Comments
Transcript
Prerequisite Skills (p. 234) x y 1 1 5 25(23)
Chapter 4 Prerequisite Skills (p. 234) Lesson 4.1 1. The x-intercept of the line shown is 3. 4.1 Guided Practice (pp. 237–239) 2. The y-intercept of the line shown is 2. 1. y 5 24x2 3. 25x 1 1 5 25(23) 1 1 2 2 5 25(9) 1 1 5 245 1 1 x 22 21 0 1 2 y 216 24 0 24 216 5 244 Both graphs have the same vertex and axis of symmetry. However, the graph of y 5 24x2 opens down and is narrower than the graph of y 5 x2 . y 4. x 2 x 2 8 5 (23) 2 (23) 2 8 2 2 y 5 x2 2 5 9 2 (23) 2 8 x 1 591328 y 5 24x 2 54 5. (x 1 4)2 5 (23 1 4)2 5 (1)2 5 1 6. 23(x 2 7)2 1 2 5 23(23 2 7)2 1 2 5 23(210)2 1 2 5 23(100) 1 2 2. y 5 2x 2 2 5 5 2300 1 2 5 2298 7. 8. y y x 22 21 0 1 2 y 29 26 25 26 29 y 1 21 21 (3, 0) x x y 9. x 1 1 (0, 2) Both graphs have the same axis of symmetry. However, the graph of y 5 2x 2 2 5 opens down, and its vertex is 5 units lower. y 5 x2 1 1 y 5 2x 2 2 5 y 10. (0, 0) 21 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (5, 4) 1 21 11. x 1 8 5 0 x 5 28 x 12. 3x 2 5 5 0 3x 5 5 5 1 3. f(x) 5 } x 2 1 2 4 x 24 22 0 2 4 y 6 3 2 3 6 x 5 }3 13. 2x 1 1 5 x 14. 4(x 2 3) 5 x 1 9 x1150 4x 2 12 5 x 1 9 Both graphs open up and have the same axis of symmetry. However, the graph of 3x 2 12 5 9 f (x) 5 }4 x2 1 2 is x 5 21 f(x) 1 3x 5 21 x57 f(x) 5 1 1 f(x) 5 4 x 2 1 2 wider than the graph of f (x) 5 x2, and its vertex is 2 units higher. x2 1 x 4. y 5 x 2 2 2x 2 1 y x51 (22) b x 5 2} 5 2} 51 2a 2(1) y 5 (1) 2 2(1) 2 1 5 22 2 Vertex: (1,22) Axis of symmetry: x 5 1 1 21 x (1, 22) y-intercept: 21; (0, 21) x 5 21: y 5 (21)2 2 2(21) 2 1 5 2; (21, 2) Algebra 2 Worked-Out Solution Key 173 Chapter 4, continued 5. y 5 2x 2 1 6x 1 3 3 3 x 5 2} 5 2} 5 2}2 2a 2(2) y 5 21 2}2 2 1 61 2}2 2 1 3 3 2 3 23 3 2 3 2 (2 , 2 ) 3 2 5 2} x5 1 3 3 Vertex: 2}2 , 2}2 x 3 22 2 x 22 y 16 x 22 21 0 y 212 23 0 23 x 24 x 5 21: y 5 2(21) 1 6(21) 1 3 5 21; (21, 21) y 8 2 15 83 , 4 2 (2 (25) y ) 15 21 2}3 2 y 5 2}31 2} 2 51 2} 12 22 22 15 2 15 83 15 x 5 22 22 x Vertex: 1 2} ,} 2 42 15 83 15 2 Axis of symmetry: x 5 2} y-intercept: 2; (0, 2) 1 x 5 23: y 5 2}3 (23) 2 2 5(23) 1 2 5 14; (23, 14) 7. y 5 4x 2 1 16x 2 3 16 b 2 212 22 0 2 4 2 0 2 8 x 26 23 0 3 6 y 212 23 0 23 212 7. y 5 3x 2 3 5} 4 1 1 6. y 5 2}x 2 3 x 5 2} 5 2} 5 2} 2a 2 1 1 0 4 16 4. y 5 23x 2 y-intercept: 3; (0, 3) b 4 2 1 5. y 5 }x2 2 3 Axis of symmetry: x 5 2}2 1 6. f (x) 5 2}x 2 2 5x 1 2 3 21 0 1 x 5 2} 5 2} 5 22 2a 2(4) y 5 4(22)2 1 16(22) 2 3 5 219 The minimum value is y 5 219. 8. R(x) 5 (35 2 x) + (380 1 40x) R(x) 5 13,300 1 1400x 2 380x 2 40x 2 R(x) 5 240x 1 1020x 1 13,300 x 22 y 12 21 0 1 3 y 2 0 3 12 Both graphs open up and have the same vertex and axis of symmetry. However, the graph of y 5 3x 2 is narrower than the graph of y 5 x 2. 8. y 5 5x y 5 3x 2 2 y 5 x2 x 22 y 20 21 0 1 5 y 2 0 5 20 Both graphs open up and have the same vertex and axis of symmetry. However, the graph of y 5 5x 2 is narrower than the graph of y 5 x 2. 4 y 5 5x 2 y 5 x2 2 1020 b x5} 5 2} 5 12.75 2a 2(240) R(12.75) 5 240(12.75) 1 1020(12.75) 1 13,300 The vertex is (12.75, 19,802.5), which means the owner should reduce the price per racer by $12.75 to increase the weekly revenue to $19,802.50. 4.1 Exercises (pp. 240–243) Skill Practice 1. The graph of a quadratic function is called a parabola. 2. Look at the value of a in the quadratic function. If a > 0, the function has a minimum value. If a < 0, the function has a maximum value. 174 Algebra 2 Worked-Out Solution Key x 1 9. y 5 22x 2 x 2 5 19,802.5 x 1 2 y 22 28 21 0 1 22 0 22 y 2 28 Both graphs have the same vertex and axis of symmetry. However, the graph of y 5 22x 2 opens down and is narrower than the graph of y 5 x 2. y 5 x2 1 1 x y 5 22x 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6 b 3. y 5 4x 2 y Chapter 4, continued 10. y 5 2x 2 15. f (x) 5 2x 2 1 2 x 22 21 0 y 24 21 0 21 1 y 2 24 y 5 x2 1 Both graphs have the same vertex and axis of symmetry. However, the graph of y 5 2x 2 opens down. 26 23 0 3 x 1 y 5 2x 2 f (x) 12 3 0 3 12 Both graphs open up and have the same vertex and axis of symmetry. However, the graph 1 3 f (x) 22 21 0 1 2 1 2 1 22 x 22 21 0 g (x) 213 27 25 g(x) 5 x2 x 1 x graph of f(x) 5 x . 1 12. g(x) 5 2}x 2 4 22 0 g (x) 24 21 0 21 2 g(x) g(x) 5 1 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 24 x f (x) 22 0 2 4 7 22 25 22 7 graph of f (x) 5 }4 x 2 2 5 is 2 21 21 0 6 1 1 2 6 21 Both graphs open up and have the same axis of symmetry. However, the graph of y 5 5x 2 1 1 is narrower than the graph of y 5 x 2 and its vertex is 1 unit higher. y 3 f(x) 5 4 x 2 2 5 1 18. g(x) 5 2 } x 2 2 2 5 6 y 5 x2 y5 5x2 1 22 y 17 210 25 0 g (x) 222 27 22 1 1 2 5 17 Both graphs open up and have the same axis of symmetry. However, the graph of y 5 4x 2 1 1 is narrower than the graph of y 5 x 2 and its vertex is 1 unit higher. g(x) 5 2 5 x 2 2 2 y 5 6 3 10 27 222 y g(x) 5 x 2 1 21 0 5 x x 1 1 14. y 5 4x 2 1 1 x wider than the graph of f(x) 5 x 2 and its vertex is 5 units lower. x 1 13. y 5 5x 2 1 1 y Both graphs open up and have the same axis of symmetry. However, the 3 1 g(x) 5 2 4 x 2 22 2 24 f(x) 5 x 2 f(x) is wider than the graph of g(x) 5 x2. x x 3 17. f (x) 5 } x 2 2 5 4 1 g(x) 5 2}4 x 2 opens down and 2 1 4 Both graphs have the same vertex and axis of symmetry. However, the graph of x2 12 Both graphs have the same axis of symmetry. However, the graph of g(x) 5 22x 2 2 5 opens down and is narrower than the graph of g(x) 5 x 2. Also, its vertex is 5 units lower. g(x) 5 22x 2 2 5 24 2x 2 27 213 2 2 2 x f(x) 5 1 g(x) f(x) 5 x 2 of f (x) 5 } x 2 is wider than the f(x) 5 x 2 Both graphs have the same axis of symmetry. However, the graph of f(x) 5 2x 2 1 2 opens down and its vertex is 2 units higher. 4 1 f(x) 5 3 x 2 f(x) 16. g(x) 5 22x 2 2 5 f(x) 6 22 1 1 11. f (x) 5 }x 2 3 x x x Both graphs have the same axis of symmetry. However, the graph of 1 g(x) 5 2 }5 x 2 2 2 opens down and is wider than the graph of g(x) 5 x 2. Also, its vertex is 2 units lower. 4 y5 y 5 4x2 1 1 1 x2 x b 19. The x-coordinate of the vertex of a parabola is 2}, 2a b not } . The x-coordinate of the vertex is: 2a 24 b x52} 5 2} 5 23. 2(4) 2a Algebra 2 Worked-Out Solution Key 175 Chapter 4, continued 26. f(x) 5 26x 2 2 4x 2 5 20. It is correct that the y-intercept of the graph is the value of c. However, the value of c in y 5 4x 1 24x 2 7 is 27. 2 21. y 5 x 2 1 2x 1 1 (21, 0) x 5 21 Vertex: (21, 0) 1 x Axis of symmetry: x 5 21 1 3 1 13 3 (2 , 2 ) 1 3 Axis of symmetry: x 5 2} x x 5 1: x 5 1: y 5 12 1 2(1) 1 1 5 4; (1, 4) 22. y 5 3x 2 2 6x 1 4 f(1) 5 26(1)2 2 4(1) 2 5 y 2 27. y 5 }x2 2 3x 1 6 3 (23) 9 b x 5 2} 5 2} 5 }4 2a 2 21 } 2 y 5 3(1) 2 6(1) 1 4 5 1 2 Vertex: (1, 1) 2 Axis of symmetry: x 5 1 x x51 x 5 21: y 5 3(21) 2 6(21) 1 4 5 13; (21, 13) 2 23. y 5 24x 2 1 8x 1 2 y y 5 }31 }4 2 2 31 }4 2 1 6 5 } 8 2 9 2 21 9 9 21 4 8 (, ) 3 23 Vertex: 1 }4, } 82 9 21 (1, 6) 8 x 5 2} 5 2} 51 2a 2(24) y 3 (1, 1) 21 y-intercept: 4; (0, 4) 1 x 5 23 5 215; (1,215) (26) x 5 2} 5 2} 51 2a 2(3) x5 x 9 4 9 Axis of symmetry: x 5 }4 2 y 5 24(1) 2 1 8(1) 1 2 5 6 21 x Vertex: (1, 6) y-intercept: 6; (0, 6) 2 x 5 23: y 5 }3 (23)2 2 3(23) 1 6 5 21; (23, 21) y–intercept: 2; (0, 2) x51 x 5 21: y 5 24(21) 1 8(21) 1 2 5 210; (21, 210) 2 24. y 5 22x 2 2 6x 1 3 (26) 3 ( 3 15 2 22 , 2 3 22 x 15 5} 2 1 2 8 21 13 x 5} 3 8 13 x 5 22 2 8 2 Vertex: 1 2}3, } 32 3 3 15 Vertex: 2}2 , } 2 13 3 y 5 2}41 2}3 2 2 41 2}3 2 2 1 3 y 5 221 2}2 2 2 61 2}2 2 1 3 8 3 (2 , ) 8 21 2}4 2 x 5 2} 5 2} 5 2}2 2a 2(22) 3 2 (24) b y 8 x 5 23 x 5 2} 5 2} 5 2}3 2a 3 y ) 3 28. y 5 2}x 2 2 4x 2 1 4 8 Axis of symmetry: x 5 2}3 3 Axis of symmetry: x 5 2}2 y-intercept: 21; (0,21) y-intercept: 3; (0, 3) 3 x 5 22: y 5 2}4(22)2 2 4(22) 2 1 5 4; (22, 4) x 5 1: y 5 22(1) 2 6(1) 1 3 5 25; (1, 25) 2 25. g(x) 5 2x 2 2 2x 2 1 (22) b x 5 2} 5 2} 5 21 2a 2(21) g(21) 5 2(21) 2 2 2(21) 2 1 (21, 0) 23 x 5 21 50 Vertex: (21, 0) Axis of symmetry: x 5 21 y-intercept: 21; (0, 21) x 5 1: g(1) 5 2(1) 2 2 2(1) 2 1 5 24; (1, 24) Algebra 2 Worked-Out Solution Key 3 29. g(x) 5 2}x2 1 2x 1 2 5 y 1 x y 5 3 g1 }3 2 5 2}51 }3 2 1 21 }3 2 1 2 5 3 5 2 11 5} 3 5 11 3 (, ) 5 b 2 x 5 2} 5 2} 5 }3 2a 3 21 2}5 2 2 22 x x5 5 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Axis of symmetry: x 5 1 176 y 3 13 y-intercept: 25; (0,25) y-intercept: 1; (0, 1) b 13 1 Vertex: 1 2}3, 2} 32 1 y 5 (21) 1 2(21) 1 15 0 b 1 2 1 1 2 1 f 1 2}3 2 5 261 2}3 2 2 41 2}3 2 2 5 5 2} 3 y b 2 x 5 2} 5 2} 5 21 2a 2(1) b (24) b x 5 2} 5 2} 5 2}3 2a 2(26) Chapter 4, continued Vertex: 1 }3 , } 32 5 11 33. y 5 26x 2 2 1 Because a < 0, the function has a maximum value. 5 Axis of symmetry: x 5 }3 y-intercept: 2; (0, 2) y 5 26(0)2 2 1 5 21 3 3 x 5 21: g(x) 5 2}5 (21)2 1 2(21) 1 2 5 2}5; The maximum value is y 5 21. 34. y 5 9x2 1 7 1 21, 2}5 2 3 Because a > 0, the function has a minimum value. b 0 b 1 30. f(x) 5 } x 2 1 x 2 3 2 x 5 21 5 2} 50 x 5 2} 2a 2(9) y y 5 9(0)2 1 7 5 7 1 1 x 5 2} 5 2} 5 21 2a 1 21 }2 2 1 f (21) 5 }2 (21)2 1 (21) 2 3 7 5 2}2 22 x The minimum value is y 5 7. 35. f (x) 5 2x 2 1 8x 1 7 Because a > 0, the function has a minimum value. 7 2 (21, 2 ) 8 b x 5 2} 5 2} 5 22 2a 2(2) Vertex: 1 21, 2}2 2 f (22) 5 2(22)2 1 8(22) 1 7 5 21 Axis of symmetry: x 5 21 The minimum value is f (x) 5 21. 7 36. g(x) 5 23x2 1 18x 2 5 y-intercept: 23; (0, 23) Because a < 0, the function has a maximum value. 1 x 5 2: f (2) 5 }2 (2)2 1 2 2 3 5 1; (2, 1) y (24) b g(3) 5 23(3)2 1 18(3) 2 5 5 22 The maximum value is g(x) 5 22. 5 x 5 2} 5 2} 5 }4 2a 8 152 2} 3 37. f (x) 5 }x 2 1 6x 1 4 2 1 5 5 Vertex: }4 , }2 5 5 5 4 5 2 (, ) 2 y 5 }5 1 }4 2 2 41 }4 2 1 5 5 }2 8 5 2 21 x5 2 Because a > 0, the function has a minimum value. x 5 4 3 f (22) 5 }2 (22)2 1 6(22) 1 4 5 22 5 The minimum value is f (x) 5 22. y-intercept: 5; (0, 5) 1 38. y 5 2} x 2 2 7x 1 2 4 x 5 21: y 5 }5 (21)2 2 4(21) 1 5 5 } ; 21, } 5 1 52 8 53 53 Because a < 0, the function has a maximum value. 5 32. y 5 2} x 2 2 x 2 4 3 y 1 (21) 3 b x 5 2} 5 2} 5 2} 5 2a 10 } 21 23 2 2 1 b 21 x 2 3 , 10 (2 21 2}4 2 ) 1 y 5 2}4 (214)2 2 7(214) 1 2 5 51 The maximum value is y 5 51. 39. D; Because the y-intercept changes from 2 to 23, the 77 5 2} 20 1 77 220 (27) 5 2} 5 214 x 5 2} 2a 1 3 x 5 210 5 3 2 3 y 5 2}3 2} 2 2} 24 10 10 3 77 Vertex: 2} , 2} 10 20 6 b 5 2} 5 22 x 5 2} 2a 3 21 }2 2 Axis of symmetry: x 5 }4 1 18 b 5 2} 53 x 5 2} 2a 2(23) 8 31. y 5 } x 2 2 4x 1 5 5 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 b 5 2} 50 x 5 2} 2a 2(26) vertex moves down the y-axis. 40. C; The graph of y 5 ax 2 1 bx 1 c is wider than the 2 graph of y 5 x2 if {a{ < 1. 41. y 5 20.02x 2 1 x 1 6 3 Axis of symmetry: x 5 2} 10 a 5 20.02 y-intercept: 24; (0, 24) b51 1 5 20 20 ; 1, 2} x 5 1: y 5 2}3 (1)2 2 1 2 4 5 2} 3 3 2 c56 Algebra 2 Worked-Out Solution Key 177 Chapter 4, continued 42. y 5 20.01x 2 1 0.7x 1 6 50. y 5 0.25x 2 2 1.5x 1 3 a 5 20.01 (21.5) b x 5 2} 5 2} 53 2a 2(0.25) b 5 0.7 y 5 0.25(3)2 2 1.5(3) 1 3 c56 5 0.75 43. Vertex: (4, k) b x Axis of symmetry: x 5 3 Sample answer: y 5 x2 2 8x 1 1 y-intercept: 3; (0, 3) x 5 2: y 5 0.25(2)2 2 1.5(2) 1 3 5 1; (2, 1) y 5 22x 1 16x 2 3 2 51. 1 y 5 2}2 x2 1 4x 1 5 f (x) 5 4.2x2 1 6x 2 11 b x 5 2} 2a 44. C; y 5 0.5x2 2 2x (22) b 5 2} 52 x 5 2} 2a 2(0.5) 6 5 5 2} 5 2}7 2(4.2) y 5 0.5(2)2 2 2(2) 5 22 f 1 2}7 2 5 4.21 2}7 22 1 61 2}7 2 2 1 5 Vertex: (2, 22) 5 45. A; y 5 0.5x 1 3 0 b 5 2} 50 x 5 2} 2a 2(0.5) 5 22 46. B; y 5 0.5x 2 2 2x 1 3 (22) b x 5 2} 5 2} 52 2a 2(0.5) ( 5 x 5 27 y 0 g(0) 5 1.75(0)2 2 2.5 x50 1 x50 x 5 2: g(2) 5 1.75(2)2 2 2.5 5 4.5; (2, 4.5) 21 x 5 4.5; (5, 4.5) y 1 21 x x50 g(0) 5 20.5(0)2 2 5 5 25 x (0, 22.5) Axis of symmetry: x 5 0 (0, 2) 2 22 Vertex: (0, 22.5) Vertex: (0, 2) Axis of symmetry: x 5 0 1 5 22.5 y f (0) 5 0.1(0)2 1 2 5 2 53. Because the points (2, 3) and (24, 3) have the same y-value and lie on the graph of a quadratic function, they are mirror images of each other. The axis of symmetry divides a parabola into mirror images, therefore, the axis of symmetry is halfway between the x-values. The axis of symmetry is x 5 21. 2 1 24 x5} 5 21 2 (0, 25) 54. y 5 ax2 1 bx 1 c x 5 2: g(2) 5 20.5(2) 2 5 2 b The x-coordinate of the vertex is 2} . 2a 5 27; (2,27) x 5 25 y 5 0.3(25) 1 3(25) 2 1 (25, 28.5) Axis of symmetry: x 5 25 y-intercept: 21; (0, 21) x 5 1: y 5 0.3(1)2 1 3(1) 2 1 5 2.3; (1, 2.3) ab2 4a a(b2 2 2b2) 2b2 1 b1 2} 1 c 5 }2 1 } 1c y 5 a1 2} 2a 2 2a 2 2a b 2 y 2 22 2 Vertex: (25, 28.5) x x 5 2} 5 2} 50 2a 2(1.75) 47. f (x) 5 0.1x 2 1 2 0 b 5 2} 50 x 5 2} 2a 2(0.1) 5 28.5 ) 52. g(x) 5 1.75x 2 2 2.5 b 49. y 5 0.3x2 1 3x 2 1 3 b x 5 2} 5 2} 5 25 2a 2(0.3) 1 22 27 x 5 1: f (1) 5 4.2(1)2 1 6(1) 2 1 5 9.2; (1, 9.2) Vertex: (2, 1) Axis of symmetry: x 5 0 5 27 , y-intercept: 21; (0, 21) y 5 0.5(2)2 2 2(2) 1 3 5 1 Vertex: (0, 25) 2 5 Axis of symmetry: x 5 2}7 Vertex: (0, 3) 48. g(x) 5 20.5x 2 5 0 b x 5 2} 5 2} 50 2a 2(20.5) y Vertex: 1 2}7, 2} 72 y 5 0.5(0)2 1 3 5 3 x 5 5: f (5) 5 0.1(5)2 1 2 5 22 5 2} 7 2 Algebra 2 Worked-Out Solution Key (3, 0.75) x ab2 2 2ab2 4a b b2 1c5} 1 c 5 2} 1c 5} 2 2 4a 4a Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b 1 21 Vertex: (3, 0.75) 2} 5 4 l 2}a 5 8 2a 178 x53 y Chapter 4, continued Problem Solving b. 55. R(x) 5 (1 1 0.05x) + (4000 2 80x) 0 x R(x) 5 4000 2 80x 1 200x 2 4x2 120 b 3 4 x 5 2} 5 2} 5 15 2a 2(24) x R(15) 5 24(15)2 1 120(15) 1 4000 5 4900 P (x) 1562.5 Price: 1 1 0.05x l c. R(x) Profits (dollars) Price Sales 5 + (dollars/camera) (cameras) 5 (320 2 20x) 2.5 1540 1520 0 1 2 3 4 x Price decrease R(x) 5 2100x2 1 200x 1 22,400 The theater should reduce the price per ticket by $2.50 to increase the weekly profit to $1562.50. 200 x 5 2} 5 2} 51 2a 2(2100) g 60. y 5 2} x 2 1 x 10,000 R(1) 5 2100(1) 1 200(1) 1 22,400 5 22,500 2 32 a. ye 5 2} x 2 1 x 5 20.0032x 2 1 x 10,000 Price: 320 2 20x l 320 2 20(1) 5 300 5.3 x2 1 x 5 20.00053x2 1 x ym 5 2} 10,000 The store should decrease the price per digital camera to $300 to increase the monthly revenue to $22,500. b. ym 1 20.00053x2 1 x 7 1 57. y 5 } x2 2 } x 1 500 9000 15 b 7 1560 1500 0 + (70 1 5x) R(x) 5 22,400 1 1600x 2 1400x 2 100x2 b 6 (2.5, 1562.5) The store should increase the price per song to $1.75 to increase the daily revenue to $4900. Revenue (dollars) 5 P(x) 1580 1 1 0.05(15) 5 1.75 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 P (x) 1500 1540 1560 1560 1540 1500 1440 1360 R(x) 5 24x2 1 120x 1 4000 56. 1 7 1 2} 15 2 21 } 9000 2 x 5 2} 5 2} 5 2100 2a 1 7 1 (2100)2 2 } (2100) 1 500 5 10 y5} 9000 15 ye 1 20.0032x2 1 x The golf ball travels 312.5 feet on Earth. The golf ball travels 1886.8 feet on the moon. The height above the road of a cable at its lowest point is 10 feet. 1886.8 c. A golf ball travels } or about 6 times further on 312.5 58. y 5 20.2x2 1 1.3x b 1.3 the moon than on Earth. Smaller values of g produce longer distances. x 5 2} 5 2} 5 3.25 2a 2(20.2) y 5 20.2(3.25)2 1 1.3(3.25) ø 2.1 P 5 2w 1 * 61. No, the mouse cannot jump over a fence that is 3 feet high because the maximum height it can jump is about 2.1 feet. P 2 2w 5 * A 5 *w 5 (P 2 2w)w 5 Pw 2 2w2 5 22w2 1 Pw b P 1 5 2} 5 }4P w 5 2} 2a 2(22) 59. a. Price Profit Sales 2 Expenses 5 + (dollars/ticket) (dollars) (tickets) (dollars) A 5 221 }4P 2 1 P1 }4P 2 5 2}8 P 2 1 }4 P 2 5 }8 P 2 1 2 1 1 1 1 In terms of P, the maximum area that the swimming P(x) 5 (20 2 x) + (150 1 10x) 2 5 3000 1 200x 2 150x 2 10x2 2 1500 5 210x2 1 50x 1 1500 1500 1 section can have is }8 P 2 ft2. Mixed Review for TAKS 62. D; Liz’s high score can be represented using the expression 3x 2 1200. Algebra 2 Worked-Out Solution Key 179 Chapter 4, continued Lesson 4.2 63. G; c 5 25n 1 1400 4.2 Guided Practice (pp. 246–248) 9900 5 25n 1 1400 1. y 5 (x 1 2)2 2 3 8500 5 25n 340 5 n 340 students attended the banquet. Graphing Calculator Activity 4.1 (p. 244) 1. y 5 x 2 2 6x 1 4 The minimum value of the function is y 5 25 and occurs at x 5 3. Minimum X=3 Y=-5 2. f (x) 5 x 2 2 3x 1 3 The minimum value of the function is f (x) 5 0.75 and occurs at x 5 1.5. Minimum X=1 5 . Y=0 5 7 . 3. y 5 23x 1 9x 1 2 2 The maximum value of the function is y 5 8.75 and occurs at x 5 1.5. x 5 22 a 5 1, h 5 22, k 5 23 Vertex: (22, 23) Axis of symmetry: x 5 22 x 5 0: y 5 (0 1 2)2 2 3 5 1; (0, 1) (22, 23) x 5 21: y 5 (21 1 2)2 2 3 5 22; (21, 22) 2. y 5 2(x 2 1)2 1 5 a 5 21, h 5 1, k 5 5 Vertex: (1, 5) Axis of symmetry: x 5 1 1 x 5 0: y 5 2(0 2 1)2 1 5 22 5 4; (0, 4) x 5 21: y 5 2(21 2 1)2 1 5 5 1; (21, 1) 1 3. f (x) 5 } (x 2 3)2 2 4 2 1 a 5 }2, h 5 3, k 5 24 Ma imum x X=1 5 . 1 21 x y (1, 5) x x51 x53 y Vertex: (3,24) Axis of symmetry: x 5 3 y 1 21 x 1 Y=8 5 7 . x 5 1: f (x) 5 }2 (1 2 3)2 2 4 5 22; (1, 22) 4. y 5 0.5x 1 0.8x 2 2 2 (3, 24) The minimum value of the function is y 5 22.32 and occurs at x 5 20.8. 4. The graphs of both functions open up and have the same Minimium X=-0 8 . Y=-2 32 . vertex and axis of symmetry. However, the a values of the functions differ. The graph of the function 1 y5} (x 2 1400)2 1 27 is wider than the graph of 7000 1 1 5. h(x) 5 } x 2 2 3x 1 2 2 (x 2 1400)2 1 27. the function y 5 } 6500 The minimum value of the function is h(x) 5 22.5 and occurs at x 5 3. 5. y 5 (x 2 3)(x 2 7) x-intercepts: p 5 3 and q 5 7 Minimium X=3 Y=-2 5 . p1q x55 y 317 x5} 5} 55 2 2 1 1 x (3, 0) (7, 0) y 5 (5 2 3)(5 2 7) 5 24 3 6. y 5 2} x 2 1 6x 2 5 8 Vertex: (5, 24) The maximum value of the function is y 5 19 and occurs at x 5 8. (5, 24) Axis of symmetry: x 5 5 6. f (x) 5 2(x 2 4)(x 1 1) Maximum X=8 y x-intercepts: p 5 4 and Y=19 3 x52 2 q 5 21 22 4 1 (21) p1q 3 5} 5 }2 x5} 2 2 x (21, 0) (4, 0) f 1 }2 2 5 21 }2 2 4 21 }2 1 1 2 3 3 3 3 2 25 Vertex: 1 }2, 2} 22 3 25 3 Axis of symmetry: x 5 }2 180 Algebra 2 Worked-Out Solution Key 25 2 ( ,2 ) 5 2} 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 x 5 21: f (x) 5 }2 (21 2 3)2 2 4 5 4; (21, 4)