Comments
Description
Transcript
P. 623-625
P. 623-625 Chapter 9, continued When da N W }} 20Ï 9t 2 30t 1 29 a50 100 E S 2 2. x2 5 2y y 60 mph Car (−100, 40) d }} Ï9t 2 2 30t 1 29 a}52 25 Tower (0, 0) 25 9t 2 30t 1 29a} 4 2 x 1 Axis of symmetry: vertical (x 5 0) 6t 2 13a0 13 ta} 6 7 13 So, the car is in range of the tower when }6 ata} , or 6 (0, 21) Directrix: y 5 2p, or y 5 1 0 5 3x2 2 12x 2 15 Axis of symmetry: vertical (x 5 0) 0 5 (3x 1 3)(x 2 5) or x2550 or x55 1 4. x 5 } y 2 3 y y 2 5 3x The x-interepts of the function are 21 and 5. ( , 0) 3 4 Focus: ( p, 0) 59. F; x 3x 5 4px Find the height of one of the triangles. 3 x 5 24 3 4 }5p Focus: 1 }4, 0 2 3 Directrix: x 5 2p, or x 5 2}4 4.5 Axis of symmetry: horizontal ( y 5 0) 20.25 1 h2 5 81 5. Directrix: y 5 2p 5 2 h2 5 60.75 p 5 22 h ø 7.8 Equation of parabola: x 2 5 4py S 5 area of square 1 4 + area of triangle x 2 5 4(22)y ø 81 1 41 }2 2(9)(7.8) 5 81 1 140.4 5 221.4 1 x 2 5 28y The surface area of the figure is about 221 square inches. 6. Directrix: x 5 2p 5 4 p 5 24 Equation of parabola: y 2 5 4px Lesson 9.2 y 2 5 4(24) x 9.2 Guided Practice (pp. 622– 623) 1. y2 5 26x Focus: ( p, 0) 26x 5 4px 26 5 4p 7. Focus: (22, 0) 3 (2 , 0 ) 3 2 1 21 x52 p 5 22 x Equation of parabola: y 2 5 4px y 2 5 4(22) x 3 2}2 5 p 3 Focus: 2}2, 0 y 2 5 216x y y 2 5 28x 2 3 Directrix: x 5 2p, or x 5 }2 Axis of symmetry: horizontal ( y 5 0) Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3 9 (4.5)2 1 h2 5 92 480 x 22 Focus: (0, 21) y 5 3x2 2 12x 2 15 1 y51 x2 5 24y 21 5 p 58. A; 4.5 y 2 24y 5 4py Mixed Review for TAKS h 1 3. y 5 2} x2 4 Focus: (0, p) between about 1.17 hours and 2.17 hours. 9 y5 1 2 Directrix: y 5 2p, or y 5 2}2 tq} and x 5 21 x 1 22 1 (6t 2 7)(6t 2 13)a0 3x 1 3 5 0 1 Focus: 1 0, }2 2 36t 2 2 120t 1 91a0 and 1 2 }5p 36t 2 2 120t 1 116a25 6t 2 7q0 y (0, ) Focus: (0, p) x2 5 4py 2y 5 4py Chapter 9, continued 8. Focus: (0, 3) 5. p53 Equation of parabola: x 2 5 4py 2 x 5 4(3)y x 2 5 12y 9. Vertex: (0, 0) 6. Focus: (10, 0) Directrix: x 5 2p 5 27 (7, 0) 2 22 x Axis of symmetry: y 5 0 y 5 4(10)x 7. 2 y 5 40x y 2 5 210x y 4px 5 210x The antenna’s depth is the x-value at the outside edge. 10 1 (2 5 p 5 2} 5 2}2 4 Radius 5 }2 (16) 5 8. The antenna extends 8 feet to either side of the vertex (0, 0). 5 Focus: 2}2, 0 1 When y 5 8: ) ,0 1 1 x 2 x 5 52 Directrix: x 5 2p 5 }2 Axis of symmetry: y 5 0 64 5 40x 8. 1.6 5 x x 2 5 30y y 4 py 5 30y The antenna is 1.6 feet deep. (0 , ) 15 2 30 15 p5} 5} 4 2 9.2 Exercises (pp. 623–625) 4 Focus: 1 0, } 22 15 Skill Practice 1. A parabola is the set of all points in a plane equidistant 2. Sample answer: x 2 5 4py opens up or down (depending 2 on the value of p) while y 5 4px opens left or right (depending on the value of p). y 2 5 16x x 10. 3 y 52 x 23 (0, ) 3 22 Axis of symmetry: x 5 0 2 21 1 x x 52 x 2 5 236y 4py 5 236y 1 3 ) Axis of symmetry: y 5 0 4py 5 26y Directrix: y 5 2p 5 }2 ,0 Directrix: x 5 2p 5 }2 y 2 1 2 1 x 5 24 x 2 5 26y 3 (2 1 Axis of symmetry: y 5 0 p 5 2}4 5 2}2 y Focus: 1 2}2, 0 2 (4, 0) 1 Directrix: x 5 2p 5 24 y 2 5 22x 4px 5 22x 4px 5 16x Focus: (4, 0) x Axis of symmetry: x 5 0 9. 1 p 5 2}2 1 4 15 2 15 y p54 y52 Directrix: y 5 2p 5 2} 2 from a point called the focus and a line called the directrix. 6 5 2 5 (8)2 5 40x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x x 5 27 p57 y 2 5 4px 1 2 y 5 25 y Focus: (7, 0) 3 Focus: 0, 2}2 2 y 2 5 28x The parabola opens right, so its equation has the form y 2 5 4px. 2 4. y (0, 5) 4px 5 28x p 5 10 3. x 2 5 20y 4py 5 20y p55 Focus: (0, 5) Directrix: y 5 2p 5 25 Axis of symmetry: x 5 0 y y59 3 36 p 5 2} 5 29 4 3 Focus: (0, 9) x (0, 29) Directrix: y 5 2p 5 9 Axis of symmetry: x 5 0 11. x 2 5 12y y 4py 5 12y 2 p53 Focus: (0, 3) (0, 3) 2 x y 5 23 Directrix: y 5 2p 5 23 Axis of symmetry: x 5 0 Algebra 2 Worked-Out Solution Key 481 Chapter 9, continued 12. 22y 5 x 2 1 22y 5 4py y 17. 224x 5 3y 2 1 y 52 1 y 5 28x x 1 2}2 5 p (0, Focus: 1 0, 2}2 2 1 1 x x52 Directrix: x 5 2p 5 2 Axis of symmetry: y 5 0 18. 14x 5 6y 2 Axis of symmetry: x 5 0 2 ( 0.1 1 4px 5 }4 x 1 16 ) ,0 x 0.2 1 p5} 16 ( 1 7 4px 5 }3 x 7 12 ,0 ) 1 x 7 x 5 2 12 7 p5} 12 x 5 2 16 1 y 14 y2 5 } x 6 y 1 y 2 5 }4 x 7 Focus: 1 } ,0 12 2 Focus: 1 } ,0 16 2 1 7 Directrix: x 5 2p 5 2} 12 1 Directrix: x 5 2p 5 2} 16 Axis of symmetry: y 5 0 1 19. } x 2 2 y 5 0 8 Axis of symmetry: y 5 0 2 14. 2x 5 48y y y 5 12 x 2 5 248y 4py 5 248y 1 8 x 5 48 (0, 212) Focus: (0, 212) 1 1 x 2 5 8y 4py 5 8y y 5 22 Focus: (0, 2) 15. 5x 2 5 215y y x 2 5 23y Axis of symmetry: x 5 0 3 y 54 20. 4x 2 11y 2 5 0 0.5 x 1.5 4py 5 23y ( 0, ) 211y 5 24x 0.1 4 y2 5 } x 11 3 24 3 p 5 2}4 y 2 x5 4 Focus: 1 0, 2}4 2 3 x 4px 5 } 11 3 1 Directrix: y 5 2p 5 }4 p5} 11 Axis of symmetry: x 5 0 Focus: 1 } ,0 11 2 1 2 16. 2y 5 18x y (2 4px 5 218x 9 2 ,0 ) 2 18 9 5 2}2 p 5 2} 4 Focus: 1 2}2 , 0 2 9 9 Directrix: x 5 2p 5 }2 Axis of symmetry: y 5 0 1 9 Directrix: x 5 2p 5 2} 11 x 52 2 x Axis of symmetry: y 5 0 1 2 11 ( 0.1 1 , 11 0 ) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Directrix: y 5 2p 5 22 Axis of symmetry: x 5 0 y 2 5 218x x p52 Directrix: y 5 2p 5 12 Algebra 2 Worked-Out Solution Key y (0, 2) } x2 5 y 5 5 212 p 5 2} 4 482 4px 5 28x Focus: (22, 0) 1 x 5 4y 1 (22, 0) p 5 22 1 22) Directrix: y 5 2p 5 }2 13. y 2 Chapter 9, continued 21. 5x 2 1 12y 5 0 25. D; 15y 1 3x 2 5 0 y 2 5x 5 212y y5 1 12 x 2 5 2} y 5 3 5 3x 2 5 215y 2 (0, 2 ) 3 5 x 2 5 25y x 4py 5 25y 12 y 4py 5 2} 5 5 p 5 2}4 3 5 p 5 2}5 Directrix: y 5 2p 5 }4 5 1.25 Focus: 1 0, 2}5 2 3 26. Focus: (2, 0) p52 3 p 5 25 Directrix: y 5 2p 5 }5 y 2 5 4px y 2 5 4(25)x Axis of symmetry: x 5 0 y 2 5 4(2)x y 2 5 220x 2 y 5 8x 1 22. 25x 1 } y 2 5 0 3 y 1 } y 2 5 5x 3 ( 3 , 0) 3 4 1 y 2 5 15x x 21 4px 5 15x 3 4 x 5 23 15 3 5 3 }4 p5} 4 28. Focus: (3, 0) 29. Focus: (0, 24) p53 p 5 24 2 x 2 5 4py 2 y 5 4(3)x x 2 5 4(24)y y 2 5 12x x 2 5 216y 30. Focus: (0, 8) 31. Focus: (0, 210) y 5 4px p58 Focus: 1 3}4 , 0 2 3 3 Directrix: x 5 2p 5 23 }4 x 2 5 4(8)y x 2 5 4(210)y x 2 5 240y 32. Focus: (0, 26) 26x 1 y 2 5 0 y y2 5 6x ( 1 4px 5 6x 3 2 ) ,0 x 1 3 x 5 22 3 x 2 5 4py x 5 32y 23. The parabola should open to the right rather than up. p 5 }2 p 5 210 x 2 5 4py 2 Axis of symmetry: y 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 27. Focus: (25, 0) p 5 26 x 2 5 4py x 2 5 4(26)y x 2 5 224y 7 34. Focus: 0, } 4 1 2 7 Focus: 1 }2 , 0 2 3 24. The parabola should open to the left rather than to the right. 0.5y 2 1 x 5 0 0.5y 5 2 x x5 y2 5 22x ( ) 1 2 ,0 2 4px 5 22x x 2 5 41 }4 2 y x 2 5 41 2}8 2 y x 2 5 7y x 2 5 2}2 y 5 36. Focus: } , 0 2 1 y 2 1 22 1 2 3 3 2 5 x Focus: 1 2}2 , 0 2 1 1 Directrix: x 5 2p 5 }2 Axis of symmetry: y 5 0 1 9 37. Focus: 2} , 0 16 2 9 p 5 }2 p 5 2} 16 y 2 5 4px y 2 5 4px y 2 5 41 }2 2 x y 2 5 41 2} x 16 2 y 2 5 10x y 2 5 2}4 x 5 1 p 5 2}2 2 x 2 5 4py 7 Axis of symmetry: y 5 0 1 3 35. Focus: 0, 2} 8 p 5 2}8 x 2 5 4py 3 p 5 29 y 2 5 4px y 2 5 4(29)x y 2 5 236x 3 p 5 }4 Directrix: x 5 2p 5 2}2 33. Focus: (29, 0) 9 9 38. A; Focus: (28, 0) 39. Directrix: x 5 3 p 5 28 y 2 5 4px y 2 5 4(28)x y 2 5 232x p 5 23 y 2 5 4px y 2 5 4(23)x y 2 5 212x Algebra 2 Worked-Out Solution Key 483 continued 40. Directrix: y 5 27 41. Directrix: x 5 25 p57 x 2 5 4py x 2 5 4(7)y x 2 5 28y 42. Directrix: y 5 12 p 5 212 x 2 5 4py x 2 5 4(212)y x 2 5 248y 44. Directrix: x 5 22 p52 y 2 5 4px y 2 5 4(2)x y 2 5 8x p55 y 2 5 4px y 2 5 4(5)x y 2 5 20x 43. Directrix: y 5 24 p54 x 2 5 4py x 2 5 4(4)y x 2 5 16y 45. Directrix: y 5 6 p 5 26 x 2 5 4py x 2 5 4(26)y x 2 5 224y 46. Directrix: x 5 11 y 5 4px y 2 5 4(211)x x 2 5 4 1 2} y 12 2 1 located at 1 2}8 , 0 2 rather than 1 }2 , 0 2. The new directrix 1 3 3 1 will be x 5 }8 rather that x 5 2}2. The parabola will be narrower and will open left rather than right. 1 52. The equation x 2 5 4py can be rewritten y 5 } x 2. So, if 4p x 2 5 4py and y 5 ax 2 represent the same parabola, then 1 1 2 x 5 ax 2 and a 5 } . y5 } 4p 4p Distance from (x, y) to (0, p): 5 2 y 5 6x }} 1 50. Directrix: x 5 2} 18 11 p5} 6 1 p5} 18 x 2 5 4py y 2 5 4px y x2 5 4 1 } 62 y2 5 4 1 } x 18 2 22 y x 5} 3 2 y 5 }9 x x 2 5 4py Problem Solving 55. Focus is (0, 6) p56 x 2 5 4py y x 2 5 4(6)y 5 24y 4p 5 a a 1 x 2 5 4y An equation for the cross section of the trough is x 2 5 24y. x2 5 y 21 x As a changes from 1 to 4, the new focus will be 1 2 x 2 1 ( y 2 p) 2 5 ( y 1 p) 2 x 1 y 2 2 2py 1 p 2 5 y 2 1 2py 1 p 2 2 51. a. x 2 5 ay The point (x, y) is equidistant from the focus and directrix, so the above distances are equal. 2 1 2 } d 5 Ï (x 2 x) 2 1 ( y 2 (2p)) 2 5 Ï ( y 1 p) 2 x 5 2} y 11 }} Distance from (x, y) to directrix y 5 2p: 5 3 2 1 located at (0, 1) rather than 0, }4 . The new directrix 1 will be y 5 21 rather than y 5 2}4. The parabola will Diameter 5 17 ft Radius 5 8.5 ft When x 5 8.5: (8.5) 2 5 24y 72.25 24 }5y 3.01 ø y The trough is about 3 feet deep. Algebra 2 Worked-Out Solution Key x As a changes from 6 to2}2, the new focus will be }} y 2 5 4 1 }2 2 x 3 484 y 2 5 6x d 5 Ï (x 2 0) 2 1 ( y 2 p) 2 5 Ï x 2 1 ( y 2 p) 2 x 5 4py be wider. 22 Directrix: y 5 2p 2 y 5 4px p 5 }4 a p 5 }4 54. Focus: (0, p) 5 48. Directrix: y 5 } 12 5 p 5 2} 12 2 11 49. Directrix: y 5 2} 6 y 1 directrix move further away from the vertex, and the graph becomes wider. Because each point on a parabola is equidistant from the focus and the directrix, this has the effect of making the parabola wider and wider as {p{ increases. 2 3 47. Directrix: x 5 2} 2 3 p 5 }2 1 y2 5 22 x 4p 5 a 53. As {p{ increases, the focus of the parabola and the p 5 211 y 2 5 244x b. y 2 5 ax Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9, Chapter 9, continued 56. y 2 5 4px, p > 0 b. Original reflector: x 2 5 10.5y. When x 5 3 and y 5 4: For a wider reflector, 4p > 10.5. 2 (4) 5 4p(3) Sample answer: Let p 5 12.5: x 2 5 4py 16 5 12p x 2 5 4(12.5)y 4 3 }5p x 2 5 50y 4 The focal length is }3 inches. 57. a. When y 5 9.5: x 2 5 50(9.5) y x 2 5 475 y 48 in. x ø 21.8 (0, 48) The wider reflector’s beam is about 2(21.8) 5 43.6 inches wide. 48 in. 146 in. x (248, 0) x 146 in. c. For a narrower reflector, 4 p < 10.5. Sample answer: Let p 5 2: x 2 5 4py b. x 2 5 4py x 2 5 4(2)y y 2 5 4px x 2 5 4(48)y y 2 5 4(248) x 2 5 192y y 2 5 2192x x 2 5 8y When y 5 9.5: x 2 5 8(9.5) x 2 5 76 146 c. Using x 5 192y and x 5 } 5 73: 2 2 x ø 8.7 The narrower reflector’s beam is about 2(8.7) 5 17.4 inches wide. x 2 5 192y 2 73 5 192y 27.8 ø y The dish is about {27.8{ 5 27.8 inches deep. 146 Using y 5 2192 x and y 5 } 5 73: 2 2 Find the x-values where y 5 p: x 2 5 4p 2 x 5 62p 2 The length of the latus rectum is the distance from (22p, p) to (2p, p): 227.8 ø x d 5 Ï (2p 2 (22p)) 2 1 ( p 2 p) 2 5 Ï (4p) 2 5 4p y 2 5 2192x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 60. x 2 5 4py 73 5 2192x The dish is about {227.8{ 5 27.8 inches deep. No, you get the same answer using each equation. 58. Because the parabola opens up, p is positive. Focal distance 5 {p{ 5 p p 5 0.36(diameter) }}} The length of the latus rectum is 4 p. Mixed Review for TAKS 61. C; x2 1 752 5 852 x 1 5625 5 7225 x 5 4py 25 When x 5 } 5 12.5: 2 (12.5)2 5 36y 4.3 ø y Each dish is about 4.3 meters deep. 59. a. When y 5 9.5: 75 yd x2 5 1600 2 An equation for the cross section of the dish is x 2 5 36y. 85 yd x 2 p 5 0.36(25) 5 9 x 2 5 4(9)y 5 36y } x 5 40 yd 40 1 75 1 85 5 200 The perimeter of the park is 200 yards. 62. H; Points needed for an A 5 423 1 9 5 432 432 x 90 100 }5} 90x 5 43,200 x 5 480 There are 480 points possible in the course. x 2 5 10.5y x 2 5 10.5(9.5) x 2 5 99.75 x ø 9.99 The diameter is about 2(9.99) ø 20 inches. Algebra 2 Worked-Out Solution Key 485 P. 655-656 Chapter 9, continued 13. 4x2 2 y2 2 16x 2 4y 2 4 5 0 3. (x 1 4)2 5 28( y 2 2) h 5 24, k 5 2 A 5 4, B 5 0, C 5 21 Parabola B2 2 4AC 5 0 2 4(4)(21) 5 16 Because B2 2 4AC > 0, the conic is a hyperbola. Directrix: y 5 4 4(x 2 2)2 2 ( y 1 2)2 5 16 4. (x 2 2)2 1 ( y 2 7)2 5 9 ( y 1 2)2 16 }2 }51 h 5 2, k 5 22 Center: (2, 22) 2 a52 2 b54 a 54 b 5 16 y 2 Center: (2, 7) (4, 22) x (2, 22) Hyperbola B2 2 4AC 5 0 2 4(4)(6.25) 5 2100 Center: (6, 21) Because A Þ C and B2 2 4AC < 0, the path is an ellipse. 4x2 1 6.25y2 2 12x 2 16 5 0 4(x2 2 3x) 1 6.25y2 5 16 y2 4 b2 5 1 b51 (6 , )0 (6 , 21) 22 x (11, 21) 21 (1, 21) (6, 22) } h 5 1.5, k 5 0 Co-vertices: (1.5, 2) and (1.5, 22) a55 c 5 Ï 26 ø 5.1 Foci: (0.9, 21) and (11.1, 21) y Center: (1.5, 0) Vertices: (21, 0) and (4, 0) a 5 25 5 26 }1}51 b52 y c2 5 a2 1 b2 5 25 1 1 4(x 2 1.5)2 1 6.25y2 5 25 b2 5 4 2 Vertices: (1, 21) and (11, 21) 4 (x2 2 3x 1 1.52) 1 6.25y2 5 16 1 9 a 5 2.5 x 22 h 5 6, k 5 21 A 5 4, B 5 0, C 5 6.25 a2 5 6.25 2 } Radius: Ï9 5 3 (x 2 6)2 5. } 2 ( y 1 1)2 5 1 25 (2, 26) 14. 4x2 1 6.25y2 2 12x 2 16 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (2, 7) Circle (2, 2) (0, 22) Vertices: (0, 22) and (4, 22) (x 2 1.5)2 6.25 y h 5 2, k 5 7 4 x Focus: (24, 0) 4(x2 2 4x 1 4) 2 ( y2 1 4y 1 4) 5 4 1 4(4) 2 4 (x 2 2)2 4 4 (24, 0) p 5 22 4(x2 2 4x) 2 ( y2 1 4y) 5 4 y (24, 2) 4p 5 28 4x2 2 y2 2 16x 2 4y 2 4 5 0 6 y54 Vertex: (24, 2) (21, 0) 1 (1.5, 2) 2 (1.5, 0) (4, 0) x 1 1 11 1 and y 5 2}5 x 1 }5 Asymptotes: y 5 }5 x 2 } 5 (1.5, 22) 9.6 Exercises (pp. 655–657) Skill Practice 1. Circles, ellipses, parabolas and hyperbolas are called conic sections because they are formed by the intersection of a plane and a double-napped cone. 2. If the discriminant of a general second-degree equation is less than 0 and B 5 0 and A 5 C, the conic is a circle. If it is less than 0 and either B Þ 0 or A Þ C, the conic is an ellipse. If the discriminant is equal to 0, the conic is a parabola. If it is greater than 0, the conic is a hyperbola. (x 1 8)2 (y 1 4)2 6. } 2 } 5 1 9 49 y (28, 3) h 5 28, k 5 24 2 Hyperbola 22 Center: (28, 24) (211, 24) a2 5 49 (28, 24) (25, 24) 2 b 59 a57 b53 Vertices: (28, 211) and (28, 3) 2 2 x (28, 211) 2 c 5 a 1 b 5 49 1 9 5 58 } c 5 Ï 58 ø 7.6 Foci: (28, 211.6) and (28, 3.6) 7 44 7 68 and y 5 2}3 x 2 } Asymptotes: y 5 }3 x 1 } 3 3 Algebra 2 Worked-Out Solution Key 509 Chapter 9, continued 2 ( y 2 2) (x 1 2) 7. } 1 } 5 1 36 16 (y 2 4)2 (x 1 3)2 11. } 2 } 5 1 16 9 h 5 22, k 5 2 Co-vertices: (26, 2) and (2, 2) h 5 23, k 5 4 Hyperbola Center: (23, 4) a2 5 9 a53 2 b 5 16 b 5 4 c2 5 a2 1 b2 5 9 1 16 5 25 c55 Vertices: (26, 4) and (0, 4) Foci: (28, 4) and (2, 4) Foci: (22, 6.5) and (22, 22.5) Asymptotes: y 5 }3 x 1 8 and y 5 2}3 x Ellipse Center: (22, 2) a2 5 36 a56 b2 5 16 b54 c2 5 a2 2 b2 5 36 2 16 5 20 } c 5 Ï20 ø 4.5 Vertices: (22, 8) and (22, 24) 4 y 6 (26, 2) (22, 2) (23, 8) (23, 4) (26, 4) (0, 4) 2 (23, 0) 4 x 4 ( y 2 1)2 (x 2 4)2 12. C; } 1 } 5 1 4 16 (22, 8) (2, 2) 4 x (22, 24) 8. (x 2 5) 2 1 ( y 1 1) 2 5 64 y h 5 5, k 5 21 2 Circle 24 Center: (5, 21) x (5, 21) } Radius: Ï 64 5 8 9. ( y 2 1)2 5 4(x 1 6) 8 h 5 26, k 5 1 y x 5 27 Parabola (26, 1) (25, 1) Vertex: (26, 1) x 22 4p 5 4 p51 Focus: (25, 1) Directrix: x 5 27 ( y 2 2) 2 x2 10. } 1 } 5 1 4 25 h 5 0, k 5 2 Ellipse (0, 4) y a2 5 25, a 5 5 b2 5 4, b 5 2 c2 5 a2 2 b2 5 25 2 4 5 21 c ø 4.6 Vertices: (25, 2) and (5, 2) Co-vertices: (0, 4) and (0, 0) Foci: (24.6, 2) and (4.6, 2) (0, 2) (25, 2) Center: (0, 2) (5, 2) 1 21 (0, 0) x h 5 4, k 5 1 Center: (4, 1) a2 5 16 a54 b2 5 4 b52 The co-vertices are 2 units above and below the center, at (4, 3) and (4, 21). 13. Circle 14. Circle Center: (25, 1) Center: (9, 21) r 5 6, r2 5 36 r52 r2 5 4 h 5 25, k 5 1 h 5 9, k 5 21 2 2 (x 1 5) 1 ( y 2 1) 5 36 (x 2 9)2 1 (y 1 1)2 5 4 15. Parabola 16. Parabola Vertex: (24, 23) Vertex: (5, 3) Focus: (1, 23) Directrix: y 5 6 h 5 24, k 5 23 h 5 5, k 5 3 The parabola opens The parabola opens down. to the right. p 5 2(6 2 3) 5 2 3 p 5 1 2 (24) 5 5 (x 2 h)2 5 4p( y 2 k) ( y 2 k)2 5 4p(x 2 h) (x 2 5)2 5 212( y 2 3) 2 ( y 1 3) 5 20(x 1 4) 17. Ellipse Vertices: (23, 4) and (5, 4) Foci: (21, 4) and (3, 4) Then center is the midpoint of the vertices. 23 1 5 4 1 4 ,} 5 (1, 4) 1} 2 2 2 h 5 1, k 5 4 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The foci are 2 units from the center, so c 5 2 and c2 5 4. c2 5 a2 2 b2 4 5 16 2 b2 b2 5 16 2 4 5 12 The major axis is horizontal. (x 2 h)2 ( y 2 k)2 } 1} 51 2 2 b a ( y 2 4)2 (x 2 1)2 }1}51 12 16 510 y Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 Chapter 9, continued 18. Ellipse 21. In writing the equation, the h and k values should be Vertices: (22, 1) and (22, 9) Co-vertices (24, 5) and (0, 5) The center is the midpoint of the vertices: 119 ,} 5 (22, 5) 1} 2 2 2 22 1 (22) h 5 22, k 5 5 (y 2 k)2 } 1} 51 2 2 a b (y 2 5)2 (x 1 2)2 }1}51 16 4 19. Hyperbola Vertices: (6, 23) and (6, 1) Foci: (6, 26) and (6, 4) The center is the midpoint of the vertices: 6 1 6 23 1 1 ,} 5 (6, 21) 1} 2 2 2 h 5 6, k 5 21 The vertices are 2 units from the center, so a 5 2 and a2 5 4. The foci are 5 units from the center, so c 5 5 and c2 5 25. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 2 2 c 5a 1b 25 5 4 1 b2 b2 5 25 2 4 5 21 The transverse axis is vertical. ( y 2 k) 2 2 (x 2 h) } 2} 51 2 2 b a (x 2 6)2 ( y 1 1)2 }2}51 21 4 20. Hyperbola Vertices: (1, 7) and (7, 7) Foci: (21, 7) and (9, 7) The center is the midpoint of the vertices: 1 2 117 717 }, } 5 (4, 7) 2 2 h 5 4, k 5 7 The vertices are 3 units from the center, so a 5 3 and a2 5 9. The foci are 5 units from the center, so c 5 5 and c2 5 25. c2 5 a2 1 b2 25 5 9 1 b2 b2 5 25 2 9 5 16 The transverse axis is horizontal. (x 2 h)2 (x 1 2)2 ( y 2 3)2 equation is } 1} 5 1. 9 25 ( y 2 2)2 (x 1 5)2 22. } 1 } 5 1 16 49 Ellipse with center (25, 2) The vertices are 4 units from the center, so a 5 4 and a2 5 16. The co-vertices are 2 units from the center, so b 5 2 and b2 5 4. The major axis is vertical. (x 2 h)2 subtracted from x and y, not added. The correct (y 2 k)2 } 2} 51 2 2 b a (y 2 7)2 (x 2 4)2 }2}51 16 9 Lines of symmetry: x 5 25 and y 5 2 23. ( y 2 4)2 5 6(x 1 60) Parabola with vertex (26, 4) Line of symmetry: y 5 4 ( y 2 2) (x 2 1)2 24. } 2 } 5 1 9 36 Hyperbola with center (1, 2) Lines of symmetry: x 5 1 and y 5 2 (x 2 3)2 25. ( y 2 5)2 2 } 5 1 9 Hyperbola with center (3, 5) Lines of symmetry: x 5 3 and y 5 5 26. (x 1 3)2 5 10( y 2 1) Parabola with vertex (23, 1) Line of symmetry: x 5 23 27. (x 1 2)2 1 ( y 1 1)2 5 121 Circle with center (22, 21) Any line passing through (22, 21) is a line of symmetry. 28. 6x2 2 2y2 1 24x 1 2y 2 1 5 0 A 5 6, B 5 0, C 5 22 B2 2 4AC 5 0 2 4(6)(22) 5 48 The conic is a hyperbola, because B2 2 4AC > 0. 29. x2 1 y2 2 10x 2 6y 1 18 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 30. y 2 210y 2 5x 1 57 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. 31. 4x2 1 y2 2 48x 2 14y 1 189 5 0 A 5 4, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(4)(1) 5 216 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 32. 9x2 1 4y2 1 8y 1 18x 2 41 5 0 A 5 9, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. 33. x2 2 18x 1 6y 1 99 5 0 A 5 1, B 5 0, C 5 0 B2 2 4AC 5 0 2 4(1)(0) 5 0 The conic is a parabola because B2 2 4AC 5 0. Algebra 2 Worked-Out Solution Key 511 Chapter 9, continued 34. x2 1 y2 2 6x 1 8y 2 24 5 0 39. x2 2 16x 2 8y 1 80 5 0 A 5 1, B 5 0, C 5 1 A 5 1, B 5 0, C 5 0 2 B2 2 4AC 5 0 2 4(1)(0) 5 0 B 2 4AC 5 0 2 4(1)(1) 5 24 2 The conic is a circle because B 2 4AC < 0, B 5 0, and A 5 C. The conic is a parabola because B2 2 4AC 5 0. 35. 8x2 2 9y2 2 40x 1 4y 1 145 5 0 x2 2 16x 2 8y 1 80 5 0 (x2 2 16x 1 64) 5 8y 2 80 1 64 A 5 8, B 5 0, C 5 29 2 B 2 4AC 5 0 2 4(8)(29) 5 288 (x 2 8)2 5 8y 2 16 2 The conic is a hyperbola because B 2 4AC > 0. 2 (x 2 8)2 5 8(y 2 2) 2 36. B; 4x 1 y 1 32x 2 10y 1 85 5 0 h 5 8, k 5 2 y A 5 4, B 5 0, C 5 1 Vertex: (8, 2) B2 2 4AC 5 0 2 4(4)(1) 5 216 4p 5 8 The conic is an ellipse because B2 2 4AC < 0 and AÞC. p52 Focus: (8, 4) 37. x2 1 y2 2 14x 1 4y 2 11 5 0 (8, 4) 2 (8, 2) y50 22 x A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 40. 9y2 2 x2 2 54y 1 8x 1 56 5 0 2 The conic is a circle because B 2 4AC < 0, B 5 0 and A 5 C. A 5 21, B 5 0, C 5 9 B2 2 4AC 5 0 2 4(21)(9) 5 36 x2 1 y2 2 14x 1 4y 2 11 5 0 The conic is a hyperbola because B2 2 4AC > 0. 2 14x 1 49) 1 ( y 1 4y 1 4) 5 11 1 49 1 4 2 9y2 2 x2 2 54y 1 8x 1 56 5 0 (x 2 7)2 1 (y 1 2)2 5 64 h 5 7, k 5 22 9( y 2 6y 1 9) 2 (x2 2 8x 1 16) 5 256 1 81 2 16 2 9( y 2 3)2 2 (x 2 4)2 5 9 y Center: (7, 22) (x 2 4)2 } Radius: Ï64 5 8 ( y 2 3)2 2 } 51 9 2 x 22 h 5 4, k 5 3 (7, 22) y Center: (4, 3) a2 5 1, a 5 1 (1, 3) (4, 4) (7, 3) 3 b2 5 9, b 5 3 2 Vertices: (4, 4) and (4, 2) 2 38. x 1 4y 2 10x 1 16y 1 37 5 0 2 B 2 4AC 5 0 2 4(1)(4) 5 216 The conic is an ellipse because B 2 4AC < 0 and AÞC. 2 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. x 1 4y 2 10x 1 16y 1 37 5 0 (x2 2 10x 1 25) 1 4( y2 1 4y 1 4) 5 237 1 25 1 16 2 9x2 1 4y2 2 36x 2 24y 1 36 5 0 9(x 2 4x 1 4) 1 4( y2 2 6y 1 9) 5 236 1 36 1 36 2 2 (x 2 5) 1 4( y 1 2) 5 4 2 9(x 2 2)2 1 4(y 2 3)2 5 36 (x 2 5) 4 } 1 ( y 1 2)2 5 1 h 5 5, k 5 22 Center: (5, 22) (x 2 2)2 4 a 5 4, a 5 2 b2 5 1, b 5 1 ( y 2 3)2 9 }1}51 y 21 2 1 (5, 21) x (3, 22) (5, 22) (5, 23) (7, 22) h 5 2, k 5 3 y (2, 6) Center: (2, 3) a2 5 9 2 a53 Vertices: (3, 22) and (7, 22) b 54 Co-vertices: (5, 21) and (5, 23) Vertices: (2, 6) and (2, 0) b52 Co-vertices: (0, 3) and (4, 3) Algebra 2 Worked-Out Solution Key x A 5 9, B 5 0, C 5 4 2 512 (4, 3) 1 41. 9x 2 1 4y2 2 36x 2 24y 1 36 5 0 A 5 1, B 5 0, C 5 4 2 (4, 2) (0, 3) (2, 3) (4, 3) 1 21 (2, 0) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (x 2 Chapter 9, continued 42. y2 1 14y 1 16x 1 33 5 0 45. If A 5 C, then the conic will be a circle. If AÞC but A and C have the same sign, the conic will be an ellipse. If either A 5 0 or C 5 0, the conic will be a parabola. If A and C have opposite signs, the conic will be a hyperbola. A 5 0, B 5 0, C 5 1 2 B 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. y2 1 14y 1 16x 1 33 5 0 46. ( y2 1 14y 1 49) 5 216x 2 33 1 49 xy 5 a ( y 1 7)2 5 216x 1 16 A 5 0, B 5 1, C 5 0 ( y 1 7)2 5 216(x 2 1) h 5 1, k 5 27 2 Vertex: (1, 27) B2 2 4AC 5 1 2 4(0)(0) 5 1 y The conic is a hyperbola because B2 2 4AC > 0. 47. The foci are c units above and below the center, at x 22 4p 5 216 a y 5 }x (h, k 1 c) and (h, k 2 c). p 5 24 Focus: (23, 27) a The asymptotes are y 5 6}b x shifted horizontally h units and vertically k units: (23, 27) (1, 27) a a ( y 2 k) 5 }b(x 2 h) x55 ( y 2 k) 5 2}b (x 2 h) a ah a bk 2 ah y 5 }bx 2 } 1k b 43. x 2 1 y 2 1 16x 2 8y 1 16 5 0 y 5 }b x 1} b A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 Problem Solving The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 48. (x a bk 1 ah y 5 2}b x 1 } b y (0, 4) 1 16x 1 64) 1 ( y 2 2 8y 1 16) 5 216 1 64 1 16 2 (x 1 8)2 1 ( y 2 4)2 5 64 x 6 h 5 28, k 5 4 y (0, 24) Center: (28, 4) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. ah 8 ft x2 1 y2 1 16x 2 8y 1 16x 5 0 2 a y 5 2}b x 1 } 1k b } Radius: Ï 64 5 8 Top circle: (28, 4) 4 Center: (0, 4) x 24 Radius: 4 Equation: (x 2 0)2 1 ( y 2 4)2 5 42 x2 1 (y 2 4)2 5 16 44. x2 2 4y2 1 8x 2 24y 2 24 5 0 Bottom circle: A 5 1, B 5 0, C 5 24 Center: (0, 24) B2 2 4AC 5 0 2 4(1)(24) 5 16 Radius: 4 The conic is a hyperbola because B2 2 4AC > 0. Equation: (x 2 0)2 1 (y 1 4)2 5 42 x2 2 4y2 1 8x 2 24y 2 24 5 0 x2 1 (y 1 4) 5 16 (x2 1 8x 1 16) 2 4( y 2 1 6y 1 9) 5 24 1 16 2 36 49. x2 2 10x 1 4y 5 0 (x 1 4)2 2 4( y 1 3)2 5 4 x2 2 10x 5 24y (x 1 4)2 } 2 ( y 1 3)2 5 1 4 h 5 24, k 5 23 Center: (24, 23) a2 5 4, a 5 2 b2 5 1, b 5 1 Vertices: (26, 23) and (22, 23) x2 2 10x 1 25 5 24y 1 25 2 (24, 22) 210 (26, 23) (24, 23) (24, 24) (x 2 5)2 5 241 y 2 } 42 25 y x (22, 23) An equation for the path of the leap is (x 2 5)2 5 241 y 2 } . 42 25 Vertex: 1 5, } 4 2 25 25 The person’s jump is } feet high and 4 2(5) 5 10 feet wide. Algebra 2 Worked-Out Solution Key 513 continued 50. 21y 2 2 210y 2 4x2 5 2441 53. a. The intersection is not a circle when the plane crosses the point where the cones meet. It is a point. A 5 24, B 5 0, C 5 21 b. The intersection is not a hyperbola when the plane 2 B 2 4AC 5 0 2 4(24)(21) 5 336 crosses the point where the cones meet. It is a pair of lines. The shape of the path is a hyperbola because B2 2 4AC > 0. c. The intersection is not a parabola when the plane lies 21y2 2 210y 2 4x2 5 2441 along the edge of the cone. It is a line. 21( y2 2 10y 1 25) 2 4x2 5 2441 1 525 Mixed Review for TAKS 21( y 2 5)2 2 4x2 5 84 2 54. D; ( y 2 5) x }2}51 21 4 2 Center: (0, 5) (0, 7) } a 5 2, b 5 Ï21 Vertices: (0, 3) and (0, 7) (2 The expression 3x 2 39,000 represents the population of Texas. y 55. H; Let n 5 number of sides. ( 21, 5 ) (0, 5) 21, 5 ) (n 2 2) + 180 5 135 n }} (0, 3) 1 180n 2 360 5 135n x 45n 5 360 22 51. a. For the hotel, h 5 100, k 5 260 and r 5 150. You will be in range of the transmitter when (x 2 100)2 1 ( y 1 60)2a1502. For the café, h 5 280, k 5 270, and r 5 100. You will be in range of the transmitter when (x 1 80)2 1 ( y 1 70)2a1002. b. At point (0, 0): 2 (0 2 100) The polygon has 8 sides. Lesson 9.7 9.7 Guided Practice (pp. 659–661) 1. x 2 1 y 2 5 13 and y 5 x 2 1 y2 5 13 2 x2 (0 1 80) 1 (0 1 70) a100 1002 6400 1 4900a 2 n58 } 2 11,300 µ 10,000 1502 2 1 (0 1 60)2a 22,500 10,000 1 3600 a y 5 6Ï 13 2 x2 Using the calculator’s intersect feature, the solutions are (22, 23) and (3, 2). 2. x 2 1 8y 2 2 4 5 0 and y 5 2x 1 7 8y2 5 4 2 x2 y2 5 }2 2 } 8 y 5 6Î y } You (0, 0) x (100, 260) Hotel (280, 270) Cafe At the origin, you are in range of the hotel’s transmitter because its inequality is satisfied. You are not in range of the café’s transmitter because its inequality is not satisfied. range is 150 yards, if the hotel’s distance from the café is less than their combined range of 250 yards, there is an overlap. 52. a. An ellipse is formed by cutting the cone-shaped tip, because the cut enters the cone diagonally and exits the other side. b. Hyperbolas are formed by each flat side and the cone-shaped tip, because the flat sides are parallel to the axis of the cone. Algebra 2 Worked-Out Solution Key 1 2 x2 8 }2} The graphs do not intersect. There is no solution. 3. y2 1 6x 2 1 5 0 and y 5 20.4x 1 2.6 y2 5 26x 1 1 } y 5 6Ï 26x 1 1 Using the calculator’s intersect feature, the solutions are approximately (21.57, 3.23) and (222.9, 11.8). 4. y 5 0.5x 2 3 x2 1 4y2 2 4 5 0 x2 1 4(0.5x 2 3)2 2 4 5 0 c. Because the café’s range is 100 yards and the hotel’s 514 x2 1 13,600a22,500 x 1 4(0.25x2 2 3x 1 9) 2 4 5 0 2 x2 1 x2 2 12x 1 36 2 4 5 0 2x2 2 12x 1 32 5 0 2(x2 2 6x 1 16) 5 0 There is no solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9,