Comments
Description
Transcript
P.645-647
P.645-647 Chapter 9, continued 3. 4y2 2 9x2 5 36 6. G; 2 O B A (0, 6 x a2 5 9, a 5 3 (3, − 2) b2 5 4, b 5 2 (0, 2 } c 5 Ï 13 x (0, 23) 13 ) Vertices: (0, 63); 3 } Foci: (0, 6Ï13 ); Asymptotes: y 5 6}2 x 1 2 5 2}3 Slope of tangent line at point A: 2} 3 } 4. Foci: (63, 0) 2 2 5 2}3 Slope of BO: } 320 } 22 2 0 5. Foci: (0, 610) c 5 3, c2 5 9 3 1 Slope of tangent line at point B: 2}2 5 }2 2}3 Because the slopes of the two tangent lines are negative reciprocals, the two lines are perpendicular. x2 5 4py c 5 10, c 2 5 100 Vertices: (61, 0) Vertices: (0, 66) a 5 1, a2 5 1 a56 c2 5 a2 1 b2 c2 5 a2 1 b2 2 100 5 36 1 b2 8 5 b2 64 5 b2 y 2.25 5 p a2 5 36 9511b 2 y2 36 x2 2 } 51 8 (6)2 5 4p(4) x2 64 }2}51 6. a 5 3 cm, c 5 5 cm The focus is at (0, 2.25), so the wire should be placed about 2.3 inches from the bottom. b2 5 c2 2 a2 b 2 5 25 2 9 5 16 b54 Lesson 9.5 y2 9.5 Guided Practice (p. 644) 3 (0, 7) a2 5 16 a54 b2 5 49 b57 y2 y (24, 0) 3 y2 9 }2}51 16 9 (4, 0) (2 65, 0) c 5 Ï65 ( 65, 0) (0, 27) y ø 23.75 } Foci: (6Ï 65 , 0); Vertices: (64, 0) The mirror has a height of about 23 2 (23.75) 5 0.75 centimeters. 7 Asymptotes: y 5 6}4 x 9.5 Exercises (pp. 645–648) (0, a 5 36 a56 b2 5 1 b51 y 37 ) 4 (21, 0) 2 Skill Practice (0, 6) } x (0, 2 The transverse axis is vertical. } Foci: (0, 6Ï 37 ); Vertices: (0, 66); 6 Asymptotes: y 5 6}1 x 5 66x Algebra 2 Worked-Out Solution Key the vertices of the hyperbola. The line segment joining these two points is the transverse axis. 2. All ellipse is the set of all points such that the sum of the (0, 26) c 5 Ï37 1. The points (22, 0) and (2, 0) in the graph at the right are (1, 0) 24 c 5 36 1 1 5 37 25 16 }5} y 2 ø 14.06 The transverse axis is horizontal. y2 2. } 2 x2 5 1 36 y2 9 x 22 } 32 4 When x 5 3: }2 2 }2 5 1 4 c2 5 16 1 49 5 65 2 x2 4 }2 2 }2 5 1 y2 x2 1. } 2 } 5 1 49 16 500 (0, 3) (2, 0) 21 c 5 9 1 4 5 13 7. 2 (22, 0) 2 23 2 0 3 } Slope of AO: 5 } 5 }2 22 2 0 13 ) 37 ) distances between any point and the foci is a constant. A hyperbola is the set of all points such that the difference of the distances between any point and the foci is a constant. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (− 2, −3) y y2 x2 }2}51 4 9 y Chapter 9, continued 2 y2 x2 4. } 2 } 5 1 36 9 y x2 3. } 2 } 5 1 4 25 a2 5 25 a2 5 9 a55 y2 x2 8. } 2 } 5 1 49 121 a2 5 49 a53 Vertices: (63, 0) Vertices: (0, 67) b2 5 4 b2 5 36 b2 5 121, b 5 11 b52 b56 c2 5 9 1 36 5 45 } 2 } } Foci: (6Ï 29 , 0) (0, 6) y (2 29, 0 ) ( 29, 0) (0, 2) (5, 0) a2 5 64 (3, 0) 5, 0) (3 x 5, 0) a 2 5 144 a59 Vertices: (0, 69) b 5 25 b55 b 5 36 } Foci: (68Ï5 , 0) Foci: (6Ï53 , 0) Asymptotes: Asymptotes: y 5 6}2 x 7 16 b56 y 8 y (0, 7) (0, 16) Foci: (66Ï5 , 0) 9 (25, 0) (26 (0, 9) ( 6 5, 0) (0, 6) 8 y2 x2 7. } 2 } 5 1 100 196 Vertices: (0, 614) b2 5 100, b 5 10 c 5 196 1 100 5 296 } (210, 0) } Foci: (0, 62Ï 74 ) 7 14 Asymptotes: y 5 6} x 5 6}5 x 10 (0, 27) x y2 64 x 9 a2 5 64 a55 Vertices: (0, 68) b2 5 9 b2 5 25 b53 c 5 64 1 25 5 89 } } c 5 Ï 34 c 5 Ï89 } Foci: (0, 6Ï34 ) Foci: (0, 6Ï89 ) 5 8 Asymptotes: y 5 6}3 x 74 ) 8 ( 0, 34 ) (23, 0) 24 b55 2 } x a58 Vertices: (0, 65) c 5 25 1 9 5 34 (0, 14) x2 25 }2}51 2 (10, 0) 24 (0, 214) (0,22 c 5 2Ï74 8 y 25 a2 5 25 y 74 ) x 12. 25y2 2 64x2 5 1600 2 }2}51 x (0, 26) (212, 0) (12, 0) (0, 2 53, 0) (0, 216) 11. 9y2 2 25x2 5 225 2 x a 5 14 ( 53, 0) y 5, 0) 4 (0, 29) (2, 0) 24 (2 (8, 0) 1 6 29 2 5, 0) (22, 0) 5, 0) 15 (28 y56} x 5 6}2 x 12 (5, 0) 106 ) (28, 0) Asymptotes: y 6 (8 10 } Asymptotes: y 5 6}5 x a 5 196 } } Foci: (0, 6Ï106 ) b57 c2 5 4 1 49 5 53 c 5 Ï53 c 5 6Ï 5 } 2 b2 5 49 b 5 16 y 5 6} x 5 62x 8 c2 5 144 1 36 5 180 } (0, 2 a 5 12 2 c 5 Ï106 106 ) b2 5 256 } Vertices: (612, 0) c2 5 81 1 25 5 106 (0, Vertices: (62, 0) } y x2 6. } 2 } 5 1 36 144 a52 Vertices: (68, 0) c 5 8Ï 5 2 y x 5. } 2 } 5 1 25 81 2 a2 5 4 a58 c 5 64 1 256 5 320 (0, 26) y2 49 x2 4 }2}51 2 2 a 2 5 81 y 256 x2 64 (25, 0) (0, 22) 2 10. 49x2 2 4y2 5 196 2 } 2 } 5 11 24 (23 (0, 27) 7 9. 4x2 2 y2 5 256 y (23, 0) x 28 170) } 4 6 x x Foci: (0, 6Ï170 ); Asymptotes: y 5 6} 11 Asymptotes: y 5 62x 2 Asymptotes: y 5 6}5 x (0, 2 c 5 Ï 170 } Foci: (63Ï5 , 0) (11, 0) 28 } c 5 Ï 45 5 3Ï 5 c 5 25 1 4 5 29 c 5 Ï29 4 (211, 0) c2 5 49 1 121 5 170 } 170 ) y (0, 7) a57 Vertices: (65, 0) c2 5 a2 1 b2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (0, Asymptotes: y 5 6}5 x (0, 8) y y (0, 5) (3, 0) (0,2 6 (25, 0) x 34 ) 26 (0, 2 89 ) (0, 89 ) (5, 0) x (0, 28) (0, 25) Algebra 2 Worked-Out Solution Key 501 continued 13. 81x 2 2 16y 2 5 1296 14. 49y 2 2 100x2 5 4900 2 a2 5 15 a2 5 100 a54 Vertices: (0, 610) b2 5 81 b2 5 49 b59 Vertices: (0, 62) a 5 10 Vertices: (64, 0) 2 c 5 Ï149 } Foci: (0, 6Ï149 ) 9 Asymptotes: y 5 6} x 7 (0, 9) y ( (24, 0) (0, 97, 0) (0, 10) (4, 0) (27, 0) x 26 97, 0) 149 ) 6 (0, 2 (7, 0) x 149 ) c 5 5, c2 5 25 36 5 4 1 b2 25 5 1 1 b2 24 5 b2 x2 4 y2 32 y2 x2 2 } 51 24 }2}51 21. Foci: (0, 612) c 5 12 x2 9 }2}51 22. Foci (610, 0) Vertices: (0, 67) a57 15. D; 45y2 2 200x2 5 1800 y2 40 c 5 6, c 5 36 32 5 b (0, 210) (0, 29) a 5 1, a2 5 1 2 2 29 c2 5 144 c 5 10 95 5 b 2 2 c 5 40 1 9 5 49 up and down instead of left and right. The value of a2 is 36, so the value of a is 6 and the vertices should be located at (0, 66). a 5 4, a2 5 16 } c 5 4Ï 5 , c2 5 80 2 x 64 } Verticies: (62, 0) 2 a 5 2, a 5 4 } x2 17. In the equation } 2 y 2 5 4, the right side of the equation 4 should have been set equal to 1: x2 16 2 y 4 }2}51 2 Therefore, a 5 16 and a 5 4. The vertices are located at (64, 0). Similarly, b2 5 4 and b 5 2. y 1 22 2 y2 8 } 2 x2 5 1 } 26. C; Foci: (0, 66Ï 3 ) Vertices: (0, 68) a 5 8, a2 5 64 } c 5 6Ï 3 , c2 5 108 54 5 4 1 b2 108 5 64 1 b2 2 44 5 b2 50 5 b x2 4 y2 50 }2}51 y2 64 x2 44 }2}51 y2 x2 27. } 2 } 5 1 49 25 y 9 (0, 7) The equation is a hyperbola. a2 5 25 a55 b2 5 49 b57 (2 74, 0) ( c 5 25 1 49 5 74 x Vertices: (65, 0) 74, 0) (5, 0) x 29 (25, 0) 2 } Algebra 2 Worked-Out Solution Key c 5 3, c2 5 9 c 5 3Ï 6 , c 5 54 Foci: 1 6Ï74 , 0 2 502 a 5 2Ï 2 , a2 5 8 1 5 b2 2 25. Foci: (63Ï 6 , 0) x } 64 5 b2 }2}51 24 } Vertices: (0, 62Ï2 ) 9 5 8 1 b2 y 16 y 24. Foci: (0, 63) 80 5 16 1 b 2 12 y2 25 x 75 Vertices: (0, 64) y2 x2 16. In the equation } 2 } 5 1, the hyperbola should open 4 36 2 }2}51 } Foci: (0, 67) c2 5 100 100 5 75 1 b 2 23. Foci: (0, 64Ï 5 ) c57 a2 5 75 25 5 b 2 y2 x2 }2}51 95 49 b 59 } a 5 5Ï 3 144 5 49 1 b 2 } Vertices: (65Ï3 , 0) a2 5 49 2 a2 5 40 Vertices: (61, 0) 2 a 5 2, a 5 4 y 6 20. Foci: (65, 0) Vertices: (62, 0) 10 Asymptotes: y 5 6}4 x c2 5 16 19. Foci: (66, 0) } Foci: (6Ï 97 , 0) c54 y2 x2 }2}51 12 4 } c 5 Ï97 a2 5 4 12 5 b2 c 5 100 1 49 5 149 } a52 16 5 4 1 b2 b57 2 c 5 16 1 81 5 97 (2 18. Foci: (0, 64) y2 x2 }2}51 49 100 y x2 }2}51 81 16 (0, 27) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9, Chapter 9, continued 2 28. y 2 5 18x y x2 b. } 2 } 5 1 4 16 y The equation is a parabola. 9 2 b2 5 4 9 x 5 22 9 9 Focus: }2, 0 ; Directrix: x 5 2}2 1 2 2 29. 48x 1 12y 5 48 Foci: 1 0, 62Ï 5 2 (0, 2) y (21, 0) (0, 2 The equation is an ellipse. ( 0, 1 3) By changing b2 to 25, c2 5 41 and the foci move to 3) (1, 0) } (0, 6Ï41 ). The vertices are the same, but the foci 4 x change and the hyperbola becomes wider. y2 x2 34. a. } 2 } 5 1 30 15 (0, 22) 2 a 54 a52 b51 b2 5 1 c2 5 4 2 1 5 3 y2 15 x2 30 }511} } Foci: (0, 6Ï 3 ) x2 y2 5 15 1 } 2 Vertices: (0, 62); Co-vertices: (61, 0) y2 x2 30. } 1 } 5 1 256 144 Î } (0, 16) y (0, 4 The equation is an ellipse. a2 5 256 a 5 16 b2 5 144 b 5 12 c2 5 256 2 144 5 112 4 7) y2 x2 b. } 2 } 5 1 5.5 8.4 (12, 0) (212, 0) 4 y2 x Foci: (0, 64Ï 7 ) (0, 24 (0, 216) y2 5.5 7) 5.5x2 2 5.5 y2 5 } 8.4 y 5 6Î } 32. 18x2 1 18y 2 5 288 The equation is a hyperbola. 2 x 2 1 y 2 5 16 r 2 5 16 r54 The equation is a circle. a55 a 5 25 b 2 5 121 b 5 11 c2 5 25 1 121 5 146 Vertices: (0, 65) 27.5y2 5 12 2 5x 2 7.5y 2 5 5x2 2 12 5x 2 2 12 y2 5 } 7.5 Î } Foci: 1 0, 6Ï146 2 } 5 Asymptotes: y 5 6} x 11 (24, 0) 1 (4, 0) x 9 (0, 5) (11, 0) x (0, 24) (0, 25) y x2 33. a. } 2 } 5 1 36 9 b 5 2a Sample answer: a 5 1, a2 5 1; b 5 2, b2 5 4 y2 4 }2}51 a53 Vertices: (63, 0) b2 5 36 b 35. y 5 62x 5 6} x a b }52 a x2 1 2 a2 5 9 5x2 2 12 y56 } 7.5 21 y (211, 0) 5.5x2 8.4 } 2 5.5 c. 5x2 2 7.5y 2 5 12 (0, 4) y 26 x2 8.4 }5}21 Vertices: (0, 616); Co-vertices: (612, 0) y2 x2 31. } 2 } 5 1 121 25 x2 2} 512} 5.5 8.4 } } x2 y 5 6 15 1 } 2 c 5 4Ï7 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. b52 c2 5 20 } 2 y2 x2 }1}51 4 1 a54 Vertices: (0, 64) x 2 9 p 5 }2 a2 5 16 ( , 0) 2 4p 5 18 b56 c2 5 36 1 9 5 45 } Foci: (63Ï 5 , 0) By changing b2 to 4, b 5 2, c2 5 13, and the foci } move to (6Ï 13 , 0). The vertices remain the same, but the foci change and the hyperbola becomes narrower. a 5 2, a2 5 4; b 5 4, b2 5 16 y2 x2 }2}51 16 4 a 5 3, a 2 5 9; b 5 6, b 2 5 36 y2 x2 }2}51 36 9 All three hyperbolas approach the same asymptotes, but as a and b get larger the foci and vertices move outward. Algebra 2 Worked-Out Solution Key 503 Chapter 9, continued 36. Sample answer: b. a 5 4.1 }} 625 5 16.81 1 b2 d1 5 Ï(c 2 a)2 1 (0 2 0)2 5 c 2 a 608.19 5 b2 }} d2 5 Ï(a 2 (2c))2 1 (0 2 0)2 5 a 1 c An equation of the hyperbola that models the {d2 2 d1{ 5 {(a 1 c) 2 (c 2 a){ 5 {2a{ Because a is positive, {2a{ 5 2a. 37. Foci: (62, 0) 1 2 {d2 2 d1{ 5 2a 5 2 } (170) 5 85; point B is located at (85, 240). a51 b. Vertices (630.5, 0) 2 c 5 a 1 b2 Horizontal transverse axis 4 5 1 1 b2 x2 a2 y2 } 2 }2 5 1 2 b y2 x2 } 2 }2 5 1 2 b 30.5 y2 x2 2 } 51 3 Using point B(85, 240): Problem Solving 38. a 5 33 852 30.52 (240)2 }2} 51 2 c 5 56 b 1600 7225 }2} 51 930.25 b2 c2 5 a2 1 b 2 56 2 5 332 1 b2 6294.75 930.25 2047 5 b 2 b2 ø 236.5 y2 x2 }2}51 2047 1089 } 1 Ï2 39. Vertices: 6}, 0 2 An equation that models the cross section is 1 } Ï3 y2 236.5 x2 930.25 } 2 } 5 1. 2 1 c. At the top outside edge of the roof, x 5 } (84) 5 42: 2 y2 422 }2}51 236.5 930.25 2 1 a2 5} 5 }2 4 Foci: 6} ,0 2 2 833.75 930.25 3 y 2 ø 212 c2 5 a2 1 b2 y ø 14.6 The total height of the roof is h ø 40 1 14.6 5 54.6 feet. 1 3 } 5 } 1 b2 2 4 2 4 1 } 5 b2 4 42. a. } 2 } 5 b2 2 x y2 236.5 }5} c2 5 }4 3 4 1600 b }5} 2 3136 2 1089 5 b2 x y2 }2}51 1 1 } } 4 2 An equation that models the hyperbola is 2x 2 2 4y 2 5 1. 40. a. a 5 13.3 28.22 5 13.32 1 b2 2 795.24 2 176.89 5 b 618.35 5 b2 An equation of the hyperbola that models the June 21 x2 y2 path is } 2} 5 1. 618.35 176.89 504 y c 5 28.2 Algebra 2 Worked-Out Solution Key Area of outer circle :y 2 Area of Area of 2 inner 5 walkway circle 2 :x2 5 600 An equation is :y 2 2 :x2 5 600. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 35b y2 2 x September 1 path is } 2} 5 1. 608.19 16.81 1 41. a. } (61) 5 30.5; point A is located at (30.5, 0). 2 c 52 2 c 5 25 252 5 4.12 1 b2 Choose (a, 0) for (x, y). Chapter 9, continued b. :y 2 2 :x 2 5 600 44. Microphone A receives the sound 2 seconds after microphone B, so microphone A is :(y2 2 x2) 5 600 (2 sec)1 } sec 2 5 2200 feet farther away from the elk than microphone B. The set of all points that are 2200 feet closer to B than to A is one branch of the 1100 ft 600 y2 2 x2 5 } : 600 y2 5 x2 1 } : Ï y2 x2 a hyperbola }2 2 }2 5 1. } 600 y 5 x2 1 } : b 5280 The microphones are 1 mile apart, so c 5 } 5 2640. 2 Sample answer: d2 2 d1 5 2200 x 1 3 6 9 (c 1 a) 2 (c 2 a) 5 2200 2a 5 2200 } Ï 600 : y 5 x2 1 } 13.9 14.1 15.1 16.5 c. :y2 2 :x 2 5 600 y2 }2 600 } : a 5 1100 b2 5 c2 2 a2 5 26402 2 11002 5 5,759,600 x2 So, the elk is located somewhere along the right branch }51 600 } : The equation represents a hyperbola. 600 a 5} : enough information to determine its exact location. 600 b 5} : 2 2 4000 } 1 Ï 600 2 Because the radii of the walkway, x and y, must be positive, only the first quadrant of the graph represents solutions that make sense. y 600 600 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. B c1a x 4000 c2a 45. A; ( p , 0) 300 x (0, 2 p ) 600 d. As x and y increase, the width of the walkway, y 2 x, decreases because the area of concrete remains constant. 43. a. Foci (66, 0) (22, 4), (26, 22) 22 2 4 3 26 5} 5 }2 m5} 24 26 2 ( 2 2) y 2 y1 5 m(x 2 x1) 3 y 2 4 5 }2(x 2 (22)) 3 y 2 4 5 }2(x 1 2) 3 2 c 5 36 Vertices: (64, 0) a2 5 16 a54 d1 Mixed Review for TAKS (0, p ) 300 (2 p 0) Elk A a Asymptotes: y 5 6}b x 5 6 x 600 , y d2 Vertices: 0, 6 } : c56 y2 2 x 2} 5 1. There is not of the hyperbola } 5,759,600 1,210,000 c2 5 a2 1 b2 36 5 16 1 b2 b2 5 36 2 16 5 20 An equation for the hyperbola is: y 2 4 5 }2x 1 3 3 2}2x 1 y 5 7 23x 1 2y 5 14 The graph represents the equation 23x 1 2y 5 14 46. H; The center is at the midpoint of the two points. 1 25 1 9 8 1 (23) 2 y 20 5 ,} 5 1 2, }2 2 M5 } 2 2 b. Sample answer: The center of the circle is 1 2, }2 2. x2 16 2 } 2 } 5 1. By definition of a hyperbola, the difference of the distances from any point to the two foci is a constant. Because the graph shown lies along the intersection points of the circular ripples, you can see that at any point, the difference of the radii always equals 8. 5 Algebra 2 Worked-Out Solution Key 505 Chapter 9, continued y2 x2 7. } 2 } 5 1 64 25 Quiz 9.4–9.5 (p. 648) y2 x 1. } 1 } 5 1 4 25 2 a2 5 25 a2 5 25 Co-vertices: (0, 62) c2 5 a2 2 b2 c2 5 25 2 4 5 21 2 b 5 64 y 3 (2 21, 0) (0, 2) ( (5, 0) x 21 y x2 2. } 1 } 5 1 49 16 x 2 c 5a 1b (0, 25) (0, 2 89 ) } c 5 Ï 89 5 y a57 Vertices: (0, 67) b2 5 16 b54 (0, 7) (0, 2 x (0, 2 (0, 2) a54 b2 5 4 y (4, 0) x 26 (0, 22) (24, 0) (2 b52 5, 0) c2 5 a2 1 b2 c2 5 16 1 4 5 20 } c 5 2Ï 5 } Foci: (62Ï5 , 0) 2 y2 36 (0, 6) (0, 3 3) (23, 0) 2 x (0, 23 3) } a2 5 20 2 a 5 2Ï 5 c 5a 2b Vertices: (0, 62Ï 5 ) } b2 5 12 8 (0, 4 2) y2 x2 }2}51 12 20 } (0, 26) Co-vertices: (63, 0) 9. 12y2 2 20x2 5 240 (3, 0) 24 Vertices: (0, 66) 1 Asymptotes: y 5 6}4 x 5 6}2 x y }1}51 b53 33) (0, 27) 3. 36x2 1 9y2 5 324 a56 5, 0) 6 Vertices: (64, 0) (4, 0) (24, 0) 22 Co-vertices: (64, 0) c2 5 a2 2 b2 c2 5 49 2 16 5 33 } c 5 Ï33 } Foci: 1 0, 6Ï33 2 a2 5 36 a2 5 16 33) (22 (22 y (0, 2 5) 3, 0) (2 3, 0) x (0, 24 2) 26 (0, 22 5) b 5 2Ï 3 c2 5 a2 1 b2 2 c 5 36 2 9 5 27 c2 5 20 1 12 5 32 } c 5 3Ï3 } c 5 4Ï 2 } Foci: (0, 63Ï 3 ) } Foci: (0, 64Ï2 ) 4. Vertex: (0, 5) } 2Ï 5 2Ï3 Co-vertex: (24, 0) a55 a2 5 25 b54 b2 5 16 10. Foci: (65, 0) Focus: (28, 0) } 6. Co-vertex: (2Ï 15 , 0) Focus: (0, 25) } a2 5 100 b 5 Ï15 b2 5 15 c58 c2 5 64 c55 c2 5 25 c2 5 a2 2 b2 c2 5 a2 2 b2 64 5 100 2 b2 25 5 a2 2 15 b 5 100 2 64 5 36 2 y 36 }1}51 Algebra 2 Worked-Out Solution Key a2 5 25 1 15 5 40 x2 15 y2 40 }1}51 c53 c2 5 9 2 a51 a2 5 1 a 54 a52 c2 5 a2 1 b2 2 25 5 4 1 b b2 5 25 2 4 5 21 2 x 4 2 y 21 }2}51 Vertices: (0, 61) 2 c 5 25 c55 a 5 10 2 11. Foci: (0, 63) Vertices: (62, 0) y2 x2 }1}51 25 16 5. Vertex: (10, 0) } Ï15 Asymptotes: y 5 6} } x 5 6} x 3 c2 5 a2 1 b2 9 5 1 1 b2 b2 5 8 x2 y2 2 } 51 8 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. a2 5 49 506 (8, 0) 6 8. 4x 2 2 16y 2 5 64 y2 x2 }2}51 4 16 2 x2 100 3 Asymptotes: y 5 6}8 x } 2 2 Foci: (0, 6Ï89 ) (0, 22) Foci: (6Ï 21 , 0) 2 b58 (0, 5) } (25, 0) } b 59 2 89 ) (28, 0) c2 5 25 1 64 5 89 21, 0) c 5 Ï21 2 a55 Vertices: (0, 65) a55 Vertices: (65, 0) b2 5 4 b52 x2 9 y (0, P. 655-656 Chapter 9, continued ( y 2 4)2 3. (x 1 3)2 2 } 5 1 4 } 12. Foci: (63Ï 6 , 0) The equation represents a hyperbola with center at (h, k) 5 (23, 4). Vertices: (63, 0) } 2 c 5 3Ï6 c 5 54 a53 a2 5 9 2 2 a2 5 1 a51 The vertices are 1 unit to the left and right of the centers at (24, 4) and (22, 4). 2 c 5a 1b 54 5 9 1 b2 b2 5 4 b2 5 54 2 9 5 45 2 b52 c 5 a 1 b2 y2 x2 }2}51 45 9 2 c2 5 1 1 4 5 5 } 13. 2a 5 2.98 1 2.55 c 5 Ï 5 ø 2.23 y The foci are about 2.23 units left and right of the center, at (25.23, 4) and (20.77, 4). 2a 5 5.53 a 5 2.765 sun (22, 4) c 5 2.765 2 2.55 2.98 c 5 0.215 2 2 2.55 (24, 4) 2 c 5a 2b (25.23, 4) (0.215) 2 5 (2.765)2 2 b2 (23, 4) b2 ø 7.645 2 0.046 5 7.599 x2 2 Lesson 9.6 Investigating Algebra Activity 9.6 (p. 649) 1. No, the equations will not all be the same. The equations will vary as the distance of the flashlight from the wall changes. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2. By holding the flashlight parallel to and against the wall, the beam will form a branch of a hyperbola on the wall. ( y 2 1) (x 2 2) 4. } 1 } 5 1 9 16 The equation is an ellipse with center at (h, k) 5 (2, 1). a2 5 16 a54 The vertices are 4 units left and right of the center, at (22, 1) and (6, 1). b2 5 9 b53 The co-vertices are 3 units above and below the center at (2, 4) and (2, 22). y (2, 4) 2 1. (x 1 1) 1 ( y 2 3) 5 4 The equation represents a circle with center at } (h, k) 5 (21, 3) and radius r 5 Ï 4 5 2. y (21, 5) (21, 3) x 2 2 9.6 Guided Practice (pp. 651–654) 2 1 22 y 1} 5 1. An equation for the orbit of 1 ceres is } 7.599 7.645 (23, 3) y (20.77, 4) x c 5 a 2 2.55 (22, 1) (6, 1) 2 (2, 1) x 22 (1, 3) (2, 22) 2 5. Parabola with vertex (3, 21) and focus (3, 2) (21, 1) y x 21 2. (x 2 2)2 5 8( y 1 3) The equation represents a parabola with vertex at (h, k) 5 (2, 23). 2 (3, 2) (3, 21) 8 x 4p 5 8 p52 The form of the equation is (x 2 h)2 5 4p( y 2 k) where p > 0. The focus lies 2 units above the vertex, at (2, 21). The directrix lies 2 units below the vertex, at y 5 25. The vertex is (3, 21), so h 5 3 and k 5 21. y 1 21 x (2, 21) (2, 23) The focus is 3 units away from the vertex, so p 5 3. 4p 5 4(3) 5 12 An equation is ( x 2 3)2 5 12( y 1 1). y 5 25 Algebra 2 Worked-Out Solution Key 507 Chapter 9, continued 6. Hyperbola with vertices at (27, 3) and (21, 3) and foci 12 y 1 at (29, 3) and (1, 3) (1, 22) (21, 3) (29, 3) (27, 3) x 4 y (1, 3) 11. 2x 2 1 y 2 2 4x 2 4 5 0 x 3 (24, 3) A 5 2, B 5 0, C 5 1 The foci lie on the transverse axis, so the transverse axis is horizontal. The form of the equation is 2 (x 2 h) ( y 2 k) a b 2x 2 1 y 2 2 4x 2 4 5 0 } 2} 5 1. 2 2 The center is the midpoint of the vertices: 1 Because AÞC and B2 2 4AC < 0, the conic is an ellipse. 2 27 1 (21) 3 1 3 }, } 5 (24, 3) 2 2 2(x2 2 2x) 1 y 2 5 4 2(x 2 2x 1 1) 1 y 2 5 4 1 2 2 2(x 2 1) 2 1 y 2 5 6 }1}51 The vertices are 3 units from the center, so a 5 3 and a2 5 9. h 5 1, k 5 0 The foci are 5 units from the center, so c 5 5 and c 2 5 25. Center: (1, 0) a2 5 6 a 5 Ï 6 ø 2.45 c2 5 a2 1 b2 b2 5 3 b 5 Ï3 ø 1.73 25 5 9 1 b2 Vertices: (1, Ï6 ) and (1, 2Ï6 ) (x 1 4)2 ( y 2 3)2 } y 3 (1 2 (1, 6) 3, 0) (1, 0) x 4 k50 The center of the ellipse is (5, 0). Lines of symmetry: x 5 5 and y 5 0 8. (x 1 5)2 5 8( y 2 2) k52 The vertex of the parabola is (25, 2). Line of symmetry: x 5 25. ( y 2 2)2 (x 2 1)2 9. } 2 } 5 1 121 49 h51 } Co-vertices: (1 1 Ï 3 , 0) and (1 2 Ï3 , 0) y2 (x 2 5)2 7. } 1 } 5 1 16 64 h 5 25 } } An equation is } 2} 51 16 9 h55 } } b2 5 25 2 9 5 16 k52 The center of the hyperbola is (1, 2). Lines of symmetry: x 5 1 and y 5 2 10. x 2 1 y 2 2 2x 1 4y 1 1 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 Because B 2 2 4AC < 0, B 5 0, and A 5 C, the conic is a circle. x 2 1 y 2 2 2x 1 4y 1 1 5 0 (x 2 2 2x) 1 ( y 2 1 4y) 5 21 (x 2 2x 1 1) 1 ( y 2 1 4y 1 4) 5 21 1 1 1 4 2 (x 2 1) 2 1 ( y 1 2) 2 5 4 h 5 1, k 5 22, r 2 5 4, r 5 2 508 y2 6 (x 2 1)2 3 h 5 24, k 5 3 Algebra 2 Worked-Out Solution Key (1, 2 6 ) (1 1 3, 0) 12. y 2 2 4y 2 2x 1 6 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(0)(1) 5 0 Because B2 2 4AC 5 0, the conic is a parabola. y 2 2 4y 2 2x 1 6 5 0 y 2 2 4y 5 2x 2 6 y 2 2 4y 1 4 5 2x 2 6 1 4 ( y 2 2)2 5 2(x 2 1) h 5 1, k 5 2 y 4p 5 2 (1, 2) 1 p 5 }2 3 2 1 Vertex: (1, 2) 1 3 Focus: }2, 2 ( , 2) 2 1 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 B 2 2 4AC 5 0 2 4(2)(1) 5 28 Chapter 9, continued 13. 4x2 2 y2 2 16x 2 4y 2 4 5 0 3. (x 1 4)2 5 28( y 2 2) h 5 24, k 5 2 A 5 4, B 5 0, C 5 21 Parabola B2 2 4AC 5 0 2 4(4)(21) 5 16 Because B2 2 4AC > 0, the conic is a hyperbola. Directrix: y 5 4 4(x 2 2)2 2 ( y 1 2)2 5 16 4. (x 2 2)2 1 ( y 2 7)2 5 9 ( y 1 2)2 16 }2 }51 h 5 2, k 5 22 Center: (2, 22) 2 a52 2 b54 a 54 b 5 16 y 2 Center: (2, 7) (4, 22) x (2, 22) Hyperbola B2 2 4AC 5 0 2 4(4)(6.25) 5 2100 Center: (6, 21) Because A Þ C and B2 2 4AC < 0, the path is an ellipse. 4x2 1 6.25y2 2 12x 2 16 5 0 4(x2 2 3x) 1 6.25y2 5 16 y2 4 b2 5 1 b51 (6 , )0 (6 , 21) 22 x (11, 21) 21 (1, 21) (6, 22) } h 5 1.5, k 5 0 Co-vertices: (1.5, 2) and (1.5, 22) a55 c 5 Ï 26 ø 5.1 Foci: (0.9, 21) and (11.1, 21) y Center: (1.5, 0) Vertices: (21, 0) and (4, 0) a 5 25 5 26 }1}51 b52 y c2 5 a2 1 b2 5 25 1 1 4(x 2 1.5)2 1 6.25y2 5 25 b2 5 4 2 Vertices: (1, 21) and (11, 21) 4 (x2 2 3x 1 1.52) 1 6.25y2 5 16 1 9 a 5 2.5 x 22 h 5 6, k 5 21 A 5 4, B 5 0, C 5 6.25 a2 5 6.25 2 } Radius: Ï9 5 3 (x 2 6)2 5. } 2 ( y 1 1)2 5 1 25 (2, 26) 14. 4x2 1 6.25y2 2 12x 2 16 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (2, 7) Circle (2, 2) (0, 22) Vertices: (0, 22) and (4, 22) (x 2 1.5)2 6.25 y h 5 2, k 5 7 4 x Focus: (24, 0) 4(x2 2 4x 1 4) 2 ( y2 1 4y 1 4) 5 4 1 4(4) 2 4 (x 2 2)2 4 4 (24, 0) p 5 22 4(x2 2 4x) 2 ( y2 1 4y) 5 4 y (24, 2) 4p 5 28 4x2 2 y2 2 16x 2 4y 2 4 5 0 6 y54 Vertex: (24, 2) (21, 0) 1 (1.5, 2) 2 (1.5, 0) (4, 0) x 1 1 11 1 and y 5 2}5 x 1 }5 Asymptotes: y 5 }5 x 2 } 5 (1.5, 22) 9.6 Exercises (pp. 655–657) Skill Practice 1. Circles, ellipses, parabolas and hyperbolas are called conic sections because they are formed by the intersection of a plane and a double-napped cone. 2. If the discriminant of a general second-degree equation is less than 0 and B 5 0 and A 5 C, the conic is a circle. If it is less than 0 and either B Þ 0 or A Þ C, the conic is an ellipse. If the discriminant is equal to 0, the conic is a parabola. If it is greater than 0, the conic is a hyperbola. (x 1 8)2 (y 1 4)2 6. } 2 } 5 1 9 49 y (28, 3) h 5 28, k 5 24 2 Hyperbola 22 Center: (28, 24) (211, 24) a2 5 49 (28, 24) (25, 24) 2 b 59 a57 b53 Vertices: (28, 211) and (28, 3) 2 2 x (28, 211) 2 c 5 a 1 b 5 49 1 9 5 58 } c 5 Ï 58 ø 7.6 Foci: (28, 211.6) and (28, 3.6) 7 44 7 68 and y 5 2}3 x 2 } Asymptotes: y 5 }3 x 1 } 3 3 Algebra 2 Worked-Out Solution Key 509 Chapter 9, continued 2 ( y 2 2) (x 1 2) 7. } 1 } 5 1 36 16 (y 2 4)2 (x 1 3)2 11. } 2 } 5 1 16 9 h 5 22, k 5 2 Co-vertices: (26, 2) and (2, 2) h 5 23, k 5 4 Hyperbola Center: (23, 4) a2 5 9 a53 2 b 5 16 b 5 4 c2 5 a2 1 b2 5 9 1 16 5 25 c55 Vertices: (26, 4) and (0, 4) Foci: (28, 4) and (2, 4) Foci: (22, 6.5) and (22, 22.5) Asymptotes: y 5 }3 x 1 8 and y 5 2}3 x Ellipse Center: (22, 2) a2 5 36 a56 b2 5 16 b54 c2 5 a2 2 b2 5 36 2 16 5 20 } c 5 Ï20 ø 4.5 Vertices: (22, 8) and (22, 24) 4 y 6 (26, 2) (22, 2) (23, 8) (23, 4) (26, 4) (0, 4) 2 (23, 0) 4 x 4 ( y 2 1)2 (x 2 4)2 12. C; } 1 } 5 1 4 16 (22, 8) (2, 2) 4 x (22, 24) 8. (x 2 5) 2 1 ( y 1 1) 2 5 64 y h 5 5, k 5 21 2 Circle 24 Center: (5, 21) x (5, 21) } Radius: Ï 64 5 8 9. ( y 2 1)2 5 4(x 1 6) 8 h 5 26, k 5 1 y x 5 27 Parabola (26, 1) (25, 1) Vertex: (26, 1) x 22 4p 5 4 p51 Focus: (25, 1) Directrix: x 5 27 ( y 2 2) 2 x2 10. } 1 } 5 1 4 25 h 5 0, k 5 2 Ellipse (0, 4) y a2 5 25, a 5 5 b2 5 4, b 5 2 c2 5 a2 2 b2 5 25 2 4 5 21 c ø 4.6 Vertices: (25, 2) and (5, 2) Co-vertices: (0, 4) and (0, 0) Foci: (24.6, 2) and (4.6, 2) (0, 2) (25, 2) Center: (0, 2) (5, 2) 1 21 (0, 0) x h 5 4, k 5 1 Center: (4, 1) a2 5 16 a54 b2 5 4 b52 The co-vertices are 2 units above and below the center, at (4, 3) and (4, 21). 13. Circle 14. Circle Center: (25, 1) Center: (9, 21) r 5 6, r2 5 36 r52 r2 5 4 h 5 25, k 5 1 h 5 9, k 5 21 2 2 (x 1 5) 1 ( y 2 1) 5 36 (x 2 9)2 1 (y 1 1)2 5 4 15. Parabola 16. Parabola Vertex: (24, 23) Vertex: (5, 3) Focus: (1, 23) Directrix: y 5 6 h 5 24, k 5 23 h 5 5, k 5 3 The parabola opens The parabola opens down. to the right. p 5 2(6 2 3) 5 2 3 p 5 1 2 (24) 5 5 (x 2 h)2 5 4p( y 2 k) ( y 2 k)2 5 4p(x 2 h) (x 2 5)2 5 212( y 2 3) 2 ( y 1 3) 5 20(x 1 4) 17. Ellipse Vertices: (23, 4) and (5, 4) Foci: (21, 4) and (3, 4) Then center is the midpoint of the vertices. 23 1 5 4 1 4 ,} 5 (1, 4) 1} 2 2 2 h 5 1, k 5 4 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The foci are 2 units from the center, so c 5 2 and c2 5 4. c2 5 a2 2 b2 4 5 16 2 b2 b2 5 16 2 4 5 12 The major axis is horizontal. (x 2 h)2 ( y 2 k)2 } 1} 51 2 2 b a ( y 2 4)2 (x 2 1)2 }1}51 12 16 510 y Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 Chapter 9, continued 18. Ellipse 21. In writing the equation, the h and k values should be Vertices: (22, 1) and (22, 9) Co-vertices (24, 5) and (0, 5) The center is the midpoint of the vertices: 119 ,} 5 (22, 5) 1} 2 2 2 22 1 (22) h 5 22, k 5 5 (y 2 k)2 } 1} 51 2 2 a b (y 2 5)2 (x 1 2)2 }1}51 16 4 19. Hyperbola Vertices: (6, 23) and (6, 1) Foci: (6, 26) and (6, 4) The center is the midpoint of the vertices: 6 1 6 23 1 1 ,} 5 (6, 21) 1} 2 2 2 h 5 6, k 5 21 The vertices are 2 units from the center, so a 5 2 and a2 5 4. The foci are 5 units from the center, so c 5 5 and c2 5 25. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 2 2 c 5a 1b 25 5 4 1 b2 b2 5 25 2 4 5 21 The transverse axis is vertical. ( y 2 k) 2 2 (x 2 h) } 2} 51 2 2 b a (x 2 6)2 ( y 1 1)2 }2}51 21 4 20. Hyperbola Vertices: (1, 7) and (7, 7) Foci: (21, 7) and (9, 7) The center is the midpoint of the vertices: 1 2 117 717 }, } 5 (4, 7) 2 2 h 5 4, k 5 7 The vertices are 3 units from the center, so a 5 3 and a2 5 9. The foci are 5 units from the center, so c 5 5 and c2 5 25. c2 5 a2 1 b2 25 5 9 1 b2 b2 5 25 2 9 5 16 The transverse axis is horizontal. (x 2 h)2 (x 1 2)2 ( y 2 3)2 equation is } 1} 5 1. 9 25 ( y 2 2)2 (x 1 5)2 22. } 1 } 5 1 16 49 Ellipse with center (25, 2) The vertices are 4 units from the center, so a 5 4 and a2 5 16. The co-vertices are 2 units from the center, so b 5 2 and b2 5 4. The major axis is vertical. (x 2 h)2 subtracted from x and y, not added. The correct (y 2 k)2 } 2} 51 2 2 b a (y 2 7)2 (x 2 4)2 }2}51 16 9 Lines of symmetry: x 5 25 and y 5 2 23. ( y 2 4)2 5 6(x 1 60) Parabola with vertex (26, 4) Line of symmetry: y 5 4 ( y 2 2) (x 2 1)2 24. } 2 } 5 1 9 36 Hyperbola with center (1, 2) Lines of symmetry: x 5 1 and y 5 2 (x 2 3)2 25. ( y 2 5)2 2 } 5 1 9 Hyperbola with center (3, 5) Lines of symmetry: x 5 3 and y 5 5 26. (x 1 3)2 5 10( y 2 1) Parabola with vertex (23, 1) Line of symmetry: x 5 23 27. (x 1 2)2 1 ( y 1 1)2 5 121 Circle with center (22, 21) Any line passing through (22, 21) is a line of symmetry. 28. 6x2 2 2y2 1 24x 1 2y 2 1 5 0 A 5 6, B 5 0, C 5 22 B2 2 4AC 5 0 2 4(6)(22) 5 48 The conic is a hyperbola, because B2 2 4AC > 0. 29. x2 1 y2 2 10x 2 6y 1 18 5 0 A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 30. y 2 210y 2 5x 1 57 5 0 A 5 0, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. 31. 4x2 1 y2 2 48x 2 14y 1 189 5 0 A 5 4, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(4)(1) 5 216 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 32. 9x2 1 4y2 1 8y 1 18x 2 41 5 0 A 5 9, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. 33. x2 2 18x 1 6y 1 99 5 0 A 5 1, B 5 0, C 5 0 B2 2 4AC 5 0 2 4(1)(0) 5 0 The conic is a parabola because B2 2 4AC 5 0. Algebra 2 Worked-Out Solution Key 511 Chapter 9, continued 34. x2 1 y2 2 6x 1 8y 2 24 5 0 39. x2 2 16x 2 8y 1 80 5 0 A 5 1, B 5 0, C 5 1 A 5 1, B 5 0, C 5 0 2 B2 2 4AC 5 0 2 4(1)(0) 5 0 B 2 4AC 5 0 2 4(1)(1) 5 24 2 The conic is a circle because B 2 4AC < 0, B 5 0, and A 5 C. The conic is a parabola because B2 2 4AC 5 0. 35. 8x2 2 9y2 2 40x 1 4y 1 145 5 0 x2 2 16x 2 8y 1 80 5 0 (x2 2 16x 1 64) 5 8y 2 80 1 64 A 5 8, B 5 0, C 5 29 2 B 2 4AC 5 0 2 4(8)(29) 5 288 (x 2 8)2 5 8y 2 16 2 The conic is a hyperbola because B 2 4AC > 0. 2 (x 2 8)2 5 8(y 2 2) 2 36. B; 4x 1 y 1 32x 2 10y 1 85 5 0 h 5 8, k 5 2 y A 5 4, B 5 0, C 5 1 Vertex: (8, 2) B2 2 4AC 5 0 2 4(4)(1) 5 216 4p 5 8 The conic is an ellipse because B2 2 4AC < 0 and AÞC. p52 Focus: (8, 4) 37. x2 1 y2 2 14x 1 4y 2 11 5 0 (8, 4) 2 (8, 2) y50 22 x A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 40. 9y2 2 x2 2 54y 1 8x 1 56 5 0 2 The conic is a circle because B 2 4AC < 0, B 5 0 and A 5 C. A 5 21, B 5 0, C 5 9 B2 2 4AC 5 0 2 4(21)(9) 5 36 x2 1 y2 2 14x 1 4y 2 11 5 0 The conic is a hyperbola because B2 2 4AC > 0. 2 14x 1 49) 1 ( y 1 4y 1 4) 5 11 1 49 1 4 2 9y2 2 x2 2 54y 1 8x 1 56 5 0 (x 2 7)2 1 (y 1 2)2 5 64 h 5 7, k 5 22 9( y 2 6y 1 9) 2 (x2 2 8x 1 16) 5 256 1 81 2 16 2 9( y 2 3)2 2 (x 2 4)2 5 9 y Center: (7, 22) (x 2 4)2 } Radius: Ï64 5 8 ( y 2 3)2 2 } 51 9 2 x 22 h 5 4, k 5 3 (7, 22) y Center: (4, 3) a2 5 1, a 5 1 (1, 3) (4, 4) (7, 3) 3 b2 5 9, b 5 3 2 Vertices: (4, 4) and (4, 2) 2 38. x 1 4y 2 10x 1 16y 1 37 5 0 2 B 2 4AC 5 0 2 4(1)(4) 5 216 The conic is an ellipse because B 2 4AC < 0 and AÞC. 2 B2 2 4AC 5 0 2 4(9)(4) 5 2144 The conic is an ellipse because B2 2 4AC < 0 and AÞC. x 1 4y 2 10x 1 16y 1 37 5 0 (x2 2 10x 1 25) 1 4( y2 1 4y 1 4) 5 237 1 25 1 16 2 9x2 1 4y2 2 36x 2 24y 1 36 5 0 9(x 2 4x 1 4) 1 4( y2 2 6y 1 9) 5 236 1 36 1 36 2 2 (x 2 5) 1 4( y 1 2) 5 4 2 9(x 2 2)2 1 4(y 2 3)2 5 36 (x 2 5) 4 } 1 ( y 1 2)2 5 1 h 5 5, k 5 22 Center: (5, 22) (x 2 2)2 4 a 5 4, a 5 2 b2 5 1, b 5 1 ( y 2 3)2 9 }1}51 y 21 2 1 (5, 21) x (3, 22) (5, 22) (5, 23) (7, 22) h 5 2, k 5 3 y (2, 6) Center: (2, 3) a2 5 9 2 a53 Vertices: (3, 22) and (7, 22) b 54 Co-vertices: (5, 21) and (5, 23) Vertices: (2, 6) and (2, 0) b52 Co-vertices: (0, 3) and (4, 3) Algebra 2 Worked-Out Solution Key x A 5 9, B 5 0, C 5 4 2 512 (4, 3) 1 41. 9x 2 1 4y2 2 36x 2 24y 1 36 5 0 A 5 1, B 5 0, C 5 4 2 (4, 2) (0, 3) (2, 3) (4, 3) 1 21 (2, 0) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. (x 2 Chapter 9, continued 42. y2 1 14y 1 16x 1 33 5 0 45. If A 5 C, then the conic will be a circle. If AÞC but A and C have the same sign, the conic will be an ellipse. If either A 5 0 or C 5 0, the conic will be a parabola. If A and C have opposite signs, the conic will be a hyperbola. A 5 0, B 5 0, C 5 1 2 B 2 4AC 5 0 2 4(0)(1) 5 0 The conic is a parabola because B2 2 4AC 5 0. y2 1 14y 1 16x 1 33 5 0 46. ( y2 1 14y 1 49) 5 216x 2 33 1 49 xy 5 a ( y 1 7)2 5 216x 1 16 A 5 0, B 5 1, C 5 0 ( y 1 7)2 5 216(x 2 1) h 5 1, k 5 27 2 Vertex: (1, 27) B2 2 4AC 5 1 2 4(0)(0) 5 1 y The conic is a hyperbola because B2 2 4AC > 0. 47. The foci are c units above and below the center, at x 22 4p 5 216 a y 5 }x (h, k 1 c) and (h, k 2 c). p 5 24 Focus: (23, 27) a The asymptotes are y 5 6}b x shifted horizontally h units and vertically k units: (23, 27) (1, 27) a a ( y 2 k) 5 }b(x 2 h) x55 ( y 2 k) 5 2}b (x 2 h) a ah a bk 2 ah y 5 }bx 2 } 1k b 43. x 2 1 y 2 1 16x 2 8y 1 16 5 0 y 5 }b x 1} b A 5 1, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(1)(1) 5 24 Problem Solving The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. 48. (x a bk 1 ah y 5 2}b x 1 } b y (0, 4) 1 16x 1 64) 1 ( y 2 2 8y 1 16) 5 216 1 64 1 16 2 (x 1 8)2 1 ( y 2 4)2 5 64 x 6 h 5 28, k 5 4 y (0, 24) Center: (28, 4) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. ah 8 ft x2 1 y2 1 16x 2 8y 1 16x 5 0 2 a y 5 2}b x 1 } 1k b } Radius: Ï 64 5 8 Top circle: (28, 4) 4 Center: (0, 4) x 24 Radius: 4 Equation: (x 2 0)2 1 ( y 2 4)2 5 42 x2 1 (y 2 4)2 5 16 44. x2 2 4y2 1 8x 2 24y 2 24 5 0 Bottom circle: A 5 1, B 5 0, C 5 24 Center: (0, 24) B2 2 4AC 5 0 2 4(1)(24) 5 16 Radius: 4 The conic is a hyperbola because B2 2 4AC > 0. Equation: (x 2 0)2 1 (y 1 4)2 5 42 x2 2 4y2 1 8x 2 24y 2 24 5 0 x2 1 (y 1 4) 5 16 (x2 1 8x 1 16) 2 4( y 2 1 6y 1 9) 5 24 1 16 2 36 49. x2 2 10x 1 4y 5 0 (x 1 4)2 2 4( y 1 3)2 5 4 x2 2 10x 5 24y (x 1 4)2 } 2 ( y 1 3)2 5 1 4 h 5 24, k 5 23 Center: (24, 23) a2 5 4, a 5 2 b2 5 1, b 5 1 Vertices: (26, 23) and (22, 23) x2 2 10x 1 25 5 24y 1 25 2 (24, 22) 210 (26, 23) (24, 23) (24, 24) (x 2 5)2 5 241 y 2 } 42 25 y x (22, 23) An equation for the path of the leap is (x 2 5)2 5 241 y 2 } . 42 25 Vertex: 1 5, } 4 2 25 25 The person’s jump is } feet high and 4 2(5) 5 10 feet wide. Algebra 2 Worked-Out Solution Key 513 continued 50. 21y 2 2 210y 2 4x2 5 2441 53. a. The intersection is not a circle when the plane crosses the point where the cones meet. It is a point. A 5 24, B 5 0, C 5 21 b. The intersection is not a hyperbola when the plane 2 B 2 4AC 5 0 2 4(24)(21) 5 336 crosses the point where the cones meet. It is a pair of lines. The shape of the path is a hyperbola because B2 2 4AC > 0. c. The intersection is not a parabola when the plane lies 21y2 2 210y 2 4x2 5 2441 along the edge of the cone. It is a line. 21( y2 2 10y 1 25) 2 4x2 5 2441 1 525 Mixed Review for TAKS 21( y 2 5)2 2 4x2 5 84 2 54. D; ( y 2 5) x }2}51 21 4 2 Center: (0, 5) (0, 7) } a 5 2, b 5 Ï21 Vertices: (0, 3) and (0, 7) (2 The expression 3x 2 39,000 represents the population of Texas. y 55. H; Let n 5 number of sides. ( 21, 5 ) (0, 5) 21, 5 ) (n 2 2) + 180 5 135 n }} (0, 3) 1 180n 2 360 5 135n x 45n 5 360 22 51. a. For the hotel, h 5 100, k 5 260 and r 5 150. You will be in range of the transmitter when (x 2 100)2 1 ( y 1 60)2a1502. For the café, h 5 280, k 5 270, and r 5 100. You will be in range of the transmitter when (x 1 80)2 1 ( y 1 70)2a1002. b. At point (0, 0): 2 (0 2 100) The polygon has 8 sides. Lesson 9.7 9.7 Guided Practice (pp. 659–661) 1. x 2 1 y 2 5 13 and y 5 x 2 1 y2 5 13 2 x2 (0 1 80) 1 (0 1 70) a100 1002 6400 1 4900a 2 n58 } 2 11,300 µ 10,000 1502 2 1 (0 1 60)2a 22,500 10,000 1 3600 a y 5 6Ï 13 2 x2 Using the calculator’s intersect feature, the solutions are (22, 23) and (3, 2). 2. x 2 1 8y 2 2 4 5 0 and y 5 2x 1 7 8y2 5 4 2 x2 y2 5 }2 2 } 8 y 5 6Î y } You (0, 0) x (100, 260) Hotel (280, 270) Cafe At the origin, you are in range of the hotel’s transmitter because its inequality is satisfied. You are not in range of the café’s transmitter because its inequality is not satisfied. range is 150 yards, if the hotel’s distance from the café is less than their combined range of 250 yards, there is an overlap. 52. a. An ellipse is formed by cutting the cone-shaped tip, because the cut enters the cone diagonally and exits the other side. b. Hyperbolas are formed by each flat side and the cone-shaped tip, because the flat sides are parallel to the axis of the cone. Algebra 2 Worked-Out Solution Key 1 2 x2 8 }2} The graphs do not intersect. There is no solution. 3. y2 1 6x 2 1 5 0 and y 5 20.4x 1 2.6 y2 5 26x 1 1 } y 5 6Ï 26x 1 1 Using the calculator’s intersect feature, the solutions are approximately (21.57, 3.23) and (222.9, 11.8). 4. y 5 0.5x 2 3 x2 1 4y2 2 4 5 0 x2 1 4(0.5x 2 3)2 2 4 5 0 c. Because the café’s range is 100 yards and the hotel’s 514 x2 1 13,600a22,500 x 1 4(0.25x2 2 3x 1 9) 2 4 5 0 2 x2 1 x2 2 12x 1 36 2 4 5 0 2x2 2 12x 1 32 5 0 2(x2 2 6x 1 16) 5 0 There is no solution. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 9,