5xa75 220a21.5xa210 Y1=(3+.75x 16.5) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 2 13}3 qxq6}3 The possible numbers of each camera that you can buy are shown in the table. X=18.085106 Y=0 Number of daylight cameras, x 7 8 9 10 11 12 13 3. Using a table: Number of flash cameras, 20 2 x 13 12 11 10 9 8 7 Weekly earnings y Mixed Review for TAKS 61. C; s 5 Steve’s cards k 5 Kevin’s cards Weekly 5 salary 5 1550 1 Commission rate 1 0.05 + Weekly sales + x Entering y 5 1550 1 0.05x into a graphing calculator and scrolling through the table of values shows that y 5 1900 when x 5 7000. So, the sales person can sell $7000 or more to earn at least $1900 per week. t 5 Thomas’ cards s5k26 t 5 2s l t 5 2(k 2 6) s 1 k 1 t 5 22 Substitute: (k 2 6) 1 k 1 2(k 2 6) 5 22 X 5000 5500 6000 6500 7000 7500 8000 X=7000 Y1 1800 1825 1850 1875 1900 1925 1950 62. G; SA(original can) 5 2:rh 1 2:r2 SA(new can) 5 2:(2r)(2h) 1 2:(2r)2 5 4(2:rh) 1 4(2:r2) Y1=(1550+.05x 1900) 5 4(2:rh 1 2:r2) 5 4 SA(original can) The new surface area is four times the original surface area. X=6978.7234 Y=0 Using a graph: Entering y 5 (1550 1 0.05xq1900) into a graphing calculator and using the trace feature suggests that the inequality is true when xq7000. Algebra 2 Worked-Out Solution Key 29