Comments
Description
Transcript
Ï
Chapter 4, continued Chapter 4 Review (pp. 318–322) 2. J; Price (dollars/drum) + 1. To determine whether a function has a maximum value Number sold each month (drums) > $6500 (120 2 5x) + (50 1 4x) > 6500 3. C; 2. A pure imaginary number is a complex number a 1 bi h 5 216t 2 1 v0 t 1 h0 where a 5 0 and b Þ 0. 3 5 216t 2 1 50t 1 5 3. A function of the form y 5 a(x 2 h)2 1 k is written in 0 5 216t 2 1 50t 1 2 vertex form. }} 250 6 Ï50 2 4(216)(2) 2(216) 4. Sample answer: y 5 4x 2 2 2x 1 7 250 6 Ï 2628 5. y 5 x 2 1 2x 2 3 2 t 5 }} b2 2 4ac 5 (22)2 2 4(4)(7) 5 2108 } t 5 }} 232 b x 5 2} 5 2} 5 21 2a 2(1) Reject the negative solution, 20.04. The ball is in the air for about 3.16 seconds. y 5 (21)2 1 2(21) 2 3 5 24 } Vertex: (21, 24) y x 5 21 Axis of symmetry : x 5 21 } 2 2 {24 1 5i{ 5 Ï(24) 1 5 5 Ï41 2 x 5 1: 5. C; 2 y 5 1 1 2(1) 2 3 5 0; (1,0) 2 x-intercept: (0, 0), (5, 0) x (21, 24) y 5 a(x 2 p)(x 2 q) 6. y 5 23x 2 1 12x 2 7 y 5 a(x 2 0)(x 2 5) 212 b y 5 ax(x 2 5) x 5 2} 5} 52 2a 2(23) Use the point (3, 3.8) to find a. y 5 23(2)2 1 12(2) 2 7 5 5 3.8 5 a(3)(3 2 5) Vertex: (2, 5) 3.8 5 26a y (2, 5) Axis of symmetry: x 5 2 20.63 ø a Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 t ø 3.16 or t ø 20.04 4. H; y-intercept: 27; (0, 27) y 5 20.63x (x 2 5) The equation y 5 20.63x (x 2 5) models the parabolic cross section of the lamp. x52 x 5 1: 1 21 y 5 23(1) 1 12(1) 2 7 2 x 5 2; (1, 2) 6. J; (5 2 9i )(5 1 9i ) 5 25 1 45i 2 45i 2 81i 2 5 25 2 81(21) 5 106 7. or a minimum value, look at the coefficient a of the x 2 term. If a < 0, the function has a maximum value. If a > 0, the function has a minimum value. Area of Area of Area of 5 vertical 1 horizontal stripes stripe stripe 1 } (8)(5) 5 8x 1 (5 2 x)(x) 3 13.33 5 8x 1 5x 2 x 2 x 2 2 13x 1 13.33 5 0 7. f (x) 5 2x 2 2 2x 2 6 b (22) x 5 2} 5 2} 5 21 2a 2(21) f (21) 5 2(21)2 2 2(21) 2 6 5 25 Vertex: (21, 25) Axis of symmetry: x 5 21 y-intercept: 26; (0, 26) x 5 1: } 5 29; (1, 29) 8. y 5 (x 2 1)(x 1 5) }} 13 6 Ï(213) 2 4(1)(13.33) 2(1) 2 x 5 }}} } 13 6 Ï 115.68 x 5 }} 2 y 2 22 x (21, 25) f (1) 5 212 2 2(1) 2 6 x 5 }} 2a 2b 6 Ïb 2 2 4ac x 5 21 x 5 22 x-intercepts: p 5 1 and q 5 25 p1q y 2 21 1 1 (25) x x5} 5} 5 22 2 2 y 5 (22, 21)(22 1 5) 5 29 x ø 11.9 or x ø 1.1 Vertex: (22, 29) If x ø 11.9 inches, the border will be bigger than the paper, so x ø 1.1 inches. The width x of the stripes will be about 1.1 inches. Axis of symmetry: x 5 22 (22, 29) Algebra 2 Worked-Out Solution Key 249 Chapter 4, continued 9. g(x) 5 (x 1 3)(x 2 2) 1 1 21 x Because the x-intercepts are 0 and 33, the flea jumped a distance of 33 centimeters. p1q 1 1 2 x 5 22 1 4 (2 , 26 ) y 5 20.073(16.5)(16.5 2 33) ø 19.9 25 5 2} 4 The flea’s maximum height was about 19.9 centimeters. Vertex: 1 2}2 , 2} 42 25 1 15. x 2 1 5x 5 0 x(x 1 5) 5 0 1 Axis of symmetry: x 5 2}2 x 5 0 or x 1 5 5 0 10. y 5 23(x 1 1)(x 2 6) y 1 22, ( x-intercepts: p 5 21 and q 5 6 p1q 21 1 6 3 36 4 x 5 0 or ) 5 z 2 2 63z 5 0 z(z 2 63) 5 0 y 5 231 }2 1 1 21 }2 2 6 2 5 } 4 5 147 5 5 147 Vertex: }2 , } 4 x 5 25 z2 5 63z 16. x5} 5} 5 }2 2 2 1 0 1 33 5} 5 16.5 x5} 2 2 2 z50 1 x 5 22 5 or z 2 63 5 0 z 5 0 or 22 x 5 17. Axis of symmetry: x 5 }2 z 5 63 s 2 6s 2 27 5 0 2 (s 1 3)(s 2 9) 5 0 11. y 5 (x 2 2)2 1 3 s1350 y or s 2 9 5 0 s 5 23 or Vertex: (2, 3) 18. k 1 12k 2 45 5 0 Axis of symmetry: x 5 2 (k 1 15)(k 2 3) 5 0 x 5 0: y 5 (0 2 2) 1 3 5 7; (0, 7) 2 x 5 1: y 5 (1 2 2) 1 3 5 4; (1, 4) k 1 15 5 0 (2, 3) 1 2 x52 21 x 12. f (x) 5 (x 1 6) 1 8 x 1 18x 5 281 19. x 2 1 18x 1 81 5 0 y (x 1 9)2 5 0 x1950 Axis of symmetry: x 5 26 x 5 22: x 5 29 (26, 8) f (22) 5 (22 1 6) 1 8 2 x 5 24: n2 1 5n 5 24 20. x 5 26 5 24; (22, 24) n2 1 5n 2 24 5 0 2 21 (n 1 8)(n 2 3) 5 0 x n1850 f (24) 5 (24 1 6) 1 8 5 12; (24, 12) 2 x 5 28 Vertex: (28, 23) 21. Original playground y 5 22(26 1 8) 2 3 2 x 5 25: y 5 22(25 1 8)2 2 3 5 221; (25, 221) n53 x x (28, 23) 5 211; (26, 211) or n 2 3 5 0 n 5 28 or y 1 21 Axis of symmetry: x 5 28 x 5 26: k53 2 Vertex: (26, 8) 13. y 5 22(x 1 8) 2 33 or k 2 3 5 0 k 5 215 or 2 2 s59 2 x 48 ft 72 ft New New New area 5 length + width (square feet) (feet) (feet) 2(72)(48) 5 (72 1 x) + (48 1 x) 6912 5 3456 1 120x 1 x 2 0 5 x 2 1 120x 2 3456 0 5 (x 1 144)(x 2 24) 250 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 y 5 20.073(x 2 0)(x 2 33) 2 p1q 23 1 2 1 x5} 5} 5 2}2 2 2 g1 2}2 2 5 1 2}2 1 3 21 2}2 2 2 2 14. y 5 20.073x(x 2 33) y x-intercepts: p 5 23 and q 5 2 Chapter 4, continued x 1 144 5 0 or x 2 24 5 0 x 5 2144 or 35. x 2 2 6x 2 15 5 0 x2 2 6x 5 15 x 5 24 x 2 2 6x 1 9 5 15 1 9 Reject the negative value, 2144. The playground’s length and width should each be increased by 24 feet. 16 5 38r 2 12r 22. (x 2 3)2 5 24 2 12r 2 2 38r 1 16 5 0 6r 2 19r 1 8 5 0 36. 3x 2 2 12x 1 1 5 0 (3r 2 8)(2r 2 1) 5 0 3r 2 8 5 0 8 r 5 }3 or 2r 2 1 5 0 or 1 r 5 }2 3x2 2 12x 5 21 3(x2 2 4x) 5 21 3(x 2 4x 1 4) 5 21 1 3(4) 2 3(x 2 2)2 5 11 23. 3x 2 2 24x 2 48 5 0 x 2 2 8x 2 16 5 0 11 (x 2 2)2 5 } 3 }} 2(28) 6 Ï(28) 2 4(1)(216) 2 x 5 }}} 2(1) Î } 11 x2256 } 3 } 8 6 Ï 128 5} 2 Î } 11 x526 } 3 } 8 6 8Ï 2 5} 2 } Ï33 x526} 3 } 5 4 6 4Ï 2 } x 5 4 2 Ï2 or } x 5 4 1 Ï2 37. x 2 1 3x 2 1 5 0 24. 20a 2 13a 2 21 5 0 x2 1 3x 5 1 2 (4a 1 3)(5a 2 7) 5 0 9 4a 1 3 5 0 3 1 x 1 }32 2 2 7 a 5 }5 25. 3x 2 5 108 26. 5y 2 1 4 5 14 } y2 5 2 27. 3(p 1 1)2 5 81 3 } s 5 4:r 2 28. (p 1 1) 5 27 510,000,000 5 4:r 3 p 1 1 5 6Ï27 }} } 24 6 Ï 28 Ï127,500,000 6 }} 5r :F } p 5 21 6 3Ï3 66370.6 5 r The radius of Earth is about 6370.6 kilometers. 29. 29i(2 2 i) 5 218i 1 9i 2 5 218i 1 9(21) 5 29 2 18i 30. (5 1 i)(4 2 2i) 5 20 2 10i 1 4i 2 2i 2 31. (2 2 5i)(2 1 5i) 5 4 1 10i 2 10i 2 25i2 5 4 2 25(21) 5 4 1 25 5 29 } } The solutions}are x 5 22 6 Ï 7 ø 0.65 and x 5 22 2 Ï 7 ø 24.65.0. 9x 2 5 26x 2 1 39. 9x 1 6x 1 1 5 0 2 }} 26 6 Ï62 2 4(9)(1) x 5 }} 2(9) } 5 20 2 6i 2 2(21) 5 22 2 6i } 24 6 2Ï 7 x5} 5} 5 22 6 Ï 7 2 2 }} } } Ï13 24 6 Ï42 2 4(1)(23) x 5 }} 2(1) 2 } 5 r2 : p 1 1 5 63Ï3 13 38. x 2 1 4x 2 3 5 0 127,500,000 } Ï x 5 2}2 6 } 2 y 5 6Ï 2 x 5 66 } 3 2 x 5 6 Ï 36 13 5} 4 x 1 }2 5 6 } 4 5y 5 10 2 9 x2 1 3x 1 }4 5 1 1 }4 or 5a 2 7 5 0 a 5 2}4 or Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } x 5 3 6 2Ï 6 2 x 5 36 } x 2 3 5 6Ï 24 26 6 Ï 0 26 1 5} 5 2}3 x5} 18 18 1 The solution is 2}3 . 32. (8 2 6i) 1 (7 1 4i) 5 (8 1 7) 1 (26 1 4)i 5 15 2 2i 33. (2 2 3i) 2 (6 2 5i) 5 (2 2 6) 1 (23 1 5)i 5 24 1 2i 4i 212i 2 24i2 23 2 6i 4i 34. } 5 } + } 5 }}2 23 1 6i 23 2 6i 23 1 6i 9 1 18i 2 18i 2 36i 212i 2 24(21) 24 2 12i 8 4 5 }} 5} 5} 2} i 45 15 15 9 2 36(21) Algebra 2 Worked-Out Solution Key 251 Chapter 4, continued 1 44. } x 2 1 3x 2 6 > 0 2 6x2 2 8x 5 23 6x 2 8x 1 3 5 0 2 1 2 2(28) 6 Ï(28) 2 4(6)(3) 2 x 5 }}} 2(6) 8 6 Ï28 } } Î }} 23 6 32 2 41 }2 2(26) 1 x5 4 6 iÏ2 x5} 5} 5} 12 12 6 4 1 iÏ 2 21 }2 2 1 } } 4 2 iÏ 2 x 5 23 6 Ï21 The solutions are } and } . 6 6 x ø 1.58 or x ø 27.58 41. h 5 216t 2 1 v0t 1 h0 The solution of the inequality is approximately x < 27.58 or x > 1.58. 0 5 216t 2 2 40t 1 9 }} } 2(240) 6 Ï(240)2 2 4(216)(9) 2(216) 45. 40 6 Ï2176 232 t 5 }}} 5 } y 5 a(x 2 p)(x 2 q) y 5 a(x 1 3)(x 2 2) t ø 22.71 or t ø 0.21 12 5 a(3 1 3)(3 2 2) Reject the negative solution. The ball is in the air for about 0.21 second after it is spiked. 12 5 6a 42. 2x 2 2 11x 1 5 < 0 25a A quadratic function is y 5 2(x 1 3)(x 2 2). y 2 2x2 2 11x 1 5 5 0 2 (2x 2 1)(x 2 5) 5 0 x 46. y 5 ax 2 1 bx 1 c 2 5 a(5)2 1 b(5) 1 c l 25a 1 5b 1 c 5 2 1 x 5 }2 or x 5 5 2 5 a(0)2 1 b(0) 1 c l c52 26 5 a(8)2 1 b(8) 1 c l 64a 1 8b 1 c 5 26 The solution of the inequality 25a 1 5b 1 c 5 2 1 is }2 < x < 5. 25a 1 5b 1 2 5 2 25a 1 5b 5 0 43. 2x 1 4x 1 3q0 2 64a 1 8b 1 c 5 26 2x 1 4x 1 3 5 0 2 64a 1 8b 1 2 5 26 }} 24 6 Ï42 2 4(21)(3) 2(21) x 5 }} } 24 6 Ï28 64a 1 8b 5 28 38 200a 1 40b 5 0 3 (25) 2320a 2 40b 5 40 25a 1 5b 5 0 } 24 6 2Ï 7 x5} 5} 22 22 64a 1 8b 5 28 } 5 2 6 Ï7 2120a 5 40 x ø 4.65 or x ø 20.65 1 a 5 2}3 y 25a 1 5b 5 0 25 1 2}3 2 1 5b 5 0 1 25 3 1 5b 5 0 2} 3 25 1 5b 5 } 3 x 5 b 5 }3 The solution of the inequality is approximately 5 1 The solution is a 5 2}3, b 5 }3 , and c 5 2. A quadratic 20.65axa4.65. 1 5 function is y 5 2}3 x2 1 }3 x 1 2. 47. y 5 a(x 2 h)2 1 k y 5 a(x 2 2)2 1 7 2 5 a(4 2 2)2 1 7 2 5 4a 1 7 25 5 4a 5 2}4 5 a 5 A quadratic function is y 5 2}4 (x 2 2)2 1 7. 252 x }} } 8 6 2Ï 2 i 22 } x 2 1 3x 2 6 5 0 }} } y 2 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 40. Chapter 4, continued y 5 a(x 2 h)2 1 k 48. x 5 21 y 5 a(x 2 12) 1 7 2 y 2 22 0 5 a(0 2 12)2 1 7 x 0 5 144a 1 7 27 5 144a 7 2} 5a 144 A quadratic function that models the soccer ball’s path is (21, 218) 7 y 5 2} (x 2 12)2 1 7. 144 4. x 2 11x 1 30 5 (x 2 6)(x 2 5) 2 5. z 2 1 2z 2 15 5 (z 1 5)(z 2 3) Chapter 4 Test (p. 323) 6. n 2 2 64 5 n2 2 82 5 (n 1 8)(n 2 8) 1. y 5 x2 2 8x 2 20 7. 2s 2 1 7s 2 15 5 (2s 2 3)(s 1 5) (28) b x 5 2} 5 2} 54 2a 2(1) 8. 9x 2 1 30x 1 25 5 3x 2 1 2(3x)(5) 1 52 5 (3x 1 5)2 9. 6t 2 1 23t 1 20 5 (3t 1 4)(2t 1 5) y 5 42 2 8(4) 2 20 5 236 10. Vertex: (4, 236) (x 1 5)(x 2 8) 5 0 Axis of symmetry: x 5 4 x1550 y-intercept: 220; (0, 220) or x 2 8 5 0 x 5 25 or x 5 22: y 5 (22) 2 8(22) 2 20 5 0; (22, 0) 2 (r 2 7)(r 2 6) 5 0 y x x54 x58 11. r 2 2 13r 1 42 5 0 5 21 x2 2 3x 2 40 5 0 12. r2750 or r2650 r57 or r56 2w 2 1 13w 2 7 5 0 (2w 2 1)(w 1 7) 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2w 2 1 5 0 or w 1 7 5 0 (4, 236) 2. y 5 2(x 1 3) 1 5 1 w 5 }2 or 2 13. 10y 2 1 11y 2 6 5 0 Vertex: (23, 5) Axis of symmetry: x 5 23 x 5 22: y 5 2(22 1 3)2 1 5 5 4; (22, 4) (5y 2 2)(2y 1 3) 5 0 5y 2 2 5 0 or 2 y 5 }5 or x 5 21: y 5 2(21 1 3)2 1 5 5 1; (21, 1) (23, 5) y 14. 2(m 2 7)2 5 16 (m 2 7)2 5 8 x 5 23 x 3. f(x) 5 2(x 1 4)(x 2 2) x-intercepts: p 5 24 and q 5 2 p1q 24 1 2 5} 5 21 x5} 2 2 f(21) 5 2(21 1 4)(21 2 2) 5 218 Vertex: (21, 218) 2y 1 3 5 0 3 y 5 2}2 15. (x 1 2)2 2 12 5 36 (x 1 2)2 5 48 } m 2 7 5 6 Ï8 1 21 w 5 27 } x 1 2 5 6Ï48 } } x 5 22 6 4Ï3 m 5 7 6 2Ï 2 16. (3 1 4i) 2 (2 2 5i) 5 (3 2 2) 1 (4 1 5)i 5 1 1 9i 17. (2 2 7i)(1 1 2i) 5 2 1 4i 2 7i 2 14i 2 5 2 2 3i 2 14(21) 5 16 2 3i 3 1 i 2 1 3i 6 1 9i 1 2i 1 3i2 31i 18. } 5 } + } 5 }}2 2 2 3i 2 1 3i 2 2 3i 4 1 6i 2 6i 2 9i 6 1 11i 1 3(21) 3 1 11i 3 11 5} 5} 1} i 5 }} 13 13 13 4 2 9(21) Axis of symmetry: x 5 21 Algebra 2 Worked-Out Solution Key 253 Chapter 4, continued 19. x 2 1 4x 2 14 5 0 20. x 2 2 10x 2 7 5 0 25. yqx 2 2 8 x 1 4x 5 14 x 2 10x 5 7 Test (0, 0). x2 1 4x 1 4 5 14 1 4 x2 2 10x 1 25 5 7 1 25 yqx2 2 8 2 0q 2 (x 1 2)2 5 18 2 (x 2 5)2 5 32 } } x 1 2 5 6Ï18 x 2 5 5 6Ï 32 x 1 2 5 63Ï2 x 2 5 5 64Ï 2 } } } x 5 22 6 3Ï2 } 22 1 3Ï2 and and 5 2 4Ï 2 . } x q2 26. y < x2 1 4x 2 21 y 3 Test (0, 0). 22 2 3Ï2 . 21. 21 } The solutions are 5 1 4Ï 2 } (0, 0) } x 5 5 6 4Ï 2 The solutions are y 1 21 y < x2 1 4x 2 21 0 < 02 1 4(0) 2 21 4x 1 8x 1 3 5 0 2 4x2 1 8x 5 23 (0, 0) x 0 ñ 221 4(x2 1 2x) 5 23 4(x2 1 2x 1 1) 5 23 1 (4)(1) 4(x 1 1)2 5 1 27. y > 2x 2 1 5x 1 50 1 (x 1 1)2 5 }4 y Test (0, 0). } Ï 1 x 1 1 5 6 }4 y > 2x2 1 5x 1 50 0 > 202 1 5(0) 1 50 1 x 1 1 5 6 }2 0 ò 50 1 x 5 21 6 }2 7 3 1 The solutions are 2}2 and 2}2. 28. y 5 a(x 2 p)(x 2 q) 12 5 12a } 210 6 4Ï 10 15a } 25 6 2Ï10 x5} 5} 5} 6 3 6 A quadratic function is y 5 (x 1 7)(x 1 3). } 25 1 2Ï 10 29. The solutions are x 5 } ø 0.44 and 3 y 5 a(x 1 3)2 2 2 } 25 2 2Ï10 210 5 a(1 1 3)2 2 2 ø 23.77. x5} 3 210 5 16a 2 2 23. 2x 2 2 x 1 6 5 0 }} 2(21) 6 Ï(21)2 2 4(2)(6) 1 6 iÏ47 1 6 Ï 247 x 5 }}} 5} 5} 4 2(2) 4 } } } 28 5 16a 1 2}2 5 a } 1 1 iÏ 47 1 2 iÏ 47 1 and } . The solutions are } 4 4 A quadratic function is y 5 2}2 (x 1 3)2 2 2. 24. 5x 2 1 2x 1 5 5 0 30. y 5 ax 2 1 bx 1 c }} 22 6 Ï22 2 4(5)(5) y 5 a(x 2 h)2 1 k } 22 6 Ï 296 } 22 6 4iÏ 6 5} 5} x 5 }} 10 10 2(5) } 21 6 2iÏ 6 8 5 a(4)2 1 b(4) 1 c l 16a 1 4b 1 c 5 0 5 a(8)2 1 b(8) 1 c l 64a 1 8b 1 c 5 x5} 5 } 21 6 2iÏ6 } 21 2 2iÏ6 The solutions are } and } . 5 5 16a 1 4b 1 c 5 88 3 (22) 64a 1 8b 1 c 5 64a 1 8b 1 c 5 0 16a 1 4b 1 c 5 8 49a 1 7b 1 c 5 24 3 (27) 34 0 2 c 5 216 2112a 2 28b 2 7c 5 256 196a 1 28b 1 4c 5 216 84a Algebra 2 Worked-Out Solution Key 0 232a 2 8b 2 2c 5 216 32a 254 8 24 5 a(7)2 1 b(7) 1 c l 49a 1 7b 1 c 5 24 2 3c 5 272 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 12 5 a(21 1 7)(21 1 3) }} 210 6 Ï10 2 2 4(3)(25) x 5 }} 2(3) 210 6 Ï160 x y 5 a(x 1 7)(x 1 3) 22. 3x 1 10x 2 5 5 0 2 } (0, 0) 22 Chapter 4, 32a 2 c 5 216 continued 3 (23) 296a 1 3c 5 48 84a 2 3c 5 272 84a 2 3c 5 272 212a 5 224 a52 3. B; V 5 :r 2h 5 :(2)2(12) 5 48: The vase has a volume of 48: cubic inches. 4. H; } } RT i VX, so STU > WVU by the Alternate Interior Angles Theorem, so nSTU is similar to nWVU. 32a 2 c 5 216 32(2) 2 c 5 216 64 2 c 5 216 US TU UW VU US 16 16 20 }5} 2c 5 280 }5} c 5 80 16a 1 4b 1 c 5 8 20US 5 256 16(2) 1 4b 1 80 5 8 US 5 12.8 } The length of US is 12.8 units. 32 1 4b 1 80 5 8 112 1 4b 5 8 5. C; 4b 5 2104 b 5 226 72 5 h 2 1 3.52 7 h 36.75 5 h The solution is a 5 2, b 5 226, and c 5 80. A quadratic function is y 5 2x2 2 26x 1 80. 31. (16x)2 1 (9x)2 5 322 } Ï36.75 5 h 3.5 3.5 6.06 ø h Total height 5 height of roof 1 height of box 256x2 1 81x2 5 1024 ø 6.06 1 8 337x 2 5 1024 5 14.06 1024 x2 5 } 337 The birdhouse is about 14.1 inches tall. Î1024 } x56 } 337 6. G; y 5 x 2 2 x 2 30 y 5 (x 2 6)(x 1 5) x ø 6 1.74 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 7 2 Reject the negative solution. The widescreen TV has a width of (16)(1.74) 5 27.84 inches and a height of (9)(1.74) 5 15.66 inches. 32. The best-fitting quadratic model is s 5 0.0008m2 2 0.048m 1 1.12. x2650 or x56 or x1550 x 5 25 The x-intercepts of the graph are x 5 25 and x 5 6. 7. C; 3z 2 2 1 4z 5 2z 1 13 5z 5 15 TAKS Practice (pp. 326–327) z53 1. B; 430 5 (1.5x) 1 x 2 184,900 5 3.25x 2 2 2 56,892.3 ø x 2 } Ï56,892.3 ø x 238.5 ø x 1.5(238.5) 1 238.5 5 596.25 Difference 5 596.25 2 430 ø 166 feet Elizabeth saves about 166 feet by walking diagonally across the field. The solution of the equation is z 5 3. 8. G; 30,000(0.035) 5 1050 The whale consumes 1050 kilograms of food per day. 9. D; The line is solid, so choices A and C can be eliminated. The half-plane above the line is shaded, so choice B can 1 be eliminated. The inequality y q 2}2 x 2 2 is graphed. 10. J; 5x 2 3y 5 15 2. G; *2 5 52 1 3.52 5x 2 3(0) 5 15 x53 * 5 37.25 2 } * 5 Ï37.25 * ø 6.1 Nate needs about 6.1 feet of rope. The coordinates of the x-intercept are (3, 0). 11. C; A triangular pyramid has 4 vertices, and a rectangular prism has twice as many, or 8 vertices. Algebra 2 Worked-Out Solution Key 255 Chapter 4, continued 12. H; 1 A 5 }2 (b1 1 b2)h 1 5 }2 (3x 2 5 1 x 1 3)(x) 1 5 }2 (4x 2 2)(x) 5 2x 2 2 x The expression 2x 2 2 x best represents the area of the trapezoid. 13. D; 6x 2 10y 5 18 23x 1 5y 5 212 6x 2 10y 5 18 32 26x 1 10y 5 224 0 5 26 Because the statement 0 5 26 is never true, there is no solution. 14. H; ZPW and WPY are supplementary angles, so mZPW 1 mWPY 5 1808. 15. h 5 216t 2 2 40t 1 10 0 5 22(8t 2 1 20t 2 5) 0 5 8t 2 1 20t 2 5 }} 220 6 Ï 202 2 4(8)(25) t 5 }} 2(8) } 220 6 Ï 560 t5} 16 Time must be positive. So, the ball hit the ground in about 0.23 second. 256 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. t ø 0.23 or t ø 22.73