Comments
Description
Transcript
277
Chapter 5, continued Lesson 5.5 6. 4 1 21 222 40 4 12 240 210 0 5.5 Guided Practice (pp. 362–365) 1. 2x2 2 3x 1 8 ww 2 4 3 x 1 2x 2 1q2x 1 x 1 0x2 1 x 2 1 1 2x 4 1 4x 3 2 2x 2 5 (x 2 4)(x 2 1 3x 2 10) 2 23x 2 6x 1 3x 8x 2 2 2x 2 1 8x 2 1 16x 2 8 5 (x 2 4)(x 1 5)(x 2 2) 7. 22 1 218x 1 7 218x 1 7 2x 4 1 x 3 1 x 2 1 }} 5 2x2 2 3x 1 8 1 } x 2 1 2x 2 1 x 2 1 2x 2 1 0 18 29 0 0 2 5 (x 1 2)(x 2 2 9) x 3 1 2x 2 5 (x 1 2)(x 2 3)(x 1 3) The other zeros are 3 and 23. 8. 22 2 23x 2 6x 1 10x 2 10 10x 1 20 3. 23 1 4 21 23 12 1 24 11 1 4 1 23 7 4 5 2 5 2 214 22 212 14 27 0 6 2 f (x) 5 x 1 8x 1 5x 2 14 5 (x 1 2)(x 2 1 6x 2 7) 5 (x 1 2)(x 1 7)(x 2 1) The other zeros are 27 and 1. 9. 25 5 215x 3 1 40x 0 5 215x3 1 40x 2 25 11 x3 1 4x2 2 x 2 1 }} 5 x 2 1 x 2 4 1 } x13 x13 4 5 3 21 23 8 1 230 30 x 3 2 x 2 1 4x 2 10 }} 5 x 2 2 3x 1 10 2 } x12 x12 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 f (x) 5 x 1 2x 2 9x 2 18 23x 1 4x 1 215 215 0 40 225 215 215 25 215 25 0 (x 2 1)(215x 2 2 15x 1 25) 5 0 9 x ø 0.9 is the other positive solution. The company could still make the same profit producing about 900,000 shoes. 9 4x 3 1 x 2 2 3x 1 7 }} 5 4x 2 1 5x 1 2 1 } x21 x21 1 218 ww 3 2 2 5. 4 29 3 x 1 2qx 2 x 1 4x 2 10 4. 1 2 1 x 2 2 3x 1 10 2. 2 f (x) 5 x 2 x 2 22x 1 40 23x 3 1 2x 2 1 x 3 3 3 26 5 12 4 28 212 22 23 0 5.5 Exercises (pp. 366–368) 1 Skill Practice 1. If a polynomial f (x) is divided by x 2 k, then the remainder is r 5 f (k). f (x) 5 x 3 2 6x 2 1 5x 1 12 5 (x 2 4)(x 2 2 2x 2 3) 5 (x 2 4)(x 2 3)(x 1 1) 2. The red numbers represent the coefficients of the quotient and the blue number represents the remainder. 3. x15 x 2 4qx 1 x 2 17 ww 2 x2 2 4x 5x 2 17 5x 2 20 3 3 x 2 1 x 2 17 }5x151} x24 x24 Algebra 2 Worked-Out Solution Key 277 Chapter 5, 3x 1 4 5x 2 2 12x 1 37 9. x 2 5q3x 2 11x 2 26 ww 2 x 1 2x 2 4q5x 2 2x 2 www 4 3 2 2 3x2 2 15x 4 5x 1 10x 2 20x 2 4x 2 26 212x 3 1 13x 2 1 0x 4x 2 20 212x2 2 24x 2 2 48x 37x2 1 48x 2 39 26 3x 2 2 11x 2 26 x25 37x 2 1 74x 2 148 6 x25 }} 5 3x 1 4 2 } 226x 1 109 x2 1 4x 1 7 5. 4 3 2 226x 1 109 x 1 2x 2 4 5x 2 2x 2 7x 2 39 x 1 2x 2 4 }} 5 5x 2 2 12x 1 37 1 } 2 2 x 3 1 3x 2 1 3x 1 2 x 2 1qww x 3 2 x2 4x 2 1 12x 1 44 10. 2 x 2 3x 2 2q4x 1 0x 1 0x 1 www 4 3 2 2 4x 1 3x 2 4 4x 2 4x 3 4x 2 12x 2 8x 3 7x 2 7 44x 2 1 29x 2 4 x 3 1 3x 2 1 3x 1 2 x21 44x 2 2 132x 2 88 9 x21 }} 5 x 2 1 4x 1 7 1 } 2x 1 9 161x 1 84 4 8x2 2 2x 11. 5 36x 2 1 2 36x 2 9 8 8 4x 2 1 }} 5 2x 1 9 1 } 3x 1 8 3x 3 1 11x 2 1 4x 1 1 x 2 1 xqww 3 27 10 10 15 3 25 2 2 12. 2 4 213 25 8 210 25 215 2 8x 2 1 4x 8x2 1 8x 4 24x 1 1 24x 1 1 3x 3 1 11x 2 1 4x 1 1 }} 5 3x 1 8 1 } x2 1 x x2 1 x 8. 4x2 1 13x 2 5 x22 13. 24 1 7x 3 1 11x 2 1 7x 1 5 x 2 1 1qww 1 7x 1 11x 2 1 0x 1 5 11x 2 1 0x 1 11 26 2 15 x22 }} 5 4x 2 5 2 } 7x 1 11 3 25 x25 2x 2 7x 1 10 x25 }} 5 2x 1 3 1 } 3x 1 3x 7x 3 161x 1 84 x 2 3x 2 2 4x 1 5x 2 4 x 2 3x 2 2 } 5 4x 2 1 12x 1 44 1 } 2 2 8x 2 1 34x 2 1 4x 2 1qww 7. 8 1 24 216 4 215 2 x 1 8x 1 1 x14 15 x14 }5x142} 14. 3 1 6 7x 1 11x 1 7x 1 5 }} 5 7x 1 11 2 } x2 1 1 x2 1 1 1 2 x 19 x23 0 9 3 9 3 18 18 x23 }5x131} 278 Algebra 2 Worked-Out Solution Key 5x 2 12x 2 36x 2 24x 9 8x 2 1 34x 2 1 4x 2 1 5x 2 4 2 12x 3 1 8x 2 1 7x 1 2 6. 7x 1 0x 2 39 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4. continued Chapter 5, 15. 4 1 1 3 continued 25 0 22 4 24 216 21 24 218 21. 6 18 x24 x 2 5x 2 2 x24 1 0 24 6 23 9 215 23 5 29 x 3 2 4x 1 6 x13 1 30 6 224 230 24 25 0 5 (x 2 6)(x 2 2 4x 2 5) 5 (x 2 6)(x 2 5)(x 1 1) 22. 24 25 28 13 212 6 6 212 6 1 22 1 26 1 6 5 212 24 28 12 1 2 23 0 f (x) 5 x 3 1 6x 2 1 5x 2 12 9 x13 } 5 x2 2 3x 1 5 2 } 17. 6 19 f (x) 5 x 3 2 10x 2 2 19x 1 30 } 5 x2 2 x 2 4 2 } 1 210 1 2 16. 23 1 5 (x 1 4)(x2 1 2x 2 3) 5 (x 1 4)(x 1 3)(x 2 1) 1 23. 8 x 4 2 5x 3 2 8x 2 1 13x 2 12 x26 1 6 x26 }}} 5 x 3 1 x 2 2 2x 1 1 2 } 18. 25 1 1 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 2 25 5 225 45 5 (x 2 8)(x 1 4)(x 1 2) 21 5 29 10 5 (x 2 8)(x 2 1 6x 1 8) 24. 210 1 10 x15 0 25 3 2 4 22 2 21 1 18 95 150 210 280 2150 1 8 15 0 3 2 f (x) 5 x 1 18x 1 95x 1 150 5 (x 1 10)(x2 1 8x 1 15) 5 (x 1 10)(x 1 3)(x 1 5) 25. 29 1 x22 20. The error is that a zero was not used as a place holder for 1 1 2 251 108 29 63 2108 27 12 0 f (x) 5 x 3 1 2x 2 2 51x 1 108 5 (x 1 9)(x 2 2 7x 1 12) the missing x 2 term. 1 8 6 f(x) 5 x 2 2x 2 40x 2 64 x 3 2 5x 1 3 x22 3 64 235 } 5 x 2 1 2x 2 1 1 } 1 48 16 error in how the quotient is written. 2 8 0 19. The division was done correctly, however, there is an 1 264 4 x 4 1 4x 3 1 16x 2 35 x15 1 240 3 }} 5 x 3 2 x 2 1 5x 2 9 1 } 2 22 5 (x 1 9)(x 2 4)(x 2 3) 0 25 3 2 4 22 2 21 1 1 x 2 5x 1 3 } 5 x 2 1 2x 2 1 1 } x22 x22 26. 22 1 29 8 60 22 22 260 1 211 30 0 f (x) 5 x 3 2 9x 2 1 8x 1 60 5 (x 1 2)(x2 2 11x 1 30) 5 (x 1 2)(x 2 5)(x 2 6) Algebra 2 Worked-Out Solution Key 279 Chapter 5, 2 215 34 221 2 213 21 32. 24 2 213 21 0 f (x) 5 2x 3 2 15x 2 1 34x 2 21 3 5 (x 2 1)(2x2 2 13x 1 21) 3 22 261 15 33. 9 2 5 (x 2 5)(3x 1 13x 1 4) 2 5 (x 2 5)(3x 1 1)(x 1 4) 22 221 218 23 15 18 225 2154 40 40 150 240 5 (x 2 10)(4x2 1 15x 2 4) 5 (x 2 10)(4x 2 1)(x 1 4) 71 42 70 277 242 26 0 211 2 f (x) 5 10x 2 81x 1 71x 1 42 5 (x 2 7)(10x2 2 11x 2 6) 5 (x 2 7)(5x 1 2)(2x 2 3) 2 3 The other zeros are 2}5 and }2. 280 Algebra 2 Worked-Out Solution Key 271 29 18 72 9 8 1 0 } 28 6 Ï64 2 4(2) } 28x 6 Ï 56 x 5 }} 5} 4 2(2) } 24 6 Ï 14 5 5 21 218 8 210 22 28 211 4 0 f (x) 5 5x 3 2 x 2 2 18x 1 8 5 (x 1 2)(5x 2 2 11x 1 4) }} 11 6 Ï121 2 4(5)(4) } 116 Ï41 x 5 }} 5} 10 10 35. D; 281 3 210 The other zeros are about 0.46 and 1.74. 1 The other zeros are }4 and 24. 10 0 The other zeros are about 20.13 and 23.87. 4 15 24 0 f (x) 5 4x 3 2 25x 2 2 154x 1 40 10 216 5 (x 2 9)(2x2 1 8x 1 1) 34. 22 The other zeros are 6 and 21. 31. 7 22 5} 2 5 (x 1 3)(x 2 6)(x 1 1) 4 64 f (x) 5 2x 3 2 10x 2 2 71x 2 9 0 5 (x 1 3)(x2 2 5x 2 6) 30. 10 288 2 20 1 25 26 f (x) 5 x 3 2 2x2 2 21x 2 18 212 The other zeros are }3 and 28. 2 1 264 5 (x 1 4)(3x 2 2)(x 1 8) 3 13 4 0 3 2 f (x) 5 3x 2 2x 2 61x 2 20 29. 23 72 5 (x 1 4)(3x 2 1 22x 2 16) 220 65 34 f (x) 5 3x 3 1 34x 2 1 72x 2 64 5 (x 2 1)(2x 2 7)(x 2 3) 28. 5 3 26 4 4 15 263 254 224 54 54 29 29 0 f (x) 5 4x 3 1 15x 2 2 63x 2 54 5 (x 1 6)(4x 2 2 9x 2 9) 5 (x 1 6)(4x 1 3)(x 2 3) 3 The zeros are 26, 2}4 , and 3. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 27. 1 continued Chapter 5, continued 1 40. a. } 2 36. (x 1 4)(x 1 2) 5 x 2 1 6x 1 8 2x 3 1 17x 2 1 46x 1 40 x 1 6x 1 8 * 5 }} 2 b. 1 2 30 } 7 239 14 15 11 214 30 22 228 0 1 2 2x 1 5 x 2 1 6x 1 8qww 2x 3 1 17x 2 1 46x 1 40 2x 3 1 12x 2 1 16x 1 f(x) 5 x 2 }2 (30x 2 1 22x 2 28) 2 5x 1 30x 1 40 5x 2 1 30x 1 40 c. f(x) 5 1 x 2 }2 2(2)(15x 2 1 11x 2 14) 1 0 The missing dimension is 2x 1 5. 5 (2x 2 1)(3x 2 2)(5x 1 7) 37. (x 2 1)(x 1 6) 5 x 2 1 5x 2 6 Problem Solving x 3 1 13x 2 1 34x 2 48 x 1 5x 2 6 w 5 }} 2 41. P 5 2x 3 1 4x 2 1 x 4 5 2x 3 1 4x 2 1 x x1 8 0 5 2x 3 1 4x 2 1 x 2 4 x 3 1 13x 2 1 34x 2 48 x 2 1 5x 2 6qww x3 1 5x 2 2 6x 4 8x 2 1 40x 2 48 0 1 25 1 212 26 236 23 218 0 3 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. f (x) 5 x 2 5x 2 12x 1 36 5 (x 2 2)(x2 2 3x 2 18) 5 (x 2 2)(x 2 6)(x 1 3) The other zeros are 6 and 23. 39. A; 5 1 21 k 230 5 20 30 1 4 k 1 20 0 For x 2 5 to be a factor, the remainder must be zero. In the last column 30 must be added to 230 to get zero. k 1 20 must equal 6 in order to have a product of 30 to add to the 230. k 1 20 5 6 so, k 5 214. 24 0 4 1 0 0 P 5 (x 2 4)(2x 1 1) 5 (x 2 4)(1 2 x)(1 1 x) x 5 1 is the only other positive solution. So, the company could still make the same profit by producing only 1 million T-shirts. 42. P 5 24x 3 1 12x 2 1 16x 48 5 24x 3 1 12x 2 1 16x 0 5 24x 3 1 12x 2 1 16x 2 48 3 12 16 248 212 0 48 24 b. The factors are (x 2 2), (x 2 6), and (x 1 3). c. The solutions are x 5 2, x 5 6, x 5 23. 24 2 36 2 1 21 The missing dimension is x 1 8. 38. a. 2 4 21 8x 2 1 40x 2 48 24 0 16 0 2 ( ) P 5 (x 2 3) 24x 1 16 5 (x 2 3)(4 2 2x)(4 1 2x) x 5 2 is the only other positive solution. The company could produce 2 million MP3 players and still make the same profit. 43. Let a 5 average attendance per team. A 21.95x 3 1 70.1x 2 2 188x 1 2150 a5} 5 }}} T 14.8x 1 725 20.132x 2 1 11.2x 2 561.35 14.8x 1 725q21.95x 1 70.1x 2 188x 1 2150 www 3 2 21.95x 3 2 95.7x 2 165.8x 2 2 188x 165.8x 2 1 8120x 28308x 1 2150 28308x 2 406,978.75 409,128.75 A function is 409,129 a 5 20.132x 2 1 11.2x 2 561 1 } 14.8x 1 725 Algebra 2 Worked-Out Solution Key 281 Chapter 5, continued 44. a. Total revenue 46. 5 (number of radios sold)(price per radio) 5 (x)(40 2 4x 2) 5 40x 2 4x 3 P 5 26x 3 1 72x 96 5 26x 3 1 72x 0 5 26x 3 1 72x 2 96 3 An expression is 40x 2 4x . 2 A function is P 5 25x 2 4x 3. c. When P 5 24: 26 24 5 25x 2 4x 3 0 225 24 6 9 224 6 216 0 20.00722x 4 1 0.176x 3 2 1.40x 2 1 3.39x 1 17.6 2444,215.872 5379.39x 1 444,233.472 5379.39x 1 17.6 265.1x 2 2 5376x 265.1x 2 1 3.39x 0.772x 3 1 63.7x 2 P5} 5 }}}} V 3.10x 1 256 0.772x 3 2 1.40x 2 0 Mixed Review for TAKS of visits to the national park that were overnight stays. 2 0.00722x 4 2 0.596x 3 48 5 26(x 2 2)(x 1 4)(x 2 2) 47. C; Let t 5 time it takes James to walk to school in minutes. Total distance 5 rate + time (James) 1 rate + time (friend) 3 So, 444,216 P 5 20.00233x 3 1 0.249x 2 2 21x 1 1735 2 } . 3.10x 1 256 The function for the percent of visits that were overnight stays is the overnight stays divided by the total visits. Algebra 2 Worked-Out Solution Key 10 +t1} + (t 2 4) 85} 60 60 13t 2 40 85} 60 45. Answers may vary due to rounding. Let P 5 the precent 2 0.00233x 3 1 0.249x 2 2 21x 1 1735.287 3.10x 1 256q 20.00722x 1 0.176x 2 1.40x 1 3.39x 1 17.6 212 The zeros are at 2 and 24. Production levels cannot be negative so x 5 2 is the only solution. because you cannot produce a negative number of radios. wwwww 4 3 2 96 5 23(x 2 2)(2)(x 1 4)(x 2 2) d. No. The solution x ø 22.88 does not make sense 282 224 5 (23x 1 6)(2x 1 8)(x 2 2) So, (x 2 1.5)(4x2 1 6x 2 16) 5 0. Use the quadratic formula to find x ø 1.39, the other positive solution. So, about 1.39 million radios also make a profit of $24,000,000. S 212 480 5 13t 2 40 520 5 13t 40 5 t It took James 40 minutes to walk to school. 48. G; 2x 1 3y 5 15 2x 1 3(0) 5 15 15 x5} 2 ,0 . The x-intercept is 1 } 2 2 15 Mixed Review for TEKS (p. 369) 1. B; 1.64 3 1011 1.2 3 10 1.64 1.2 1011 10 } 5}3} ø 1.37 3109 2 2 It would take 1.37 3 109 football fields stretched end-to-end to reach from Earth to the sun. 2. H; C(x) 5 (4x 2 2)(x 2 2)(2x 2 4) 5 (4x2 2 10x 1 4)(2x 2 4) 5 8x3 2 36x 2 1 48x 2 16 The function C(x) 5 8x3 2 36x2 1 48x 2 16 gives the volume of the inside of the cooler in terms of the width x. 3. C; If f (x) l 2` as x l 2`, f (x) l 2` as x l 1`, and the degree is even (4), then the leading coefficient must be negative. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 296 P 5 (26x 2 12x 1 48)(x 2 2) You know that 1.5 is a solution, so x 2 1.5 is a factor of 4x3 2 25x 1 24. 4 72 2 0 5 4x3 2 25x 1 24 1.5 0 26 b. P 5 (40x 2 4x 3) 2 15x 5 25x 2 4x 3 Chapter 5, continued Lesson 5.6 4. G; Let x 5 height. V 5 *wh 5.6 Guided Practice (pp. 371–373) 540 5 (x 1 15)(x 2 3)(x) 1. Factors of the constant term: 61, 63, 65, 615 0 5 x3 1 12x2 2 45x 2 540 Factors of the leading coefficient: 61 0 5 x2(x 1 12) 2 45(x 1 12) 3 1 5 15 Possible rational zeros: 6}1, 6}1, 6}1, 6} 1 0 5 (x2 2 45)(x 1 12) } The only positive solution is x 5 Ï45 , or x ø 6.7, so the height of the box is about 6.7 inches. 5. A; Simplified list: 61, 63, 65, 615 2. Factors of the constant term: 61, 62, 63, 66 Factors of the leading coefficient: 61, 62 Profit Price per (millions 5 camera of dollars) (dollars) Number + of cameras (millions) Cost per 2 camera (dollars) Number + of cameras (millions) 1 2 3 6 3 2 6 6}2, 6}2, 6}2 1 P 5 (100 2 10x2)(x) 2 30x P 5 100x 2 10x3 2 30x 3 6 9 18 1 2 3. Possible rational zeros: 6}, 6}, 6}, 6}, 6}, 6} 1 1 1 1 1 1 Test x 5 1: 1 When P 5 60: 1 1 24 215 18 1 23 218 23 218 0 Because 1 is a zero of f, f(x) can be writen as: 0 5 10x 3 2 70x 1 60 You know that 2 is a solution, so x 2 2 is a factor of 10x 3 2 70x 1 60. 2 10 3 Simplified list: 61, 62, 63, 66, 6}2 , 6}2 P 5 70x 2 10x3 60 5 70x 2 10x 3 1 Possible rational zeros: 6}1, 6}1, 6}1, 6}1, 6}2, 0 270 60 20 40 260 20 230 0 f (x) 5 (x 2 1)(x2 2 3x 2 18) 5 (x 2 1)(x 2 6)(x 1 3) The zeros are 23, 1 and 6. 4. Possible rational zeros: 61, 62, 67, 614 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Test x 5 1: 10 So, (x 2 2)(10x2 1 20x 2 30) 5 0. use factoring to find that x 5 1 and x 5 23 are the other solutions. The company could produce 1 million cameras and make the same profit. 6. In 2001, t 5 6. 1 1 ø 46.73 The average monthly cell phone bill in 2001 was about $46.73. 1 7. V 5 } s2h 3 5 14 1 27 22 22 212 28 5 14 21 9 214 29 14 0 1 27 1 is not a zero. Test x 5 21: 21 1 C 5 20.027(6)4 1 0.32(6)3 2 0.25(6)2 2 4.9(6) 1 51 5 234.992 1 69.12 2 9 2 29.4 1 51 28 1 Because 21 is a zero of f, f (x) can be written as: f(x) 5 (x 1 1)(x2 2 9x 1 14) 5 (x 1 1)(x 2 7)(x 2 2) The zeros of f are 21, 2 and 7. 1 48 5 }3 (3x 2 6)2(x) 1 48 5 }3 x(9x2 2 36x 1 36) 0 5 3x 3 2 12x 2 1 12x 2 48 0 5 3x 2(x 2 4) 1 12(x 2 4) 0 5 (3x 2 1 12)(x 2 4) The only positive solution is x 5 4, so the height of the sculpture is 4 feet. Algebra 2 Worked-Out Solution Key 283