Comments
Description
Transcript
Chapter 2, continued
continued You can ride the rally track 4 times and the Grand Prix track 4 times. 4. A relation involves two quantities that are related to each other by some rule of correspondence. A function f from set A to set B is a relation that assigns to each element x in the set A exactly one element y in the set B while a relation can have more than one element y in the set B for each element x in the set A. You can ride the rally track 2 times and the Grand Prix track 5 times. You can ride the rally track 7 times and the Grand Prix track 2 times. 5. Input Mixed Review for TEKS (p. 139) 22 21 2 3 1. C; Vertex (h, k) 5 (12, 20) So, y 5 a{x 2 h{ 1 k 5 a{x 2 12{ 1 20 22 0 6 8 The domain consists of all the x-coordinates: 22, 21, 2, 3. The range consists of all the y-coordinates: 22, 0, 6, 8. The relation is a function because each input is mapped onto exactly one output. Substitute (2, 0) into the equation and solve for a. 0 5 a{2 2 12{ 1 20 220 5 10a 22 5 a So, y 5 22{x 2 12 {1 20. 6. Input 21 1 3 2. G; 3 22 2 1 slope 5 } 5 2}2 0 2 (22) The domain consists of all the x-coordinates: 21, 1, 3. The range consists of all the y-coordinates: 27, 25, 2, 4. The relation is not a function because the input 1 is mapped onto both 27 and 2. 3 y a 2}2 x 2 2 3 y 1 }2 x a 22 3. C; 7. 32.85 5 10.95 cost per month 5 } 3 total cost 5 cost per month 3 months of service 5 10.95 3 12 5 131.40 A 12 month subscription costs $131.40. 4. H; The data show approximately no correlation. 5. B; 2m 1 3z a 30 6. s(t ) 5 215{t 2 5{ 1 180 Output 27 25 2 4 y-intercept 5 22 2y 1 3x a 24 Output The function f is linear because it has the form f (x) 5 mx 1 b. f (x) 5 16 2 7x f (25) 5 16 2 7(25) 5 51 y2 2 y1 3 2 (21) 4 2 8. m 5 } 5 } 5 } 5 } x2 2 x1 6 3 4 2 (22) y2 2 y1 2 2 (25) 7 9. m 5 } 5 } 5 } The slope is undefined. x2 2 x1 121 0 y2 2 y1 7 2 (23) 10 5 10. m 5 } 5 } 5 } 5 2} x2 2 x1 125 24 2 y2 2 y1 0 222 11. m 5 } 5 } 5 } 5 0 x2 2 x1 28 2 6 214 12. y 5 5 2 x y y 5 a{x 2 h{ 1 k vertex (h, k ) 5 (5, 180) The vertex is (5, 180), so the maximum amount of money raised in one day was $180. Chapter 2 Review (pp. 141–144) 1. The linear equation 5x 2 4y 5 16 is written in 1 x 21 13. y 2 5x 5 24 1 y 5 5x 2 4 y x 21 standard form. 2. A set of data pairs (x, y) shows a negative correlation if y tends to decrease as x increases. 3. Two variables x and y show direct variation if y 5 ax and a Þ 0. 14. x 5 4 y 1 21 94 Algebra 2 Worked-Out Solution Key x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 2, Chapter 2, continued 15. 6x 2 4y 5 12 24y 5 12 2 6x 1 21 21. When x 5 23 and y 5 2.4: y y 5 ax x 2.4 5 a(23) 3 y 5 }2 x 2 3 20.8 5 a An equation that relates x and y is y 5 20.8x. 26 2 4 10 16. m 5 } 5 2} 5 22 5 2 2 (23) When x 5 3: y 5 20.8(3) Choose (x1, y1) 5 (23, 4). y 5 22.4 y 2 y1 5 m(x 2 x1) 22. When T 5 300 and V 5 4.8: y 2 4 5 22(x 2 (23)) V 5 aT y 5 22x 2 6 1 4 4.8 5 a(300) y 5 22x 2 2 0.016 5 a 27 2 5 3 212 17. m 5 } 5 } 5 2} 16 4 12 2 (24) An equation that gives V as a function of T is V 5 0.016T. Choose (x1, y1) 5 (24, 5). When T 5 420: y 2 y1 5 m(x 2 x1) V 5 0.016T 3 y 2 5 5 2}4 (x 2 (24)) V 5 0.016(420) V 5 6.72 liters 3 y 5 2}4 x 2 3 1 5 23. A scatter plot and possible line of best fit are shown. The line appears to pass through (x1, y1)5 (21, 3.3) and (x2, y2) 5 (1, 1.3). 3 y 5 2}4 x 1 2 26 2 1 27 18. m 5 } 5 } 5 21 7 3 2 (24) 1.3 2 3.3 Choose (x1, y1) 5 (24, 1). An equation is y 2 1.3 5 21(x 2 1), or y 5 2x 1 2.3. y y 2 y1 5 m(x 2 x1) y 2 1 5 21(x 2 (24)) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 m5} 5} 5 21 2 1 2 (21) (1, 1.3) (21, 3.3) y 5 2x 2 4 1 1 1 y 5 2x 2 3 x 1 19. When x 5 6 and y 5 248: y 5 ax 248 5 a(6) 24. The graph of y 5 {x 2 3{ 1 2 is the graph of y 5 {x{ 28 5 a An equation that relates x and y is y 5 28x. translated right 3 units and up 2 units. y When x 5 3: y 5 28(3) y 5 224 20. When x 5 29 and y 5 15: 1 y 5 ax x 21 15 5 a(29) 5 2}3 5 a 5 An equation that relates x and y is y 5 2}3 x. 3 25. The graph of y 5 }{x{ is the graph of f (x) 5 {x{ 4 3 shrunk vertically by a factor of }4. y When x 5 3: 5 y 5 2}3 (3) 1 21 x y 5 25 Algebra 2 Worked-Out Solution Key 95 Chapter 2, continued 26. The graph of f(x) 5 24{x 1 2{ 1 3 is the graph of 34. Let x represent the number of windmills producing 1.5 megawatts and y represent the number of windmills producing 2.5 megawatts. And inequality describing how many of each size of windmill it takes to supply the electric company is 1.5x 1 2.5yq180. f (x) 5 {x{reflected in the x-axis, stretched vertically by a factor of 4, and translated left 2 units and up 3 units. y y 80 1 x 22 60 40 When d 5 0.25: y 20 d 5 {a 2 1.50{ 0 1 5 a 2 1.50 x 21 a 2 1.50 5 0.25 a 5 1.75 or a 2 1.50 5 20.25 0 30 60 90 x 120 Chapter 2 Test (p. 145) 1. The relation is not a function because the input 1 is mapped onto both 25 and 2, and the input 2 is mapped onto both 3 and 7. a 5 1.25 d will be $.25 when a is $1.75 or $1.25. 28. (0, 1): 2. The relation is a function because each input is mapped onto exactly one output. 2ya5x 5(0) 21a 3. f (x) 5 3x2 2 2x 1 11 f(26) 5 3(26)2 2 2(26) 1 11 5 108 1 12 1 11 5 131 21a0 4. Let (x1, y1) 5 (3, 22) and (x2, y2) 5 (5, 4). y2 2 y1 4 2 (22) 6 m5} 5} 5 }2 5 3 x2 2 x1 523 (0, 1) is a solution. 29. (24, 6): y > 23x 2 7 6 > 23(24) 2 7 The line rises from left to right. 5. Let (x1, y1) 5 (6, 27) and (x2, y2) 5 (13, 27). y2 2 y1 27 2 (27) 0 m5} 5} 5 }7 5 0 x2 2 x1 13 2 6 6>5 (24, 6) is a solution. 30. (22, 0): The line is horizontal. 3x 2 4y < 28 3(22) 2 4(0) < 28 6. Let (x1, y1) 5 (22, 1) and (x2, y2) 5 (1, 24). y2 2 y1 5 24 2 1 m5} 5} 5 2}3 x2 2 x1 1 2 (22) 26 ñ 28 The line falls from left to right. (22, 0) is not a solution. 31. 24y < 16 7. Let (x1, y1) 5 (24, 9) and (x2, y2) 5 (24, 8). y2 2 y1 829 21 m5} 5} 5} x2 2 x1 0 24 2 (24) 32. y 2 2x > 8 y > 24 y > 2x 1 8 1 y y The slope is undefined, so the line is vertical. x 21 8. 9. y y 1 x 21 1 x 21 33. 12x 2 8ya 28ya212x 1 24 1 21 10. y y x yq}3 x 2 3 2 96 Algebra 2 Worked-Out Solution Key 1 21 1 21 x x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 27. Chapter 2, 11. continued 16. When x 5 8 and y 5 18: 3y 5 2x 2 12 22x 1 3y 5 212 y 5 ax x-intercept: 22x 1 3(0) 5 212 18 5 a(8) x56 9 4 }5a y-intercept: 22(0) 1 3y 5 212 9 An equation that relates x and y is y 5 }4 x. y 5 24 1 When y 5 6: y 9 6 5 }4 x x 21 8 3 }5x 17. When x 5 16 and y 5 26: 1 12. The slope of a line parallel to y 5 2} x 2 8 is 3 1 m2 5 m1 5 2}3 . Let (x1, y1) 5 (9, 21). y 5 ax 26 5 a(16) 3 2}8 5 a 3 An equation that relates x and y is y 5 2}8 x. y 2 y1 5 m2(x 2 x1) When y 5 6: 1 y 2 (21) 5 2}3 (x 2 9) 3 6 5 2}8 x 1 y 5 2}3 x 1 2 216 5 x 13. The slope of a line perpendicular to y 5 25x 1 7 is 1 1 1 5 2} 5 }5 . m2 5 2} 25 m1 18. a. (5, 91) 80 Let (x1, y1) 5 (10, 2). 60 (3, 55) y 2 y1 5 m2(x 2 x1) 40 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y y 2 2 5 }5 (x 2 10) 20 1 0 y 5 }5 x 0 2 4 6 x b. Sample answer: On the scatter plot, draw a line that 14. When x 5 4 and y 5 28: appears to best fit the data. The line appears to pass through (3, 55) and (5, 91). y 5 ax 28 5 a(4) 91 2 55 36 22 5 a m5} 5} 5 18 523 2 An equation that relates x and y is y 5 22x. y 2 y1 5 m(x 2 x1) When y 5 6: y 2 55 5 18(x 2 3) 6 5 22x y 5 18x 1 1 23 5 x An approximation of the best-fitting line is y 5 18x 1 1. 15. When x 5 22 and y 5 21: c. When x 5 10: y 5 ax y 5 18(10) 1 1 21 5 a(22) y 5 181 1 }5a 2 1 An equation that relates x and y is y 5 }2 x. 19. a. y 100 When y 5 6: 80 1 6 5 }2 x 60 12 5 x (1, 97) (5, 7 5) 0 0 2 4 6 x Algebra 2 Worked-Out Solution Key 97 Chapter 2, continued b. Sample answer: On the scatter plot, draw a line that 26. When p 5 0.5 and t 5 2.5: appers to best fit the data. The line appears to pass through (1, 97) and (5, 75). 75 2 97 p 5 at 0.5 5 a(2.5) 222 m5} 5} 5 25.5 521 4 0.2 5 a y 2 y1 5 m(x 2 x1) An equation for the situation is p 5 0.2t. When t 5 20: y 2 97 5 25.5(x 2 1) p 5 0.2(20) y 5 25.5x 1 102.5 p54 An approximation of the best-fitting line is y 5 25.5x 1 102.5. If the sprayer is operated for 20 minutes, 4 gallons of paint is applied. c. When x 5 10: 27. A scatter plot and possible line of best fit are shown. The y 5 25.5(10) 1 102.5 line appears to pass through (x1, y1) 5 (40, 1.25) and (x2, y2) = (108, 3). y 5 47.5 20. 3 y 3 2 1.25 1.75 m5} 5} ø 0.026 108 2 40 68 y 2 y1 5 m(x 2 x1) x 21 y 2 1.25 5 0.026(x 2 40) y 5 0.026x 1 0.21 An approximation for the best-fitting line is y 5 0.026x 1 0.21. The graph of y 5 23{x 1 1{ 1 3 is the grpah of y 5 {x{reflected in the x-axis, stretched vertically by a factor of 3, and translated left 1 unit and up 3 units. 1 y 1 x 1 21 23. 24. y 1 1 (40, 1.25) 0 40 80 120 x Number of transistors (millions) y 21 1 TAKS Practice (pp. 148–149) x 1. A; 1.80 2 1.53 1.80 } 5 0.15 5 15% x 21 25. Let x represent the number of miles driven and y 2. G; 3 defects 130 batteries 0.12 millimeter per 1000 miles, the slope is 20.12 1000 } 5 20.00012. y 2 y1 5 m(x 2 x1) y 2 8 5 20.00012(x 2 0) y 5 20.00012x 1 8 So, an equation for the situation is y 5 20.00012x 1 8. When y 5 2: 2 5 20.00012x 1 8 26 5 0.00012x 50,000 5 x The tread depth will be 2 millimeters at about 50,000 miles. Algebra 2 Worked-Out Solution Key x defects 6500 batteries } 5 }} 130x 5 6500 + 3 represent the tread depth (in millimeters). When x 5 0, y 5 8. Because the tread depth decreases 98 2 0 x (108, 3) 3 x 5 150 3. C; first enlargement: 4 3 2.5 5 10 6 3 2.5 5 15 second enlargement: 10 3 2.5 5 25 15 3 2.5 5 37.5 4. J; 2 freshmen/sophomores 5 members x freshmen/sophomores 20 members }} a }} 2 + 20 a 5x 8ax Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22. y Speed (gigahertz) 21. y Chapter 2, continued 5. C; 14. F; women in 2005 2 women in 1985 65 2 22 }}} 5 } 5 4.3 10 number of Congresses 6. H; Total pay 5 hourly wage + hours worked 1 commission + sales 115 5 7 + 10 1 0.05s 45 5 0.05s new y-intercept 5 32.6 2 65.2 5 232.6 y 5 2.7x 2 32.6 The slopes are the same, so the lines are parallel. 15. C; 1 V 5 }3:r 2h 1 900 5 s original cone: 16 5 }3:r 2h 7. A; 2(m 2 3) 1 3m 5 9m 1 12 2m 2 6 1 3m 5 9m 1 12 24m 5 18 9 m 5 2}2 8. J; y 5 2.7x 1 32.6 1 new cone: V 5 }3 :(2r)2(2h) V 5 81 }3:r 2h 2 1 V 5 8(16) 5 128 cm3 16. horizontal distance 5 388 inches number of steps 5 5 x 1 y 5 10 width of each step 5 x 1 8 y 5 2x 1 10 5(x 1 8) 5 388 So, m 5 21. 5x 1 40 5 388 The perpendicular line through (1, 23) will have the negative reciprocal slope, m 5 1. y 5 mx 1 b 5x 5 348 x 5 69.6 The distance x between timbers is 69.6 inches. 23 5 1(1) 1 b 24 5 b y5x24lx2y54 9. C; Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 1 V 5 }2 + * + w + h 5 }2 (7)(5)(4) 5 70 in.3 10. G; 3.5c 1 4.5w a 30 11. B; mA 5 mB 5x 1 4 5 3x 1 10 2x 5 6 x53 12. F; 2y 5 10 1 5x 2(0) 5 10 1 5x 25x 5 10 x 5 22 The coordinate of the x-intercept is (22, 0). 13. A; 3y 5 26(x 1 2) 3y 5 26x 2 12 y 5 22x 2 4 The slope is 22. Algebra 2 Worked-Out Solution Key 99