Comments
Description
Transcript
P. 629-630
P. 629-630 continued Lesson 9.3 9.3 Exercises (pp. 629–632) 9.3 Guided Practice (pp. 627–628) Skill Practice 2 2 1. x 1 y 5 9 r53 1. The radius of a circle is the distance from any point on y (0, 3) r2 5 9 the circle to a fixed point called the circle’s center. 1 (3, 0) 1 x (23, 0) (0, 23) y 2 5 2x 2 1 49 2. (0, 7 ) x 2 1 y 2 5 49 2. A line tangent to a circle is perpendicular to the radius at the point of tangency, so their slopes are negative reciprocals of one another. 3. C; x 2 1 y 2 5 9 4. E; x 2 1 y 2 5 36 r2 5 9 r 2 5 36 y r53 2 r56 2 2 6. D; x 1 y 2 5 6 2 r2 5 6 5. A; x 1 y 5 4 r 2 5 49 2 r57 r 54 (7, 0) (27 , 0) r ø 2.4 r52 x 22 7. F; x 2 1 y 2 5 16 8. B; x 2 1 y 2 5 3 r 2 5 16 r2 5 3 (0, 27 ) r ø 1.7 r54 3. x 2 2 18 5 2y 2 x 2 1 y 2 5 18 y (23 r 2 5 18 2 (0, 3 2 , 0) 2 2 r 5 3Ï 2 2 10. x 1 y 5 81 r2 5 1 r 2 5 81 r51 r59 x (3 (0, 23 2 y 2 , 0) and (5, 21). (0, 9) 0.5 3 (1, 0) x 0.5 r 5 Ï 5 2 1 (21) 2 (0, 29) 11. x 2 1 y 2 5 25 12. x 2 1 y 2 5 12 r 2 5 25 r 2 5 12 } r 5 Ï26 } r 5 2Ï 3 r55 r 2 5 26 An equaton for the circle is x 2 1 y 2 5 26. 120 1 5. Slope of radius to point (6, 1): m 5 } 5 } 620 6 1 Slope of tangent line: 2} 5 26 m (0, 5) y (0, 2 (25, 0) 2 3) (5, 0) (22 13. y 2 5 27 2 x 2 2 x 3, 0) (0, 22 2 x 1 9 5 10 486 Algebra 2 Worked-Out Solution Key } r 5 3Ï 3 (0, 3 3) x ø 64.4 You will be in the tower’s range from (4, 9) to (24.4, 9), a distance of {4 2 (24.4){ 5 8.4 miles. r 2 5 40 } x 2 5 19 r 5 2Ï 10 y (3 , 0) 3 (0, 2 (2 10, 0 ) 2 x 22 , 0) 3 y 10 ) 2 (23 ) x 2 1 y 2 5 40 r 2 5 27 2 3 14. x 2 5 2y 2 1 40 2 x 1 y 5 27 x 2 1 y 2 5 10 2 2 3, 0) (0, 25) y 2 1 5 26x 1 36 x 2 1 y 2 5 10 2. (2 21 y 2 1 5 26(x 2 6) y 5 26x 1 37 y 1 x 22 Equation of tangent line: 6. Find the point (x , 9) where x < 0 on the circle. x (29, 0) (0, 21) }} (9, 0) 23 (21, 0) r 5 Ï (5 2 0) 2 1 (21 2 0) 2 } y (0, 1) ) 4. The radius is the distance between the center (0, 0) 2 9. x 1 y 5 1 ) 2 } 2 ( 0, 23 3) x 22 (22 10, 0 ) (0, 22 10 ) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9, Chapter 9, continued 15. x 2 5 15 2 y 2 } 16. y 2 5 2x 2 1 9 } 2 } 2 x 2 1 y 2 5 15 x2 1 y 2 5 9 x 2 1 y 2 5 (5Ï 2 ) x 2 1 y 2 5 (4Ï6 ) r 2 5 15 r2 5 9 x 2 1 y 2 5 25(2) x 2 1 y 2 5 16(6) } r 5 Ï15 (0, 2 r53 15 ) y ( Center: (0, 0); Radius: 12 1 (3, 0) x (23, 0) 15, 0 ) 2 17. 15x 1 15y 5 60 } x 2 1 y 2 5 (6) 2 2 18. 7x 1 7y 5 112 x2 1 y 2 5 4 x 2 1 y 2 5 16 r2 5 4 r 2 5 16 r52 r54 y x 2 1 y 2 5 36 32. r 5 } x 2 1 y 2 5 52 x 2 1 y 2 5 25 1 (2, 0) (24, 0) x 21 1 33. r 5 (4 , 0) x 21 (0, 22) 19. 4x 2 1 4y 2 5 128 (4 (0, } 2, 0 ) 35. r 5 (2 2 2 x 22 2 ) x 6, 0) (0, 22 2 } 2 }} (4 2 0) 2 1 (210 2 0) 2 Ï} } 2 x 2 1 y 2 5 (Ï 116 ) 2 x 2 1 y 2 5 144 x 2 1 y 2 5 64 x 2 1 y 2 5 116 38. r 5 25. r 5 16 x 2 1 y 2 5 22 x 2 1 y 2 5 16 2 x2 1 y2 5 4 x 2 1 y 2 5 256 }} Ï(28 2 0)2 1 (25 2 0)2 } } r 5 Ï 64 1 25 5 Ï 89 } 2 x 2 1 y 2 5 (Ï 89 ) x 2 1 y 2 5 89 } 27. r 5 Ï 15 2 }} Ï(29 2 0)2 1 (2 2 0)2 } 2 x 1y 58 } 36. r 5 r 5 Ï 16 1 100 5 Ï 116 x 1 y 5 12 26. r 5 Ï 2 x 2 1 y 2 5 100 37. r 5 23. r 5 8 } x 2 1 y 2 5 10 2 x 2 1 y 2 5 85 } 24. r 5 2 } x 2 1 y 2 5 (Ï 85 ) r 5 3Ï2 2 ) } r 5 Ï 36 1 64 5 Ï100 5 10 } r 2 5 18 2 6 }} Ï(26 2 0)2 1 (8 2 0)2 } x 2 1 y 2 5 18 2 2 r 5 Ï 81 1 4 5 Ï85 21. A; 3x 2 1 3y 2 5 54 22. r 5 12 6, 0) 22 (22 } x 2 1 y 2 5 20 y 2 6) } x 2 1 y 2 5 (2Ï 5 ) r 5 2Ï6 y }} Ï(2 2 0)2 1 (24 2 0)2 } } r 5 4Ï 2 ( 0, 24 } r 5 Ï 4 1 16 5 Ï20 5 2Ï 5 r 2 5 24 } 2, 0 ) 34. r 5 x 2 1 y 2 5 24 r 2 5 32 (24 } r 5 Ï 16 1 9 5 Ï25 5 5 x 2 1 y 2 5 25 20. 8x 2 1 8y 2 5 192 x 2 1 y 2 5 32 ) }} Ï(24 2 0)2 1 (3 2 0)2 x 2 1 y 2 5 52 (0, 24) 2 }} Ï(0 2 0)2 1 (5 2 0)2 r 5 Ï 25 5 5 y (0, 4) (0, 2) ( 0, 4 Ï(26 2 0)2 1 (0 2 0)2 r56 2 (22, 0) }} r 5 Ï 36 (0,2 15 ) 2 x 2 1 y 2 5 144 31. r 5 (0, 23) (2 Equation: x 2 1 y 2 5 12 2 x 21 21 x 2 1 y 2 5 96 30. The radius should be squared. (0, 3) y 15, 0 ) 2 x 1 y 5 50 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } 29. r 5 4Ï 6 28. r 5 5Ï 2 } 2 x 2 1 y 2 5 (Ï2 ) x 2 1 y 2 5 (Ï 15 ) x2 1 y2 5 2 x 2 1 y 2 5 15 }} 39. r 5 Ï (28 2 0) 2 1 (14 – 0) 2 } } r 5 Ï 64 1 196 5 Ï 260 } x 2 1 y 2 5 (Ï 260 )2 x 2 1 y 2 5 260 Algebra 2 Worked-Out Solution Key 487 Chapter 9, 40. r 5 continued }} Ï(5 2 0)2 1 (212 2 0)2 } 50. 12x 2 1 12y 2 5 192 } 2 51. 2x 2 1 2y 2 5 16 x 1 y 5 16 x2 1 y2 5 8 x 2 1 y 2 5 13 2 r 2 5 16 r2 5 8 x 2 1 y 2 5 169 r54 r 5 Ï25 1 144 5 Ï169 5 13 41. r 5 }}} Ï(211 2 0)2 1 (211 2 0)2 } 2 } r 5 2Ï2 (0, 4) y (0, 2 2 ) r 5 Ï121 1 121 5 Ï 242 } 2 (24, 0) 2 x 1 y 5 242 42. r 5 1 (22 (0, 22 2 ) (0, 24) x 2 1 y 2 5 412 2 y 52. 6x 1 6y 5 0 x 2 1 y 2 5 1681 6y 2 5 26x }} Ï(4 2 0)2 1 (26 2 0)2 2 2 y 5 2x } r 5 Ï16 1 36 5 Ï52 } 2 , 0) } r 5 Ï81 1 1600 5 Ï1681 5 41 } x x }} } 2 , 0) 1 (4, 0) 1 Ï(9 2 0)2 1 (40 2 0)2 43. C; r 5 (2 1 x 2 1 y 2 5 (Ï242 ) 2 y } 1 x 2 x 1 y 5 (Ï52 ) 2 2 x 2 1 y 2 5 52 45. 4x 2 1 y 5 0 2 r 5 49 4x 5 2y 1 x 2 5 2}4 y r57 (0, 7) 420 53. Slope of radius to point (1, 4): m 5 } 5 4 120 1 1 Slope of tangent line: 2} 5 2}4 m 2 y Equation of tangent line: y 1 1 x 21 2 2 1 1 1 17 y 2 4 5 2}4 x 1 }4 (7, 0) (27, 0) y 2 4 5 2}4 (x 2 1) x y 5 2}4 x 1 } 4 (0, 27) 23 2 0 3 54. Slope of radius to point (2, 23): m 5 } 5 2} 220 2 46. 7x 2 1 7y2 5 63 2 (0, 3) y 1 x 1y 59 1 r2 5 9 (3, 0) 1 r53 Equation of tangent line: x 2 y 2 (23) 5 }3 (x 2 2) (23, 0) (0, 23) 47. y 2 2 121 5 2x 2 2 2 5 }3 Slope of tangent line: 2} m 2 y (0, 11) 2 x 1 y 5 121 4 2 13 y 5 }3 x 2 } 3 (211, 0) r 2 5 121 2 y 1 3 5 }3 x 2 }3 3 320 3 55. Slope of radius to point (25, 3): m 5 } 5 2} 5 25 2 0 (11, 0) r 5 11 3 x 1 5 Slope of tangent line: 2} 5 }3 m (0, 211) 2 48. x 1 16y 5 0 49. 3x 5 2y x 2 5 216y 1 5 y 2 3 5 }3 (x 2 (25)) y 2 5 23x x 2 25 5 34 y 5 }3 x 1 } 3 1 Algebra 2 Worked-Out Solution Key 5 y 2 3 5 }3 x 1 } 3 y y 1 488 Equation of tangent line: 2 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 44. y 2 1 x 2 5 49 Chapter 9, continued 22 2 0 1 56. Slope of radius to point (26, 22): m 5 } 5 } 26 2 0 3 Slope of segment from (x , y) to (r , 0): } Ïr 2 2 x2 y20 1 Slope of tangent line: 2} 5 23 m m2 5 } x 2 r 5} x2r Equation of tangent line: } m1m2 5 } x1r + x2r } y 2 (22) 5 23(x 2 (26)) r 2 2 x2 5 }} (x 1 r)(x 2 r) y 1 2 5 23x 2 18 y 5 23x 2 20 (r 1 x)(r 2 x) (x 1 r)(x 2 r) 5 }} 920 9 57. Slope of radius to point (25, 9): m 5 } 5 2} 5 25 2 0 2(x 1 r)(x 2 r) 5 }} (x 1 r)(x 2 r) 5 1 Slope of tangent line: 2} 5 }9 m 5 21 Equation of tangent line: Because m1 and m2 are negative reciprocals, the line segments meet at a right angle. 5 y 2 9 5 }9 (x 2 (25)) 61. y 5 25 y 2 9 5 }9 x 1 } 9 5 (x, y) 106 y 5 }9 x 1 } 9 1 Let x 2 1 y 2 5 r 2 represent the equation of the lefthand } } circle. Because AB bisects OS, the x-coordinate of the point Slope of tangent line: 2} 5 23 m Equation of tangent line: 1 y 2 5 5 23(x 2 15) (x , y) is equal to }2 r. y 2 5 5 23x 1 45 1 When x 5 }2 r: y 5 23x 1 50 59. The circles must lie between the circles that pass through 2 1 }12 r 2 (23, 5) and (26, 2). Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x r 520 1 58. Slope of radius to point (15, 5): m 5 } 5 } 15 2 0 3 Circle that passes through (23, 5): * 5 2y 1 y2 5 r2 } 1 Ï3 2 1 4 *52 } r 2 3 9 1 25 5 r 2 } * 5 Ï3 r y 2 5 }4 r 2 } Ï34 5 r } Ï3 When y 5 } r: 2 } r2 1 y2 5 r2 (23) 2 1 5 2 5 r 2 } Ï3 Circle that passes through (26, 2): r y 5 6} 2 (26) 2 1 22 5 r 2 Problem Solving 36 1 4 5 r 2 62. Perimeter of tower’s range: x 2 1 y 2 5 15 2 } Ï40 5 r Region covered by the tower: x 2 1 y 2 a 15 2 15 2 9 2 1 11 2a So, circles between these two circles have radii r such that 34 < r 2 < 40. 225 81 1 121a Sample answers: x 2 1 y 2 5 35 202a225 x 2 1 y 2 5 36 x 2 1 y 2 5 38 Because the point (9, 11) falls within the radius of the circle, you are in the region served by the tower. 63. Perimeter of feeding range: x 2 1 y 2 5 50 2 60. x 2 1 y 2 5 r 2 y 2 5 r 2 2 x2 } y 5 Ïr 2 2 x2 Slope of segment from (2r, 0) to (x , y): y20 x 2 (2r) } Ïr 2 2 x2 Ïr 2 2 x2 y } Ïr 2 2 x2 } m1 5 } 5 } x1r5 x1r Feeding range: x 2 1 y 2 a 50 (225) 2 1 40 2a50 2 625 1 1600a2500 2225 a0 Because the point (225, 40) is within the radius of the circle, the location is within the bats’ feeding range. Algebra 2 Worked-Out Solution Key 489 Chapter 9, continued 64. D; Perimeter of delivery area: x 2 1 y 2 5 100 2 67. The sprinklers should be placed so that their circular regions intersect at the edge of the flower bed, when y 5 4.5. Free delivery area: x 2 1 y 2 a 1002 1002 752 1 702a x 2 5 36 2 20.25 Because the point (75, 70) is not within the radius of the circle, the house located at (75, 70) is located outside the free delivery area. 65. a. Points A and F : x 2 5 209 20 x x ø 614.5 AF 5 {14.5 2 (214.5){ A B y 5 24 5 29 C D 220 y 4.5 3 x 3 x ø 63.97 x2 y2 62 x 2 1 16 5 225 x 2 5 15.75 (x, 4.5) y x 2 1 y 2 5 225 x 2 1 y 2 5 25 x 2 1 (24) 2 5 15 2 y x 2 1 (4.5) 2 5 62 10,525 ÷ 10,000 The distance between the sprinklers should be about 2(3.97) 5 7.9 feet. 68. a. 40 E F y x 2 1 y 2 5 100 40 x The plane will be in the top most layer for about 29 miles. b. Points B and E: x 2 1 (24) 2 5 10 2 b. Rating of at least 6.0: x 2 1 y 250 x 2 1 16 5 100 Rating of at least 5.7: x 2 1 y 2a225 x 2 5 84 Rating of at least 5.4: x 2 1 y 2a625 x ø 69.2 Rating of at least 5.1: x 2 1 y 2a1225 BE 5 {9.2 2 (29.2){ 5 18.4 c. When x 5 212 and y 5 216: The plane will be above the middle layer for about 18.4 miles. (212) 2 1 (216) 2 5 r 2 144 1 256 5 r 2 c. Points C and D: Because 225 < 400 < 625, the rating will be between 5.4 and 5.7. x 2 1 16 5 25 2 x 59 69. 40-mile transmitter, when y 5 10: x 5 63 Find (x, 10) where x > 0 on the circle x 2 1 10 2 5 40 2. CD 5 {3 2 (23){ 5 6 x 2 5 1600 2 100 The plane will be above the lowest layer for 6 miles. x 2 5 1500 66. The tunnel’s diameter is 8 feet, so its radius is 4 feet, and an equation for its cross-section is x 2 1 y 2 5 4 2. Half the width of the walkway is 3 feet, so let x 5 3. 60-mile transmitter, when y 5 10: Find (x, 10) where x < 0 on the circle x 2 1 10 2 5 60 2. 32 1 y 2 5 42 x 2 5 3600 2 100 y 2 y 5 16 2 9 5 7 x 2 5 3500 y 5 62.65 x ø 259.2 4 ft x y ft Walkway (x, y) 6 ft The height of the tunnel at the center of the walkway is about 4 1 2.65 5 6.65 feet, or about 79.8 inches. Yes, a worker who is 6 feet 2 inches, or 74 inches, could walk down the center of the walkway without ducking. 490 x ø 38.7 Algebra 2 Worked-Out Solution Key The 60-mile transmitter is 80 miles away from 40-mile transmitter. When you enter the 60-mile transmitter range, you will be at a point whose x-coordinate is 80 2 59.2 5 20.8. y (20.8, 10) 20 (38.7, 10) 60 You will be in range of both transmitters for about 38.7 2 20.8 5 17.9 miles. x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 400 5 r 2 x 2 1 (24) 2 5 5 2 Chapter 9, continued 3. (25, 1), (24, 8) At a speed of 60 miles per hour: }}} d 5 Ï (25 2 (24)) 2 1 (1 2 8) 2 d 5 rt 17.9 5 60 t }} 5 Ï (21) 2 1 (27) 2 5 Ï1 1 49 60 min t ø 0.3 h + } 5 18 min h } } } 5 Ï 50 5 5Ï2 You will be in range of both transmitters for about 18 minutes. 1 2 25 1 (24) 118 9 M } ,} 5 1} , } 5 (24.5, 4.5) 2 2 22 2 29 4. (1, 2), (7, 1) Mixed Review for TAKS }} d 5 Ï (1 2 7) 2 1 (2 2 1) 2 70. D; y }} 5 Ï (26) 2 1 12 5 Ï36 1 1 5 Ï37 2 1 } } 3 211 ,} 5 4, } 5 (4, 1.5) M1 } 2 2 2 1 22 117 x 8x 2 2y 5 18 5. (26, 25), (21, 8) }}} 212x 1 3y 5 227 d 5 Ï (26 2 (21)) 2 1 (25 2 8) 2 }} Because the graphs of the equations are the same line, there is an infinite number of solutions. 71. H; 1 2 26 1 (21) } 25 1 8 3 M } ,} 5 1} , } 5 (23.5, 1.5) 2 2 22 2 27 }} d 5 Ï (3 2 6) 2 1 (22 2 5) 2 } 5 Ï52 122 }} 5 Ï (23) 2 1 (27) 2 5 Ï9 1 49 5 Ï58 } 5 Ï 29 }} } }} RS 5 Ï(21 2 4)2 1 (24 2 2)2 }} 5 Ï(25) 1 (26) 2 2 } 5 Ï 61 PS 5 Ï(21 2 (23)) 1 (24 2 1) 2 7. Focus: (0, 3); p 5 3 5 Ï22 1 (25)2 y 2 5 4px x 2 5 4(3) y 5 12 y y 2 5 4(22) x 5 28x x 2 5 4py 2 x 2 5 4(24)y 5 216y 11. Focus: (0, 5); p 5 5 } } } } } Perimeter P 5 Ï 29 1 Ï5 1 Ï 61 1 Ï 29 ø 5.4 1 2.2 1 7.8 1 5.4 5 20.8 units Quiz 9.1–9.3 (p. 632) y 2 5 4px x 2 5 4(5) y 5 20y y 2 5 4(21) x 5 24x 2 2 13. x 1 y 5 4 14. x 2 1 y 2 5 64 r2 5 4 r 2 5 64 r52 r58 (0, 8) y (0, 2) y }}} d 5 Ï (4 2 8) 1 (23 2 (27)) 2 2 }} } 12. Focus: (21, 0); p5 21 x 2 5 4py 1. (4, 23), (8, 27) 5 Ï (24) 1 (4) 10. Focus: (0, 24); p 5 24 2 y 5 4(6) x 5 24x 5 Ï 29 2 8. Focus: (22, 0); p 5 22 x 2 5 4py y 5 4px } 1 (22, 0) 2 } } 5 Ï16 1 16 5 Ï 32 5 4Ï 2 23 1 (27) } 9 3 9. Focus: (6, 0); p 5 6 }}} 2 } M 1} ,} 5 }, } 5 (4.5, 1.5) 2 2 2 12 22 3 1 6 22 1 5 } QR 5 Ï(4 2 2)2 1 (2 2 3)2 5 Ï22 1 (21)2 5 Ï5 1 418 } 6. (3, 22), (6, 5) }} PQ 5 Ï(2 2 (23))2 1 (3 2 1)2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 Ï (25) 2 1 (213) 2 5 Ï25 1 169 5 Ï194 (2, 0) 1 x (28, 0) 2 (0, 22) (8 , 0) 2 x 2 M } ,} 5 (6, 25) 2 2 2. (22, 5), (4, 9) (0, 28) }} d 5 Ï (22 2 4) 2 1 (5 2 9) 2 }} 5 Ï (26) 2 1 (24) 2 } } } 5 Ï36 1 16 5 Ï 52 5 2Ï13 M 1} ,} 5 (1, 7) 2 2 2 22 1 4 5 1 9 Algebra 2 Worked-Out Solution Key 491 Chapter 9, continued 15. x 2 1 y 2 5 20 16. x 2 1 y 2 5 75 2 r 5 20 r 5 75 } } r 5 5Ï 3 r 5 2Ï 5 (0, 2 5 ) y (0, 5 (2 2 5 , 0) 5 (5 x (25 3 , 0) (0, 25 x 2 1 y 2 5 18 2 2 r 5 16 (0, 3 2 5. 7x 2 1 7y 2 5 105 4. 0.5x 2 1 0.5y 2 5 12 x 2 1 y 2 5 24 x 2 1 y 2 5 15 y ) 1 (4, 0) x (23 2 , 0) (3 2 , 0) 1 x (0, 23 (0, 24) 19. Jupiter’s orbit: r 5x 1y 3 2 144 96 } 1 2 Xmax 2 Xmin Ymax 2 Ymin }} 5 } 5 } ) r 5 3Ï 2 (0, 4) y 2 272axa72, 248aya48 r 5 18 r54 1 3 18. 6x 2 1 6y 2 5 108 x 2 1 y 2 5 16 (24, 0) 3 , 0) 23 ) 17. 3x 2 1 3y 2 5 48 y ) 3 x (0, 22 3 5 , 0) 2 (22 3. x 2 1 y 2 5 576 2 2 ) 29axa9, 26aya6 29axa9, 26aya6 Xmax 2 Xmin 18 3 }} 5 } 5 } 12 2 Ymax 2 Ymin }} 5 } 5 } Xmax 2 Xmin Ymax 2 Ymin 18 12 3 2 6. 16x 2 1 16y 2 5 9 9 x2 1 y2 5 } 16 2 r 2 5 (350) 2 1 (370) 2 r 2 5 122,500 1 136,900 r ø 509 Because 509 < 650, KY Cygni would contain Jupiter’s orbit. 23axa3, 22aya2 Graphing Calculator Activity 9.3 (p. 633) }} 5 } 5 } 1. x 2 1 y 2 5 144 Xmax 2 Xmin Ymax 2 Ymin 6 4 3 2 Lesson 9.4 9.4 Guided Practice (pp. 635–636) y2 x2 1. } 1 } 5 1 9 16 y a 2 5 16 (0, 3) b2 5 9 (4, 0) } 224axa24, 216aya16 Vertices: (6Ï16 , 0) 5 (64, 0) Xmax 2 Xmin Ymax 2 Ymin Co-vertices: } (0, 6Ï9 ) 5 (0, 63) 48 32 3 2 }} 5 } 5 } c 2 5 a 2 2 b 2 5 16 2 9 5 7 2. x 2 1 y 2 5 80 } c 5 Ï7 } Foci: (6Ï7 , 0) 215axa15, 210aya10 Xmax 2 Xmin Ymax 2 Ymin 30 20 3 2 }} 5 } 5 } 492 Algebra 2 Worked-Out Solution Key 1 (2 7, 0) 1 ( 7, 0) (24, 0) (0, 23) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. r 2 5 259,400 P. 637-639 Chapter 9, continued 2 y x2 2. } 1 } 5 1 49 36 (0, 7) a 2 5 49 b 2 5 36 y (26, 0) 2 (0, 13 ) Vertices: (0, 67) Co-vertices: (66, 0) 2 2 2 (6, 0) x 2 c 5 a 2 b 5 49 2 36 5 13 } c 5 Ï13 (0, 2 } Foci: (0, 6Ï13 ) 13 ) Skill Practice y 9y 2 225 1. An ellipse is the set of all points P such that the sum of (0, 5) }1}51 the distances between P and two fixed points, called the foci, is a constant. (0, 4) y2 25 x2 9 2. If the vertices of an ellipse are located at (6a, 0) or }1}51 1 a 2 5 25 b2 5 9 (23, 0) Vertices: (0, 65) c 2 5 25 2 9 5 16 (0, 25) } c 5 Ï16 5 4 Foci: (0, 64) 4. Vertex: (7, 0); Co-vertex: (0, 2) a57 a 2 5 49 b52 b2 5 4 y2 4 }1}51 5. Vertex: (0, 6); Co-vertex: (25, 0) a 2 5 36 a56 b 2 5 25 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b 5 25 2 y x }1}51 36 25 2 6. Vertex: (0, 8); Focus: (0, 23) a58 a 2 5 64 c 5 {23{ 5 3 c2 5 9 c2 5 a2 2 b2 9 5 64 2 b 2 7. Vertex: (25, 0); Focus: (3, 0) 9 5 25 2 b a 2 5 25 2 c 59 c2 5 a2 2 b2 2 2 b 5 25 2 9 5 16 y2 x2 }1}51 16 25 y2 x2 3. } 1 } 5 1 4 16 a 2 5 16 a54 b2 5 4 b52 c 2 5 16 2 4 5 12 } c 5 2Ï3 Vertices: (64, 0) Co-vertices: (0, 62) } Foci: (62Ï3 , 0) y (0, 2) (24, 0) 1 (22 3, 0) y2 x2 4. } 1 } 5 25 1 4 x2 100 (2 (4, 0) 3, 0) 1 x (0, 22) y y2 25 (0, 5) (210, 0) }1}51 a 2 5 100 a 5 10 b 2 5 25 b55 c 2 5 100 2 25 5 75 } } c 5 Ï75 5 5Ï3 Vertices: (610, 0) Co-vertices: (0, 65) 2 (10, 0) (5 3, 0) (25 3, 0) 2 x (0, 25) y2 x2 5. } 1 } 5 1 49 9 y2 64 c53 (0, 6a) and the co-vertices are located at (0, 6b) or (6b, 0), you know that c2 5 a2 2 b2, so you can determine the value of c. The foci will then be located at (6c, 0) or (0, 6c). } }1}51 a 5 {25{ 5 5 x Foci: 1 65Ï3 , 0 2 b 2 5 64 2 9 5 55 x2 55 (3, 0) 1 (0, 24) Co-vertices: (63, 0) x2 49 The area is A 5 :(175)(125) ø 68,722 square meters. 9.4 Exercises (pp. 637–639) (0, 27) 3. 25x 2 1 9y 2 5 225 25x 2 225 350 8. The major axis is vertical, with a 5 } 5 175 and 2 250 } b 5 2 5 125. y2 y2 x2 x2 }2 1 }2 5 1, or } 1 } 5 1 30,625 15,625 175 125 (0, 7) 2 a 5 49 a57 b2 5 9 b53 y (0, 2 2 c 2 5 49 2 9 5 40 10 ) (3, 0) 2 x } c 5 2Ï10 (23, 0) Vertices: (0, 67) Co-vertices: (63, 0) (0, 22 10 ) (0, 27) } Foci: 1 0, 62Ï10 2 Algebra 2 Worked-Out Solution Key 493 continued 2 y x2 6. } 1} 5 1 144 64 11. 16x 2 1 9y 2 5 144 y a 2 5 144 a 5 12 b 2 5 64 b58 (0, 8) (24 5 , 0) (12, 0) 3 2 c 5 144 2 64 5 80 (4 5 , 0) } c 5 4Ï5 (212, 0) (0, 28) Vertices: (612, 0) Co-vertices: (0, 68) } Foci: 1 64Ï5 , 0 2 y2 x2 7. } 1 } 5 1 81 400 y 2 a 5 400 a 5 20 b 2 5 81 b59 4 2 c 5 400 2 81 5 319 c 5 Ï319 Vertices: (620, 0) ( 319, 0) x (2 319, 0) (0, 29) Co-vertices: (0, 69) } Foci: (6Ï 319 , 0) y2 x2 8. } 1 } 5 1 225 36 (0, 3 a 2 5 225 y 21 ) (0, 15) 2 b 5 36 c 5 225 2 36 5 189 } c 5 3Ï21 3 (26, 0) (6, 0) Vertices: (0, 615) Co-vertices: (66, 0) } Foci: (0, 63Ï 21 ) (0, 23 21 ) (0, 215) 9. 4x 2 1 y 2 5 36 x2 9 y y2 36 (0, 6) }1}51 2 a 5 36 2 b 59 a56 b53 2 c 5 36 2 9 5 27 (27, 0) (0, 3 2 (23, 0) 3) a 5 49 a57 b 2 5 25 b55 c 2 5 49 2 25 5 24 } c 5 2Ï 6 Vertices: (67, 0) Co-vertices: (0, 65) } Foci: (62Ï6 , 0) 2 (0,23 (0, 26) c 5 3Ï3 a 2 5 81 a59 b2 5 9 b53 c 2 5 81 2 9 5 72 Co-vertices: (63, 0) c 5 6Ï 2 Foci: (0, 63Ï 3 ) y2 9 (0, 2 a 59 a53 b51 c2 5 9 2 1 5 8 } c 5 2Ï2 Vertices:(0, 63) (21, 0) 1 2) (1, 0) x 22 (0, 22 2) (0, 23) } x 2) y2 x2 15. In the equation } 1 } 5 1, the value of a2 is 16 16 4 and corresponds to the y-axis, not the x-axis. Therefore, the vertices should be located at (0, 64) and the co-vertices should be located at (62, 0). y 1 (22, 0) (2, 0) x 2) (3, 0) Foci: 1 0, 66Ï 2 2 (0, 24) Algebra 2 Worked-Out Solution Key (0, 6 (0, 29) 21 494 2 y 24 (0, 26 (0, 4) x (0, 28) (23, 0) Co-vertices: (61, 0) Foci: (0, 62Ï 2 ) (6, 0) (26, 0) 22 } (0, 3) }1}51 (10, 0) (210, 0) 2 Co-vertices: (63, 0) y b2 5 1 (0, 25) (0, 9) Vertices: (0, 69) 10. 9x 2 1 y 2 5 9 x y } } 6, 0) (0, 8) Vertices: (0, 66) 2 6, 0) y2 x }1}51 81 9 3) } x2 1 (22 2 x 7) (7, 0) (2 22 14. 72x 2 1 8y 2 5 648 (3, 0) (0, 2 2 2 a 2 5 100 a 5 10 2 b 5 64 b58 c 2 5 100 2 64 5 36 c56 Vertices: (610, 0) Co-vertices: (0, 68) Foci: (66, 0) x 23 x y y2 x2 }1}51 64 100 b56 2 (3, 0) (0, 5) 13. 16x 2 1 25y 2 5 1600 a 5 15 7) 1 (0, 24) y2 x }1}51 25 49 (20, 0) (0, (23, 0) 2 24 } 1 12. 25x 2 1 49y 2 5 1225 (0, 9) (220, 0) (0, 4) a 2 5 16 a54 2 b 59 b53 c 2 5 16 2 9 5 7 } c 5 Ï7 Vertices: (0, 64) Co-vertices: (63, 0) } Foci: (0, 6Ï7 ) x 3 y y2 x2 }1}51 16 9 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9, Chapter 9, continued 2 y } x2 16. In the equation } 1 } 5 1, a2 5 3 and a 5 Ï 3 . 3 2 23. Vertex: (0, 8) } Therefore, the vertices should be located at (0, 6}Ï3 ) instead of (0, 63). Likewise, b2 5 2 and}b 5 Ï2 , so the co-vertices should be located at (6Ï 2 , 0) instead of (62, 0). ( 0, y 3) a58 a 2 5 64 c56 c 2 5 36 36 5 64 2 b 2 b 2 5 64 2 36 5 28 y2 64 x2 28 1 ( Focus: (0, 6) }1}51 2, 0 ) 1 x 24. Vertex: (4, 0) 25. Vertex: (0, 9) } } Focus:(Ï 7 , 0) (2 2, 0 ) ( 0,2 } c 57 7 5 16 2 b 2 b 5 16 2 7 5 9 a55 a 2 5 25 b53 b2 5 9 y2 9 }1}51 y2 9 x2 16 c53 } a 2 5 25 2 c 59 a 2 5 100 9 5 25 2 b 2 b56 b 2 5 36 b 5 25 2 9 5 16 x2 36 y2 100 b59 b 2 5 81 y2 81 }1}51 b54 b 2 5 16 y2 x2 }1}51 36 16 a 2 5 144 2 b 5 121 x2 16 30. Co-vertex: (23Ï 5 , 0) Focus: (0, 6) } b 5 3Ï 5 x2 45 2 b 5 256 b 2 5 175 2 c 5 15 c 2 5 225 y2 81 x2 400 } 33. Co-vertex: (2Ï 15 , 0) Focus: (0, 14) } 2 b 5 2Ï15 b 2 5 60 2 c 5 14 c 2 5 196 b 5 225 c 5 64 2 y2 225 y2 175 }1}51 64 5 a 2 2 225 x2 289 225 5 a 2 2 175 400 5 a 2 } 1} 5 1 289 5 a } b 5 5Ï7 b 5 45 2 c58 a 2 5 400 } 31. Co-vertex: (0, 25Ï 7 ) Focus: (215, 0) c 5 36 b 5 15 Co-vertex: (0, 216) y2 7 2 Focus: (28, 0) 22. Vertex: (20, 0) 16 5 a 2 }1}51 32. Co-vertex: (0, 15) y2 x }1}51 144 121 y2 256 y2 121 81 5 a 2 x2 400 9 5 a2 2 7 36 5 a 2 2 45 Co-vertex: (11, 0) }1}51 c2 5 9 48 5 169 2 b 2 c56 21. Vertex: (0, 12) b 5 16 c53 c 5 48 } a 2 5 36 a 5 20 b2 5 7 2 }1}51 a56 b 5 11 c 5 4Ï 3 } b 5 Ï7 b 5 169 2 48 5 121 Co-vertex: (4, 0) a 5 12 } Focus: (23, 0) 2 a 5 169 a 5 13 x2 169 y2 16 } 2 20. Vertex: (0, 26) b 2 5 16 2 12 5 4 29. Co-vertex: (0, Ï 7 ) } a 2 5 196 c 2 5 12 c 5 2Ï 3 x2 4 Focus: (24Ï3 , 0) a 5 14 } }1}51 28. Vertex: (13, 0) Co-vertex: (0, 29) x2 196 y2 16 } 1} 5 1 19. Vertex: (14, 0) a 2 5 16 a54 12 5 16 2 b 2 2 x2 25 y2 81 Focus: (0, 22Ï3 ) a 5 10 }1}51 b 2 5 81 2 32 5 49 27. Vertex: (0, 24) Focus: (3, 0) Co-vertex: (6, 0) c 2 5 32 c 5 4Ï 2 }1}51 26. Vertex: (25, 0) a55 } x2 49 }1}51 18. Vertex: (0, 210) a 2 5 81 a59 32 5 81 2 b 2 2 Co-vertex: (0, 23) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 c 5 Ï7 17. Vertex: (5, 0) x2 25 a 2 5 16 a54 3) Focus: (0, 24Ï2 ) }1}51 196 5 a 2 2 60 256 5 a 2 x2 60 y2 256 }1}51 Algebra 2 Worked-Out Solution Key 495 continued 34. Co-vertex: (232, 0) Focus: (0, 24) Co-vertex: (28, 0) b 2 5 1024 b 5 32 2 c 5 24 4y x2 41. } 1 } 5 0 25 75 35. B; Vertex: (0, 212) c 5 576 576 5 a 2 2 1024 1600 5 a 2 a 2 5 144 a 5 12 2 b58 2 36. x 1 y 5 64 Focus: (0, 23) Directrix: y 5 3 (0, 8) y 4y 2 3x 2 42. } 1 } 5 1 400 48 The equation is a circle. r 2 5 64 (28, 0) r58 2 x2 16 (0, 10) y 2 y 100 }1}51 (8, 0) x 22 The equation is an ellipse. a 2 5 100 2 (0, 28) 37. 25x 2 1 81y 2 5 2025 y2 25 x2 81 (0, 5) }1}51 The equation is an ellipse. b 5 16 x b54 y2 x2 43. } 1 } 5 4 64 64 (0, 16) y x 2 1 y 2 5 256 The equation is a circle. y y59 The equation is a parabola. 3 (0, 216) 44. 16 x 2 1 10 y 2 5 160 Directrix: y 5 9 x5 The equation is a parabola. 1 22 (0, 4) y y2 x2 }1}51 16 10 y y 2 5 2x ( 1, 2 0 ) 2 a 5 16 x 21 1 The equation is an ellipse. 4p 5 2 b 2 5 10 ( 10, 0) x 21 a54 } b 5 Ï 10 (2 1 p 5 }2 10, 0) (0, 24) 2 y x2 45. } 1 } 5 1 25 9 2 The conic changes from an ellipse elongated along the y-axis to a circle to an ellipse elongated along the x-axis. 1 Directrix: x 5 2}2 40. 30x 2 1 30y 2 5 480 x 2 1 y 2 5 16 (0, 4) y The equation is a circle. 2 r 5 16 r54 (24, 0) 1 (4, 0) x 21 (0, 24) 496 x (0, 29) 39. 65y 2 5 130x (16, 0) 24 r 5 16 Focus: (0, 29) 1 4 x 3 4p 5 236 1 Focus: }2, 0 (216, 0) r 2 5 256 p 5 29 x (0, 210) (0, 25) x 5 236y (4, 0) 22 (9, 0) 22 38. 36y 1 x 5 0 2 (24, 0) a 5 10 y 2 (29, 0) 2 2 (0, 23) p 5 23 }1}51 2 x 1 4p 5 212 y 1600 x 1024 1 The equation is a parabola. }1}51 2 2 y53 4 x2 } 5 2} y 25 75 x 2 5 212y b 5 64 y2 144 x2 64 y Algebra 2 Worked-Out Solution Key y x2 y2 1 51 9 25 1 1 x2 y2 1 51 9 4 x2 y2 1 51 9 9 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9, Chapter 9, continued y2 x2 46. Sample answer: } 1 } 5 1 49 64 49. Largest field: Rewrite the equation as two functions: y2 49 x2 64 }512} 49x2 49x A viewing window that does not distort the shape of the ellipse is 212axa12 and 28aya8. The length of 2 Sum of distances from (a, 0) to the two foci: }} 5 (a 2 c) 1 (a 1 c) 5 2 a }} }} 5 Ï c 1 b 1 Ï c 1 b 5 2Ï c 1 b 2 a 5 14 b58 a2 5 196 b2 5 64 x2 196 0) 2 1 (0 2 b) 2 1 Ï (c 2 0) 2 1 (0 2 b) 2 Ï(c 2} } } 2 2b 5 16 y2 64 }1}51 Sum of the distances from (0, b) to the two foci: c 2 5 a2 2 b2 c 2 5 196 2 64 5 132 2 } c 5 2Ï 33 By definition of an ellipse, the two sums of the distances are equal. } Foci: 1 62Ï 33 , 0 2 } 2a 5 2Ï c 2 1 b 2 } } Distance between the foci 5 21 2Ï33 2 5 4Ï 33 } } a 5 Ïc2 1 b2 a 5c 1b b 5 55 50. 2a 5 28 }} Ï(a 2 c)2 1 (0 2 0)2 1 Ï(a 1 c)2 1 (0 2 0)2 2 2b 5 110; An inequality for the possible areas (in square meters) of the fields is 11,700aAa22,500. Foci: (c, 0) and (2c, 0) 2 a 5 67.5 A 5 :(67.5)(55) ø 11,663 y2 x2 47. }2 1 }2 5 1 b a 2 2a 5 135; y2 x2 } 1 }2 5 1 2 (67.5) (55) the y-axis is }3 the length of the x-axis. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b 5 77.5 Smallest field: 2 y 5 6 49 2 } 64 2 2b 5 155; A 5 :(77.5)(92.5) ø 22,521 } 2 a 5 92.5 y2 x2 } 1 }2 5 1 2 (92.5) (77.5) y2 5 49 2 } 64 Î 2a 5 185; The foci are about 4Ï33 centimeters apart. 0.59 y 51. 2 Sun a2 2 b2 5 c2 35.3 y (0, b) x (2a, 0) Comet (a, 0) (2c, 0) (c, 0) x (0, 2b) The sum of the two distances is 2a. 2a 5 35.3 1 0.59 a 5 17.945 Problem Solving 48. Major axis: 81 km; minor axis: 12 km y (− 40.5, 0) c 2 5 a2 2 b2 (40.5, 0) (0, 6) (0, − 6) x The distance from the origin to a focus c is about 17.945 2 0.59 5 17.355. 12 km 81 km 2 a 5 40.5 a 5 1640.25 b56 b 2 5 36 y2 x2 }1}51 36 1640.25 A 5 :F ab 5 :F (40.5)(6) ø 763 b2 5 a2 2 c 2 b2 5 (17.945) 2 2 (17.355) 2 b2 ø 322.023 2 301.196 b2 ø 20.827 Sample answer: x2 y2 1} 5 1. An equation for the orbit is } 322 20.8 The area of the ellipse is about 763 square kilometers. Algebra 2 Worked-Out Solution Key 497 Chapter 9, 52. continued 55. G; y 1 A 5 }2bh A (− 225, 0) B (225, 0) 1 45m7n13 5 }2b(15m10n9) x 15 45m7n13 5 } m10n9b 2 450 mi. 2 + 45m7n13 15 + m n 6n4 } 5b m3 } 5b 10 9 a. The sum of the distances from any point on the ellipse to each airport remains constant, in this case 600 miles. } b. The length of AB is 450 miles. Foci: (6225, 0) Problem Solving Workshop 9.4 (p. 640) The airports’ coordinates are (6225, 0). This is equal to the length of the major axes, 2a. 2a 5 600 a 5 300 Vertices: (6300, 0) c 2 5 a2 2 b2 d. (225) 2 5 (300) 2 2 b2 b2 5 90,000 2 50,625 b2 5 39,375 y2 x2 An equation for the ellipse is } 1} 5 1. 39,375 90,000 53. As the painting slides down the wall, the two triangles remain similar. So, corresponding side lengths are proportional. y 2 x (x, y) 6 y x d d 6 x 2 }5} 1. y 5 2 x1 5 0 x2 5 20 x3 5 40 x4 5 60 x5 5 80 x6 5 100 x7 5 120 x8 5 140 x9 5 160 x10 5 180 x2 4 } y1 5 100 y2 ø 99.5 y3 ø 98.0 y4 ø 95.4 y5 ø 91.7 y6 ø 86.6 y7 5 80 y8 ø 71.4 y9 5 60 y10 ø 43.6 A ø 20( y1 1 y2 1 y3 1 y4 1 y5 1 y6 1 y7 1 y8 1 y9 1 y10) ø 20(826.2) 5 16,524 An estimate for the area of the ellipse is about 4(16,524) 5 66,096 m2. This is a better estimate; more rectangles means less area that extends beyond the ellipse. 2. Use rectangles whose widths are smaller than the previous set of rectangles to obtain a closer and closer approximation of the ellipse’s area. 2d 5 6x d 5 3x 3. a. 2a 5 250; a 5 125 Using the Pythagorean Theorem: 2b 5 200; b 5 100 d 2 1 y 2 5 62 2 2 x2 4 y2 36 x2 125 y2 An equation of the ellipse is }2 1 }2 5 1. (3x)2 1 y 2 5 36 9x 1 y 5 36 }1}51 x2 y2 An equation for the path of point (x, y) is } 1} 5 1. 36 4 Mixed Review for TAKS 54. C; Volume of cylinder 5 :r 2h 5 :(8.5)2(18) ø 4086 in.3 Volume of 1 candle 5 *wh 5 3(2)(5) 5 30 4086 Number of candles 5 } ø 136 30 She can make 136 candles. 498 Î100 2 } c. By definition of an ellipse, the plane flies 600 miles. Algebra 2 Worked-Out Solution Key y2 16x2 b. } 1 } 5 1002 1 25 16x 2 2 y 5 1002 2 } 25 Î 100 } 16x2 y 5 1002 2 } 25 Sample answer: x1 5 0 y1 5 100 x2 5 25 y2 ø 98.0 x3 5 50 y3 ø 91.7 x4 5 75 y4 5 80 x5 5 100 y5 5 60 A ø 25 ( y1 1 y2 1 y3 1 y4 1 y5) ø 25(429.7) ø 10,743 An estimate for the area of the ellipse is about 4(10,743) 5 42,972 square meters. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 2 } (450) 5 225 6n4 m The length of the triangle’s base is }3 units. Chapter 9, continued Mixed Review for TEKS (p. 641) 4. G; e m o H 1. A; x2 5 4py i m 8 (11.2)2 5 4p(6) 5.2 ø p i m 6 1 4m i The focus is about 5.2 inches from the vertex. ea B ch Total driving: 16 miles east, 12 miles south 2. G; } x 2 1 y 2a162 2 5. C; y An inequality describing the region covered by the radar is x 2 1 y 2a256. The coordinates of the second boat are (4, 6). B (16, 2) 1 A (− 10, 1) O (0, 0) y (0, 16) (x, 6) (16, 0) 1 x 2} 5 10 m } 210 1 0 1 1 0 1 Midpoint of AO: 1 } ,} 5 25, }2 2 2 2 2 1 (0, −16) } Perpendicular bisector of AO: x 2 1 (6)2 5 256 1 x 2 5 220 y 2 }2 5 10(x 2 (25)) } x 5 62Ï55 1 y 2 }2 5 10x 1 50 } The boat will be in range until (22Ï55 , 6). } Distance from (4, 6) to (22Ï55 , 6): }}} } 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Ï (4 2 (22Ï55 )) 101 }} } 2 1 (6 2 6)2 5 Ï (4 1 2Ï55 ) ø 18.8 The second boat will be in radar range of the fishing boat for about 18.8 miles. 3. D; y 5 10x 1 } 2 220 1 } Slope of BO: m 5 } 5 }8 16 2 0 1 2} 5 28 m } 16 1 0 2 1 0 Midpoint of BO: 1 } ,} 5 (8, 1) 2 2 2 } Perpendicular bisector of BO: y 2 1 5 28(x 2 8) y 2 1 5 28x 1 64 y 5 28x 1 65 Mercury 29 44 Sun 44 1 29 5 2a Intersection of perpendicular bisectors: 73 5 2a 101 10x 1 } 5 28x 1 65 2 36.5 5 a 29 c 5 a 2 29 5 36.5 2 29 5 7.5 2 18x 5 } 2 2 c 5a 2b 29 x5} 36 7.52 5 36.522 2 b2 101 527 y 5 101 } 1} 5} 2 9 36 2 29 b2 5 1332.25 2 56.25 b2 5 1276 b ø 35.7 x 2 120 1 1 } Slope of AO: m 5 } 5} 5 2} 210 2 0 210 10 (4, 6) (−16, 0) 2 } The straight-line distance is 20 miles. x 1 y a256 2 } 5 Ï 162 1 122 5 Ï256 1 144 5 Ï400 5 20 x2 1 y 2 ar 2 The center of the circle is 1 } ,} . 36 9 2 29 527 x2 36.5 y2 An equation for Mercury’s orbit is }2 1 }2 5 1. 35.7 Distance from 1 } , } to (0, 0): 36 9 2 29 527 }} d5 Ï1 2936 2 0 2 1 1 9 } 2 527 }20 2 2 ø 58.6 The radius of the skid mark is about 58.6 meters. } }} v 5 Ï 9.8mr ø Ï9.8(0.7)(58.6) ø 20.05 The car was traveling about 20 meters per second. Algebra 2 Worked-Out Solution Key 499 Chapter 9, continued 3. 4y2 2 9x2 5 36 6. G; 2 O B A (0, 6 x a2 5 9, a 5 3 (3, − 2) b2 5 4, b 5 2 (0, 2 } c 5 Ï 13 x (0, 23) 13 ) Vertices: (0, 63); 3 } Foci: (0, 6Ï13 ); Asymptotes: y 5 6}2 x 1 2 5 2}3 Slope of tangent line at point A: 2} 3 } 4. Foci: (63, 0) 2 2 5 2}3 Slope of BO: } 320 } 22 2 0 5. Foci: (0, 610) c 5 3, c2 5 9 3 1 Slope of tangent line at point B: 2}2 5 }2 2}3 Because the slopes of the two tangent lines are negative reciprocals, the two lines are perpendicular. x2 5 4py c 5 10, c 2 5 100 Vertices: (61, 0) Vertices: (0, 66) a 5 1, a2 5 1 a56 c2 5 a2 1 b2 c2 5 a2 1 b2 2 100 5 36 1 b2 8 5 b2 64 5 b2 y 2.25 5 p a2 5 36 9511b 2 y2 36 x2 2 } 51 8 (6)2 5 4p(4) x2 64 }2}51 6. a 5 3 cm, c 5 5 cm The focus is at (0, 2.25), so the wire should be placed about 2.3 inches from the bottom. b2 5 c2 2 a2 b 2 5 25 2 9 5 16 b54 Lesson 9.5 y2 9.5 Guided Practice (p. 644) 3 (0, 7) a2 5 16 a54 b2 5 49 b57 y2 y (24, 0) 3 y2 9 }2}51 16 9 (4, 0) (2 65, 0) c 5 Ï65 ( 65, 0) (0, 27) y ø 23.75 } Foci: (6Ï 65 , 0); Vertices: (64, 0) The mirror has a height of about 23 2 (23.75) 5 0.75 centimeters. 7 Asymptotes: y 5 6}4 x 9.5 Exercises (pp. 645–648) (0, a 5 36 a56 b2 5 1 b51 y 37 ) 4 (21, 0) 2 Skill Practice (0, 6) } x (0, 2 The transverse axis is vertical. } Foci: (0, 6Ï 37 ); Vertices: (0, 66); 6 Asymptotes: y 5 6}1 x 5 66x Algebra 2 Worked-Out Solution Key the vertices of the hyperbola. The line segment joining these two points is the transverse axis. 2. All ellipse is the set of all points such that the sum of the (0, 26) c 5 Ï37 1. The points (22, 0) and (2, 0) in the graph at the right are (1, 0) 24 c 5 36 1 1 5 37 25 16 }5} y 2 ø 14.06 The transverse axis is horizontal. y2 2. } 2 x2 5 1 36 y2 9 x 22 } 32 4 When x 5 3: }2 2 }2 5 1 4 c2 5 16 1 49 5 65 2 x2 4 }2 2 }2 5 1 y2 x2 1. } 2 } 5 1 49 16 500 (0, 3) (2, 0) 21 c 5 9 1 4 5 13 7. 2 (22, 0) 2 23 2 0 3 } Slope of AO: 5 } 5 }2 22 2 0 13 ) 37 ) distances between any point and the foci is a constant. A hyperbola is the set of all points such that the difference of the distances between any point and the foci is a constant. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (− 2, −3) y y2 x2 }2}51 4 9 y P. 655-656 Chapter 9, continued 13. 4x2 2 y2 2 16x 2 4y 2 4 5 0 3. (x 1 4)2 5 28( y 2 2) h 5 24, k 5 2 A 5 4, B 5 0, C 5 21 Parabola B2 2 4AC 5 0 2 4(4)(21) 5 16 Because B2 2 4AC > 0, the conic is a hyperbola. Directrix: y 5 4 4(x 2 2)2 2 ( y 1 2)2 5 16 4. (x 2 2)2 1 ( y 2 7)2 5 9 ( y 1 2)2 16 }2 }51 h 5 2, k 5 22 Center: (2, 22) 2 a52 2 b54 a 54 b 5 16 y 2 Center: (2, 7) (4, 22) x (2, 22) Hyperbola B2 2 4AC 5 0 2 4(4)(6.25) 5 2100 Center: (6, 21) Because A Þ C and B2 2 4AC < 0, the path is an ellipse. 4x2 1 6.25y2 2 12x 2 16 5 0 4(x2 2 3x) 1 6.25y2 5 16 y2 4 b2 5 1 b51 (6 , )0 (6 , 21) 22 x (11, 21) 21 (1, 21) (6, 22) } h 5 1.5, k 5 0 Co-vertices: (1.5, 2) and (1.5, 22) a55 c 5 Ï 26 ø 5.1 Foci: (0.9, 21) and (11.1, 21) y Center: (1.5, 0) Vertices: (21, 0) and (4, 0) a 5 25 5 26 }1}51 b52 y c2 5 a2 1 b2 5 25 1 1 4(x 2 1.5)2 1 6.25y2 5 25 b2 5 4 2 Vertices: (1, 21) and (11, 21) 4 (x2 2 3x 1 1.52) 1 6.25y2 5 16 1 9 a 5 2.5 x 22 h 5 6, k 5 21 A 5 4, B 5 0, C 5 6.25 a2 5 6.25 2 } Radius: Ï9 5 3 (x 2 6)2 5. } 2 ( y 1 1)2 5 1 25 (2, 26) 14. 4x2 1 6.25y2 2 12x 2 16 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (2, 7) Circle (2, 2) (0, 22) Vertices: (0, 22) and (4, 22) (x 2 1.5)2 6.25 y h 5 2, k 5 7 4 x Focus: (24, 0) 4(x2 2 4x 1 4) 2 ( y2 1 4y 1 4) 5 4 1 4(4) 2 4 (x 2 2)2 4 4 (24, 0) p 5 22 4(x2 2 4x) 2 ( y2 1 4y) 5 4 y (24, 2) 4p 5 28 4x2 2 y2 2 16x 2 4y 2 4 5 0 6 y54 Vertex: (24, 2) (21, 0) 1 (1.5, 2) 2 (1.5, 0) (4, 0) x 1 1 11 1 and y 5 2}5 x 1 }5 Asymptotes: y 5 }5 x 2 } 5 (1.5, 22) 9.6 Exercises (pp. 655–657) Skill Practice 1. Circles, ellipses, parabolas and hyperbolas are called conic sections because they are formed by the intersection of a plane and a double-napped cone. 2. If the discriminant of a general second-degree equation is less than 0 and B 5 0 and A 5 C, the conic is a circle. If it is less than 0 and either B Þ 0 or A Þ C, the conic is an ellipse. If the discriminant is equal to 0, the conic is a parabola. If it is greater than 0, the conic is a hyperbola. (x 1 8)2 (y 1 4)2 6. } 2 } 5 1 9 49 y (28, 3) h 5 28, k 5 24 2 Hyperbola 22 Center: (28, 24) (211, 24) a2 5 49 (28, 24) (25, 24) 2 b 59 a57 b53 Vertices: (28, 211) and (28, 3) 2 2 x (28, 211) 2 c 5 a 1 b 5 49 1 9 5 58 } c 5 Ï 58 ø 7.6 Foci: (28, 211.6) and (28, 3.6) 7 44 7 68 and y 5 2}3 x 2 } Asymptotes: y 5 }3 x 1 } 3 3 Algebra 2 Worked-Out Solution Key 509 Chapter 9, continued 2 ( y 2 2) (x 1 2) 7. } 1 } 5 1 36 16 (y 2 4)2 (x 1 3)2 11. } 2 } 5 1 16 9 h 5 22, k 5 2 Co-vertices: (26, 2) and (2, 2) h 5 23, k 5 4 Hyperbola Center: (23, 4) a2 5 9 a53 2 b 5 16 b 5 4 c2 5 a2 1 b2 5 9 1 16 5 25 c55 Vertices: (26, 4) and (0, 4) Foci: (28, 4) and (2, 4) Foci: (22, 6.5) and (22, 22.5) Asymptotes: y 5 }3 x 1 8 and y 5 2}3 x Ellipse Center: (22, 2) a2 5 36 a56 b2 5 16 b54 c2 5 a2 2 b2 5 36 2 16 5 20 } c 5 Ï20 ø 4.5 Vertices: (22, 8) and (22, 24) 4 y 6 (26, 2) (22, 2) (23, 8) (23, 4) (26, 4) (0, 4) 2 (23, 0) 4 x 4 ( y 2 1)2 (x 2 4)2 12. C; } 1 } 5 1 4 16 (22, 8) (2, 2) 4 x (22, 24) 8. (x 2 5) 2 1 ( y 1 1) 2 5 64 y h 5 5, k 5 21 2 Circle 24 Center: (5, 21) x (5, 21) } Radius: Ï 64 5 8 9. ( y 2 1)2 5 4(x 1 6) 8 h 5 26, k 5 1 y x 5 27 Parabola (26, 1) (25, 1) Vertex: (26, 1) x 22 4p 5 4 p51 Focus: (25, 1) Directrix: x 5 27 ( y 2 2) 2 x2 10. } 1 } 5 1 4 25 h 5 0, k 5 2 Ellipse (0, 4) y a2 5 25, a 5 5 b2 5 4, b 5 2 c2 5 a2 2 b2 5 25 2 4 5 21 c ø 4.6 Vertices: (25, 2) and (5, 2) Co-vertices: (0, 4) and (0, 0) Foci: (24.6, 2) and (4.6, 2) (0, 2) (25, 2) Center: (0, 2) (5, 2) 1 21 (0, 0) x h 5 4, k 5 1 Center: (4, 1) a2 5 16 a54 b2 5 4 b52 The co-vertices are 2 units above and below the center, at (4, 3) and (4, 21). 13. Circle 14. Circle Center: (25, 1) Center: (9, 21) r 5 6, r2 5 36 r52 r2 5 4 h 5 25, k 5 1 h 5 9, k 5 21 2 2 (x 1 5) 1 ( y 2 1) 5 36 (x 2 9)2 1 (y 1 1)2 5 4 15. Parabola 16. Parabola Vertex: (24, 23) Vertex: (5, 3) Focus: (1, 23) Directrix: y 5 6 h 5 24, k 5 23 h 5 5, k 5 3 The parabola opens The parabola opens down. to the right. p 5 2(6 2 3) 5 2 3 p 5 1 2 (24) 5 5 (x 2 h)2 5 4p( y 2 k) ( y 2 k)2 5 4p(x 2 h) (x 2 5)2 5 212( y 2 3) 2 ( y 1 3) 5 20(x 1 4) 17. Ellipse Vertices: (23, 4) and (5, 4) Foci: (21, 4) and (3, 4) Then center is the midpoint of the vertices. 23 1 5 4 1 4 ,} 5 (1, 4) 1} 2 2 2 h 5 1, k 5 4 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The foci are 2 units from the center, so c 5 2 and c2 5 4. c2 5 a2 2 b2 4 5 16 2 b2 b2 5 16 2 4 5 12 The major axis is horizontal. (x 2 h)2 ( y 2 k)2 } 1} 51 2 2 b a ( y 2 4)2 (x 2 1)2 }1}51 12 16 510 y Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 Chapter 9, continued 18. Ellipse 21. In writing the equation, the h and k values should be Vertices: (22, 1) and (22, 9) Co-vertices (24, 5) and (0, 5) The center is the midpoint of the vertices: 119 ,} 5 (22, 5) 1} 2 2 2 22 1 (22) h 5 22, k 5 5 (y 2 k)2 } 1} 51 2 2 a b (y 2 5)2 (x 1 2)2 }1}51 16 4 19. Hyperbola Vertices: (6, 23) and (6, 1) Foci: (6, 26) and (6, 4) The center is the midpoint of the vertices: 6 1 6 23 1 1 ,} 5 (6, 21) 1} 2 2 2 h 5 6, k 5 21 The vertices are 2 units from the center, so a 5 2 and a2 5 4. The foci are 5 units from the center, so c 5 5 and c2 5 25. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 2 2 c 5a 1b 25 5 4 1 b2 b2 5 25 2 4 5 21 The transverse axis is vertical. ( y 2 k) 2 2 (x 2 h) } 2} 51 2 2 b a (x 2 6)2 ( y 1 1)2 }2}51 21 4 20. Hyperbola Vertices: (1, 7) and (7, 7) Foci: (21, 7) and (9, 7) The center is the midpoint of the vertices: 1 2 117 717 }, } 5 (4, 7) 2 2 h 5 4, k 5 7 The vertices are 3 units from the center, so a 5 3 and a2 5 9. The foci are 5 units from the center, so c 5 5 and c2 5 25. c2 5 a2 1 b2 25 5 9 1 b2 b2 5 25 2 9 5 16 The transverse axis is horizontal. (x 2 h)2 (x 1 2)2 ( y 2 3)2 equation is } 1} 5 1. 9 25 ( y 2 2)2 (x 1 5)2 22. } 1 } 5 1 16 49 Ellipse with center (25, 2) The vertices are 4 units from the center, so a 5 4 and a2 5 16. The co-vertices are 2 units from the center, so b 5 2 and b2 5 4. The major axis is vertical. (x 2 h)2 subtracted from x and y, not added. The correct (y 2 k)2 } 2} 51 2 2 b a (y 2 7)2 (x 2 4)2 }2}51 16 9 Lines of symmetry: x 5 25 and y 5 2 23. ( y 2 4)2 5 6(x 1 60) Parabola with vertex (26, 4) Line of symmetry: y 5 4 ( y 2 2) (x 2 1)2 24. } 2 } 5 1 9 36 Hyperbola with center (1, 2) Lines of symmetry: x 5 1 and y 5 2 (x 2 3)2 25. ( y 2 5)2 2 } 5 1 9 Hyperbola with center (3, 5) Lines of symmetry: x 5 3 and y 5 5 26. (x 1 3)2 5 10( y 2 1) Parabola with vertex (23, 1) Line of symmetry: x 5 23 27. (x 1 2)2 1 ( y 1 1)2 5 121 Circle with center (22, 21) Any line passing through (22, 21) is a line of symmetry. 28. 6x2 2 2y2 1 24x 1 2y 2 1 5 0 A 5 6, B 5 0, C 5 22 B2 2 4AC 5 0 2 4(6)(22) 5 48 The conic is a hyperbola, because B2 2 4AC > 0. 29. x2 1 y2 2 10x 2 6y 1 18 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 30. y 2 210y 2 5x 1 57 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. 31. 4x2 1 y2 2 48x 2 14y 1 189 5 0 A 5 4, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(4)(1) 5 216 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 32. 9x2 1 4y2 1 8y 1 18x 2 41 5 0 A 5 9, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. 33. x2 2 18x 1 6y 1 99 5 0 A 5 1, B 5 0, C 5 0 B2 2 4AC 5 0 2 4(1)(0) 5 0 The conic is a parabola because B2 2 4AC 5 0. Algebra 2 Worked-Out Solution Key 511 Chapter 9, continued 34. x2 1 y2 2 6x 1 8y 2 24 5 0 39. x2 2 16x 2 8y 1 80 5 0 A 5 1, B 5 0, C 5 1 A 5 1, B 5 0, C 5 0 2 B2 2 4AC 5 0 2 4(1)(0) 5 0 B 2 4AC 5 0 2 4(1)(1) 5 24 2 The conic is a circle because B 2 4AC < 0, B 5 0, and A 5 C. The conic is a parabola because B2 2 4AC 5 0. 35. 8x2 2 9y2 2 40x 1 4y 1 145 5 0 x2 2 16x 2 8y 1 80 5 0 (x2 2 16x 1 64) 5 8y 2 80 1 64 A 5 8, B 5 0, C 5 29 2 B 2 4AC 5 0 2 4(8)(29) 5 288 (x 2 8)2 5 8y 2 16 2 The conic is a hyperbola because B 2 4AC > 0. 2 (x 2 8)2 5 8(y 2 2) 2 36. B; 4x 1 y 1 32x 2 10y 1 85 5 0 h 5 8, k 5 2 y A 5 4, B 5 0, C 5 1 Vertex: (8, 2) B2 2 4AC 5 0 2 4(4)(1) 5 216 4p 5 8 The conic is an ellipse because B2 2 4AC < 0 and AÞC. p52 Focus: (8, 4) 37. x2 1 y2 2 14x 1 4y 2 11 5 0 (8, 4) 2 (8, 2) y50 22 x A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 40. 9y2 2 x2 2 54y 1 8x 1 56 5 0 2 The conic is a circle because B 2 4AC < 0, B 5 0 and A 5 C. A 5 21, B 5 0, C 5 9 B2 2 4AC 5 0 2 4(21)(9) 5 36 x2 1 y2 2 14x 1 4y 2 11 5 0 The conic is a hyperbola because B2 2 4AC > 0. 2 14x 1 49) 1 ( y 1 4y 1 4) 5 11 1 49 1 4 2 9y2 2 x2 2 54y 1 8x 1 56 5 0 (x 2 7)2 1 (y 1 2)2 5 64 h 5 7, k 5 22 9( y 2 6y 1 9) 2 (x2 2 8x 1 16) 5 256 1 81 2 16 2 9( y 2 3)2 2 (x 2 4)2 5 9 y Center: (7, 22) (x 2 4)2 } Radius: Ï64 5 8 ( y 2 3)2 2 } 51 9 2 x 22 h 5 4, k 5 3 (7, 22) y Center: (4, 3) a2 5 1, a 5 1 (1, 3) (4, 4) (7, 3) 3 b2 5 9, b 5 3 2 Vertices: (4, 4) and (4, 2) 2 38. x 1 4y 2 10x 1 16y 1 37 5 0 2 B 2 4AC 5 0 2 4(1)(4) 5 216 The conic is an ellipse because B 2 4AC < 0 and AÞC. 2 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. x 1 4y 2 10x 1 16y 1 37 5 0 (x2 2 10x 1 25) 1 4( y2 1 4y 1 4) 5 237 1 25 1 16 2 9x2 1 4y2 2 36x 2 24y 1 36 5 0 9(x 2 4x 1 4) 1 4( y2 2 6y 1 9) 5 236 1 36 1 36 2 2 (x 2 5) 1 4( y 1 2) 5 4 2 9(x 2 2)2 1 4(y 2 3)2 5 36 (x 2 5) 4 } 1 ( y 1 2)2 5 1 h 5 5, k 5 22 Center: (5, 22) (x 2 2)2 4 a 5 4, a 5 2 b2 5 1, b 5 1 ( y 2 3)2 9 }1}51 y 21 2 1 (5, 21) x (3, 22) (5, 22) (5, 23) (7, 22) h 5 2, k 5 3 y (2, 6) Center: (2, 3) a2 5 9 2 a53 Vertices: (3, 22) and (7, 22) b 54 Co-vertices: (5, 21) and (5, 23) Vertices: (2, 6) and (2, 0) b52 Co-vertices: (0, 3) and (4, 3) Algebra 2 Worked-Out Solution Key x A 5 9, B 5 0, C 5 4 2 512 (4, 3) 1 41. 9x 2 1 4y2 2 36x 2 24y 1 36 5 0 A 5 1, B 5 0, C 5 4 2 (4, 2) (0, 3) (2, 3) (4, 3) 1 21 (2, 0) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (x 2 Chapter 9, continued 42. y2 1 14y 1 16x 1 33 5 0 45. If A 5 C, then the conic will be a circle. If AÞC but A and C have the same sign, the conic will be an ellipse. If either A 5 0 or C 5 0, the conic will be a parabola. If A and C have opposite signs, the conic will be a hyperbola. A 5 0, B 5 0, C 5 1 2 B 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. y2 1 14y 1 16x 1 33 5 0 46. ( y2 1 14y 1 49) 5 216x 2 33 1 49 xy 5 a ( y 1 7)2 5 216x 1 16 A 5 0, B 5 1, C 5 0 ( y 1 7)2 5 216(x 2 1) h 5 1, k 5 27 2 Vertex: (1, 27) B2 2 4AC 5 1 2 4(0)(0) 5 1 y The conic is a hyperbola because B2 2 4AC > 0. 47. The foci are c units above and below the center, at x 22 4p 5 216 a y 5 }x (h, k 1 c) and (h, k 2 c). p 5 24 Focus: (23, 27) a The asymptotes are y 5 6}b x shifted horizontally h units and vertically k units: (23, 27) (1, 27) a a ( y 2 k) 5 }b(x 2 h) x55 ( y 2 k) 5 2}b (x 2 h) a ah a bk 2 ah y 5 }bx 2 } 1k b 43. x 2 1 y 2 1 16x 2 8y 1 16 5 0 y 5 }b x 1} b A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 Problem Solving The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 48. (x a bk 1 ah y 5 2}b x 1 } b y (0, 4) 1 16x 1 64) 1 ( y 2 2 8y 1 16) 5 216 1 64 1 16 2 (x 1 8)2 1 ( y 2 4)2 5 64 x 6 h 5 28, k 5 4 y (0, 24) Center: (28, 4) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. ah 8 ft x2 1 y2 1 16x 2 8y 1 16x 5 0 2 a y 5 2}b x 1 } 1k b } Radius: Ï 64 5 8 Top circle: (28, 4) 4 Center: (0, 4) x 24 Radius: 4 Equation: (x 2 0)2 1 ( y 2 4)2 5 42 x2 1 (y 2 4)2 5 16 44. x2 2 4y2 1 8x 2 24y 2 24 5 0 Bottom circle: A 5 1, B 5 0, C 5 24 Center: (0, 24) B2 2 4AC 5 0 2 4(1)(24) 5 16 Radius: 4 The conic is a hyperbola because B2 2 4AC > 0. Equation: (x 2 0)2 1 (y 1 4)2 5 42 x2 2 4y2 1 8x 2 24y 2 24 5 0 x2 1 (y 1 4) 5 16 (x2 1 8x 1 16) 2 4( y 2 1 6y 1 9) 5 24 1 16 2 36 49. x2 2 10x 1 4y 5 0 (x 1 4)2 2 4( y 1 3)2 5 4 x2 2 10x 5 24y (x 1 4)2 } 2 ( y 1 3)2 5 1 4 h 5 24, k 5 23 Center: (24, 23) a2 5 4, a 5 2 b2 5 1, b 5 1 Vertices: (26, 23) and (22, 23) x2 2 10x 1 25 5 24y 1 25 2 (24, 22) 210 (26, 23) (24, 23) (24, 24) (x 2 5)2 5 241 y 2 } 42 25 y x (22, 23) An equation for the path of the leap is (x 2 5)2 5 241 y 2 } . 42 25 Vertex: 1 5, } 4 2 25 25 The person’s jump is } feet high and 4 2(5) 5 10 feet wide. Algebra 2 Worked-Out Solution Key 513 continued 50. 21y 2 2 210y 2 4x2 5 2441 53. a. The intersection is not a circle when the plane crosses the point where the cones meet. It is a point. A 5 24, B 5 0, C 5 21 b. The intersection is not a hyperbola when the plane 2 B 2 4AC 5 0 2 4(24)(21) 5 336 crosses the point where the cones meet. It is a pair of lines. The shape of the path is a hyperbola because B2 2 4AC > 0. c. The intersection is not a parabola when the plane lies 21y2 2 210y 2 4x2 5 2441 along the edge of the cone. It is a line. 21( y2 2 10y 1 25) 2 4x2 5 2441 1 525 Mixed Review for TAKS 21( y 2 5)2 2 4x2 5 84 2 54. D; ( y 2 5) x }2}51 21 4 2 Center: (0, 5) (0, 7) } a 5 2, b 5 Ï21 Vertices: (0, 3) and (0, 7) (2 The expression 3x 2 39,000 represents the population of Texas. y 55. H; Let n 5 number of sides. ( 21, 5 ) (0, 5) 21, 5 ) (n 2 2) + 180 5 135 n }} (0, 3) 1 180n 2 360 5 135n x 45n 5 360 22 51. a. For the hotel, h 5 100, k 5 260 and r 5 150. You will be in range of the transmitter when (x 2 100)2 1 ( y 1 60)2a1502. For the café, h 5 280, k 5 270, and r 5 100. You will be in range of the transmitter when (x 1 80)2 1 ( y 1 70)2a1002. b. At point (0, 0): 2 (0 2 100) The polygon has 8 sides. Lesson 9.7 9.7 Guided Practice (pp. 659–661) 1. x 2 1 y 2 5 13 and y 5 x 2 1 y2 5 13 2 x2 (0 1 80) 1 (0 1 70) a100 1002 6400 1 4900a 2 n58 } 2 11,300 µ 10,000 1502 2 1 (0 1 60)2a 22,500 10,000 1 3600 a y 5 6Ï 13 2 x2 Using the calculator’s intersect feature, the solutions are (22, 23) and (3, 2). 2. x 2 1 8y 2 2 4 5 0 and y 5 2x 1 7 8y2 5 4 2 x2 y2 5 }2 2 } 8 y 5 6Î y } You (0, 0) x (100, 260) Hotel (280, 270) Cafe At the origin, you are in range of the hotel’s transmitter because its inequality is satisfied. You are not in range of the café’s transmitter because its inequality is not satisfied. range is 150 yards, if the hotel’s distance from the café is less than their combined range of 250 yards, there is an overlap. 52. a. An ellipse is formed by cutting the cone-shaped tip, because the cut enters the cone diagonally and exits the other side. b. Hyperbolas are formed by each flat side and the cone-shaped tip, because the flat sides are parallel to the axis of the cone. Algebra 2 Worked-Out Solution Key 1 2 x2 8 }2} The graphs do not intersect. There is no solution. 3. y2 1 6x 2 1 5 0 and y 5 20.4x 1 2.6 y2 5 26x 1 1 } y 5 6Ï 26x 1 1 Using the calculator’s intersect feature, the solutions are approximately (21.57, 3.23) and (222.9, 11.8). 4. y 5 0.5x 2 3 x2 1 4y2 2 4 5 0 x2 1 4(0.5x 2 3)2 2 4 5 0 c. Because the café’s range is 100 yards and the hotel’s 514 x2 1 13,600a22,500 x 1 4(0.25x2 2 3x 1 9) 2 4 5 0 2 x2 1 x2 2 12x 1 36 2 4 5 0 2x2 2 12x 1 32 5 0 2(x2 2 6x 1 16) 5 0 There is no solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9,