Comments
Description
Transcript
329 Ï
Chapter 6, continued n} 90. Sample answer: Ï xm n 5 3, m 5 5, x 5 21: n 5 4, m 5 5, x 5 21: 11. (x6y 4)1/8 1 2(x1/3y1/4)2 5 x3/4y1/2 1 2(x2/3y1/2) } (21) 5 21 Ï} 4} 4 , but 21 has no Ï(21)5 5 Ï21} 3 5 real 4th root; Ï{(21) {5 1 5 4 n 5 3, m 5 4, x 5 21: n 5 2, m 5 4, x 5 21: } (21)4 5 1 Ï3 } Ï(21)4 5 1 } } } 7Ï7 Ï75 3Ï7 1 4Ï 7 } 12. }} 5 } + } } } Ï75 Ï75 Ï75 3/2 7 + 7 + 75/2 71 1 3/2 1 5/2 75 5} 5 }5 5 1 5} 5 5 7 7 7 3 } Absolute value is needed when n is even and m is odd. 3 } 3 } } Ïx 2Ïx 4 2x2 2x2Ï x Ïx 2Ï x + Ïx 3 } 13. } 5 5 }6 } 5 } } } 5 } } + } 7 8x8 4x Ï82 + x14 + x 8x Ïx Ï x Ï64x15 5} } } } 5} 5} 91. A; 22 2 3 5} 5 24xy2Ï2x 5} 5 }8 slope 5 } 24 2 4 28 15. Three labels A, B, C, are added to the graph to indicate Choice A: 25x 1 8y 5 14 the three right triangles. 8y 5 5x 1 14 5 7 a2 1 b2 5 c2 (8 2 2)2 1 82 5 c2 62 1 82 5 c2 100 5 c2 10 5 c For right triangle B a2 1 b2 5 c2 42 1 82 5 c2 80 5 c2 } 4Ï 5 5 c 5 slope 5 }8 92. G; 25 a 26x 1 3 a 15 26x 1 3 a 15 6x a 8 26x a 12 4 x a }3 x q 22 4 22 a x a }3 } 1. 363/2 5 (Ï 36 )3 5 63 5 216 1 1 1 1 2. 6422/3 5 } 5} 5}5} } 642/3 (Ï3 64 )2 42 16 8 For right triangle C a2 1 b2 5 c 2 22 1 42 5 c 2 20 5 c 2 } 2Ï 5 5 c 1. f(x) 1 g(x) 5 22x 2/3 1 7x2/3 5 (22 1 7)x 2/3 5 5x2/3 2. f(x) 2 g(x) 5 22x2/3 2 7x2/3 5 (22 2 7)x2/3 5 29x2/3 5} 4. (232)2/5 5 (Ï 232 )2 5 (22)2 5 4 5. x4 5 20 3. The functions f and g each have the same domain: all real 6. x5 5 210 4} numbers. So, the domains of f 1 g and f 2 g also consist of all real numbers. 4. f(x) + g(x) 5 3x(x1/5) 5 3x(1 1 1/5) 5 3x6/5 5} x 5 6Ï 20 x 5 Ï 210 x ø 62.11 x ø 21.58 7. x6 1 5 5 26 3} f (x) 3x 5. } 5 } 5 3x(1 2 1/5) 5 3x4/5 g(x) x1/5 3} 6. The functions f and g each have the same domain: all real 8. (x 1 3)3 5 216 x6 5 21 x 1 3 5 Ï 216 x 5 6 Î21 6 } x 5 Ï 216 2 3 x ø 61.66 x ø 25.52 4} 9. Ï 32 + Ï 8 5 Ï 32 + 8 5 Ï 256 5 4 } 4 6.3 Guided Practice (pp. 429–431) 3. 2(6253/4) 5 2[(Ï 625 )3] 5 2(53) 5 2125 4} B 4 Lesson 6.3 4} 4} A The perimeter of the right triangle is } } } 10 1 4Ï 5 1 2Ï5 5 10 1 6Ï 5 . Quiz 6.1–6.2 (p. 427) 4} 2 C For right triangle A y 5 }8 x 1 }4 25 a 26x 1 3 5} 5 2xy2Ï 2x 2 6xy2Ï 2x 5 25 } 5 5 14. y 2Ï 64x6 2 6Ï 2x6y10 5 y2Ï 32 + 2x5x 2 6Ï 2x5xy10 Mixed Review for TAKS Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 x3/4y1/2 1 2x2/3y1/2 } 3} 10. (Ï 10 + Ï 10 )8 5 (101/2 + 101/3)8 5 F 10 G (1/2 1 1/3) 8 5 (105/6)8 numbers. So, the domain of f + g also consists of all real f numbers. Because g(0) 5 0, the domain of }g is restricted to all real numbers except x 5 0. 7. r(m) + s(m) 5 (1.446 3 109)m20.05 5 (1.446 3 109)(1.7 3 105)20.05 ø (1.446 3 109)(0.55) 20/3 5 10 3} 20 5 Ï 10 3} 5 Ï 1018 + 102 } 3 (106)3 + 102 5Ï 3} 5 106Ï 102 3} 5 1,000,000Ï 100 ø 791,855,335 The white rhino has about 791,855,335 heartbeats over its lifetime. 8. g( f (5)) 9. f ( g(5)) f(5) 5 3(5) 2 8 5 7 g(5) 5 2(5)2 5 50 g( f (5)) 5 g(7) f ( g(5)) 5 f (50) 5 2(7)2 5 3(50) 2 8 5 98 5 142 Algebra 2 Worked-Out Solution Key 329 Chapter 6, continued 6. g(x) 1 g(x) 5 5x1/3 1 4x1/2 1 5x1/3 1 4x1/2 11. g( g (5)) 2 g(5) 5 2(5) 5 50 g( g(5)) 5 g(50) 5 2(50)2 5 5000 f (5) 5 3(5) 2 8 5 7 f ( f (5)) 5 f (7) 5 3(7) 2 8 5 13 12. f (x) 5 2x21, g(x) 5 2x 1 7 21 f (g(x)) 5 f (2x 1 7) 5 2(2x 1 7) 5 (5 1 5)x1/3 1 (4 1 4)x1/2 5 10x1/3 1 8x1/2 Domain: all nonnegative real numbers 7. f(x) 2 g(x) 5 23x1/3 1 4x1/2 2 (5x1/3 1 4x1/2) 5 (23 2 5)x1/3 1 (4 2 4)x1/2 2 5} 2x 1 7 4 g( f (x)) 5 g (2x21) 5 2(2x21) 1 7 5 4x21 1 7 5 }x 1 7 f( f (x)) 5 f (2x21) 5 2(2x21)21 5 2(221x) 5 20x 5 x 5 28x1/3 Domain: all nonnegative real numbers 8. g(x) 2 f (x) 5 5x1/3 1 4x1/2 2 (23x1/3 1 4x1/2) 5 (5 1 3)x1/3 1 (4 2 4)x1/2 The domain of f( g(x)) consists of all real numbers except 7 5 8x1/3 7 x 5 2}2 because g1 2}2 2 5 0 is not in the domain of f. The domains of g( f (x)) and f ( f (x)) consist of all real numbers except x 5 0, again because 0 is not in the domain of f. Domain: all nonnegative real numbers 9. f(x) 2 f(x) 5 23x1/3 1 4x1/2 2 (23x1/3 1 4x1/2) 5 (23 1 3)x1/3 1 (4 2 4)x1/2 13. Function for $15 gift certificate: f (x) 5 x 2 15 Function for 20% discount: g(x) 5 x 2 0.2x 5 0.8x g( f (x)) 5 g(x 2 15) 5 0.8(x 2 15) f (g(x)) 5 f (0.8x) 5 0.8x 2 15 When x 5 55: g( f (55)) 5 0.8(55 2 15) 5 0.8(40) 5 $32 f (g(55)) 5 0.8(55) 2 15 5 44 2 15 5 $29 The sale price is $32 when the $15 gift certificate is applied before the 20% discount. The sale price is $29 when the 20% discount is applied before the $15 gift certificate. 10. g(x) 2 g(x) 5 5x1/3 1 4x1/2 2 (5x1/3 1 4x1/2) 5 (5 2 5)x1/3 1 (4 2 4)x1/2 50 Domain: all nonnegative real numbers 11. B; f(x) 1 g(x) 5 27x 2/3 2 1 1 2x2/3 1 6 5 (27 1 2)x 2/3 2 1 1 6 5 25x 2/3 1 5 12. f(x) + g(x) 5 4x2/3 + 5x1/2 6.3 Exercises (pp. 432–434) 5 20x(2/3 1 1/2) Skill Practice 1. The function h(x) 5 g( f (x)) is called the composition of the function g with the function f. 2. The sum of two power functions is sometimes a power function. 5 20x7/16 Domain of f: all real numbers Domain of g: all nonnegative real numbers Domain of f + g: all nonnegative real numbers 13. g(x) + f(x) 5 5x1/2 + 4x2/3 Sample answer: f (x) 5 2x1/3, g(x) 5 4x21/3 5 20x(1/2 1 2/3) f (x) 1 g(x) 5 2x1/3 1 4x21/3 5 20x7/6 Domain of g: all nonnegative real numbers f (x) 5 2x1/3, g(x) 5 4x1/3 1/3 f (x) 1 g(x) 5 2x 1/3 1 4x 1/3 3. f (x) 1 g(x) 5 23x 5 6x 1 4x 5 (23 1 5)x Domain of f: all real numbers 1/3 1/2 1/3 1/3 1/2 1 5x 1 4x 1/2 1 (4 1 4)x 4. g(x) 1 f(x) 5 5x1/3 1 4x1/2 2 3x1/3 1 4x1/2 5 (5 2 3)x 5 2x 1/3 1/2 1 (4 1 4)x 1 8x 5. f (x) 1 f(x) 5 23x1/3 1 4x1/2 1 (23x1/3 1 4x1/2) 1/3 5 26x 1/2 1 (4 1 4)x 1/2 1 8x Domain: all nonnegative real numbers Algebra 2 Worked-Out Solution Key Domain of f + f: all real numbers 5 25x(1/2 1 1/2) Domain: all nonnegative real numbers 5 (23 2 3)x Domain of f: all real numbers 15. g(x) + g(x) 5 5x1/2 + 5x1/2 1/2 1/3 14. f(x) + f(x) 5 4x2/3 + 4x2/3 5 16x4/3 Domain: all nonnegative real numbers 1/3 Domain of g + f: all nonnegative real numbers 5 16x(2/3 1 2/3) 5 2x1/3 1 8x1/2 330 50 Domain: all nonnegative real numbers 5 25x Domain of g: all nonnegative real numbers Domain of g + g: all nonnegative real numbers Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 10. f ( f (5)) Chapter 6, continued f (x) 4x2/3 4x(2/3 2 1/2) 4x1/6 16. } 5 } 5} 5} 5 5 g(x) 5x1/2 3x21 1 4 3x21 4 1 4 30. h( f (x)) 5 h(3x21) 5 } 5 } 1 } 5 } x1} 3 3 3 3 Domain of f: all real numbers Domain of g: all nonnegative real numbers f Domain of }g: all positive real numbers g(x) 5x1/2 5x(1/2 2 2/3) 5x21/6 5 17. } 5 } 5} 5} 5} 4 4 f (x) 4x2/3 4x1/6 Domain of f: all real numbers Domain of g: all nonnegative real numbers g f Domain of }: all positive real numbers f (x) 4x2/3 18. } 5 } 51 f (x) 4x2/3 2 1 2 2x 1 8 2x 1 8 2 21 2x 2 13 275} 5} 5} 3 3 3 The domain of g(h(x)) consists of all real numbers. 2x 2 7 1 4 2x 2 3 32. h(g(x)) 5 h(2x 2 7) 5 } 5 } 3 3 The domain of h(g(x)) consists of all real numbers. 33. f( f(x)) 5 f (3x21) 5 3(3x21)21 5 3(321x) 5 30x 5 x x14 f f Domain of }: all real numbers except x 5 0 5x1/2 5x }14 x 1 16 3 x 1 4 1 12 x14 34. h(h(x)) 5 h } 5 } 5 } 5 } 3 9 9 3 1 2 The domain of h(h(x)) consists of all real numbers. 35. g(g(x)) 5 g(2x 2 7) 5 2(2x 2 7) 2 7 19. } 5 } 1/2 5 1 Domain of g: all nonnegative real numbers g Domain of }g: all positive real numbers 2 20. g(23) 5 2(23) 5 29 f (g(23)) 5 f (29) 5 3(29) 1 2 5 225 21. f (2) 5 3(2) 1 2 5 8 225 2 2 27 h( f (29)) 5 h(225) 5 } 5 2} 5 5 822 6 23. h(8) 5 } 5 } 5 5 6 2 36 6 g(h(8)) 5 g }5 5 2 }5 5 2} 25 1 2 24. g(5) 5 252 5 225 225 2 2 27 5 2} h(g(5)) 5 h(225) 5 } 5 5 for x in the function f. f (g(x)) 5 f (4x) 5 (4x)2 2 3 5 16x2 2 3 37. The product 4(x2 2 3) was not performed correctly. 3 49x g( f (x)) 5 g(7x2) 5 3(7x 2)22 5 3(722x24) 5 }4 39. Sample answer: f (x) 5 x, g(x) 5 x21 f (g(x)) 5 g( f (x)) f (x21) 5 g(x) x21 5 x21 40. Sample answer: 3} f (x) 5 Ï x , g(x) 5 x 1 2 3} 25. f (7) 5 3(7) 1 2 5 23 h(x) 5 f (g(x)) 5 f (x 1 2) 5 Ï x 1 2 f ( f (7)) 5 f (23) 5 3(23) 1 2 5 71 6 24 2 2 26. h(24) 5 } 5 2} 5 5 6 }22 2 6 5 36. When performing f (4x), 4x should have been substituted 38. A; 22. f (29) 5 3(29) 1 2 5 225 1 2 5 4x 2 14 2 7 5 4x 2 21 The domain of g(g(x)) consists of all real numbers. g( f (x)) 5 g(x 2 2 3) 5 4(x 2 2 3) 5 4x 2 2 12 g( f (2)) 5 g(8) 5 282 5 264 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 x14 x14 31. g(h(x)) 5 g } 5 2 } 2 7 3 3 The domain of f ( f (x)) consists of all real numbers except x 5 0, because 0 is not in the domain of f. Domain of f: all real numbers g(x) g(x) The domain of h( f (x)) consists of all real numbers except x 5 0 because 0 is not in the domain of f. 41. Sample answer: 4 f (x) 5 } , g(x) 5 3x 2 x17 5 2} h(h(24)) 5 h1 2}5 2 5 } 5 25 16 27. g(25) 5 2(25)2 5 225 g(g(25)) 5 g(225) 5 2(225)2 5 2625 3 28. f (g(x)) 5 f (2x 2 7) 5 3(2x 2 7)21 5 } 2x 2 7 4 3x 1 7 h(x) 5 f (g(x)) 5 f (3x2) 5 } 2 42. Sample answer: f (x) 5 {x{, g(x) 5 2x 1 9 h(x) 5 f (g(x)) 5 f (2x 1 9) 5 {2x 1 9{ The domain of f(g(x)) consists of all real numbers except 7 7 x 5 }2 because g1 }2 2 5 0 is not in the domain of f. 6 29. g( f (x)) 5 g(3x21) 5 2(3x21) 2 7 5 6x21 2 7 5 } x27 The domain of g( f(x)) consists of all real numbers except x 5 0 because 0 is not in the domain of f. Algebra 2 Worked-Out Solution Key 331 Chapter 6, continued } Problem Solving Ïx 2 1 144 20 2 x b. t(x) 5 r(x) 1 s(x) 5 } 1 } 6.4 0.9 1.1w 0.734 43. r(w) 5 } b(w) 2 d(w) c. 1.1w 0.734 5 }} 0.007w 2 0.002w 1.1w 0.734 5} 0.005w Minimum X=1.7044344 Y=16.325839 5 220w(0.734 2 1) The value of x that minimizes t(x) is 1.7. This means that to get to the ball in the shortest time, Elvis should run along the beach 20 2 1.7 5 18.3 meters and then swim out to the ball. 5 220w20.266 r(w) 5 220w20.266 2 1 1 }1 3 47. a. f(1) 5 } 5 } 5 1.5 2 2 2 1.5 1 } 1.5 ø 1.417 f ( f (1)) 5 f (1.5) 5 } 2 2 1.417 1 } 1.417 ø 1.414 f ( f ( f (1))) 5 f (1.417) 5 }} 2 f( f ( f ( f (1)))) 5 f (1.414) 2 1.414 1 } 1.414 44. C(x(t)) 5 C(50t) 5 60(50t) 1 750 5 3000t 1 750 ø 1.414214 5 }} 2 C(x(5)) 5 3000(5) 1 750 5 15,750 b. f ( f ( f ( f ( f (1))))) 5 f(1.414214) This number represents the cost ($15,750) of 5 hours of production in the factory. 2 1.414214 1 } 1.414214 }} ø 1.414214 5 45. Let x represent the regular price. 2 } Function for $15 discount: f (x) 5 x 2 15 Function for 10% discount: g(x) 5 x 2 0.1x 5 0.9x Ï 2 ø 1.414213562 You need to compose the function 3 times in order for } the result to approximate Ï2 to three decimal places. You need to compose the function 4 times in order for } the result to approximate Ï2 to six decimal places. a. g( f (x)) 5 g(x 2 15) 5 0.9(x 2 15) g( f (85)) 5 0.9(85 2 15) 5 0.9(70) 5 63 The sale price is $63 when the $15 discount is applied before the 10% discount. b. f (g(x)) 5 f (0.9x) 5 0.9x 2 15 f (g(85)) 5 0.9(85) 2 15 5 76.5 2 15 5 61.50 Mixed Review for TAKS 48. C; (6x 3y 5z21)(23x24y 2) 5 218x21y 7z21 The sale price is $61.50 when the 10% discount is applied before the $15 discount. c. If the 10% discount is applied before the $15 discount, you get a better deal. Your purchase will be $61.50 instead of $63. 18y7 5 2} xz 49. G; s 5 (100% 2 68%)t s 5 32%t 46. a. Distance from point A to point D: 20 2 x 32 Distance 5 rate + time t s5} 100 20 2 x 5 (6.4)r(x) 20 2 x 6.4 8 s5} t 25 } 5 r (x) Distance from point D to point B: x 2 1 122 5 c2 2 2 x 1 144 5 c } Ïx2 1 144 5 c Distance 5 rate + time } Ïx 2 1 144 5 (0.9)s(x) } Ïx 2 1 144 } 5 s(x) 0.9 332 Algebra 2 Worked-Out Solution Key Graphing Calculator Activity 6.3 (p. 435) 1. Y1=X3+5X-3 Y2=-3X2-X Y3=Y2+Y1 Y4= Y5= Y6= Y7= Y7= Y3(7) 221 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. r(6.5) 5 220(6.5)20.266 ø 134 The breathing rate of a mammal that weighs 6.5 grams is about 134 breaths per minute. r(300) 5 220(300)20.266 ø 48.3 The breathing rate of a mammal that weighs 300 grams is about 48.3 breaths per minute. r(70,000) 5 220(70,000)20.266 ø 11.3 The breathing rate of a mammal that weighs 70,000 grams is about 11.3 breaths per minute. Chapter 6, continued 2. 6. G; Y1=X^(1/3) Y2=9X Y3=Y1/Y2 Y4= Y5= Y6= Y7= Y7= Y3-8 () 277777778 0 . 0 16 4 5 1 }2 2 1} 4 2 1/2 5 5 1/2 5 25 5 32 7. 3. Y1=5X3-3X2 Y2=-2X2-5 Y3=Y2-Y1 Y4= Y5= Y6= Y7= Y7= Y3(2) 4 V 5 }3 :r 3 4 900 5 }3 (3.14)r 3 215 ø r 3 5.99 ø r The radius of the sphere is about 5.99 inches. 4. Y1=2X2+7X-2 Y2=X-6 Y3=Y1(Y2) Y4= Y5= Y6= Y7= Y7= Y3(5) -7 Lesson 6.4 Investigating Algebra Activity 6.4 (p. 437) 1. a. f(x) 5 3x 1 2 Mixed Review for TEKS (p. 436) 1. A; 3/2 79 3Ï 4:F V5} } 21 0 1 2 y 5 f (x) 24 21 2 5 8 y 120 522 1 3 6 m5}5} r(x) 5 x 2 2 }2 1 }2 x 2(x) 1 1 1 r(x) 5 x2 2 }4 x 2 3 r(x) 5 }4 x 2 128(8.8) 5 3.14(r 2)(2.5) 1126.4 ø 7.85r 2 143.5 ø r 2 611.98 ø r The radius is about 12 feet. f 2. a. You can graph the inverse of a function by reflecting it in the line y 5 x. 3. a. In words, g is the function that subtracts 2 from x then divides the result by 3. f (g(x)) 5 f 1 } 3 2 x22 g( f (x)) 5 g(3x 1 2) 3x 1 2 2 2 12 5 31 } 3 2 5} 3 5x2212 5} 3 5x 5x x22 g(f (x)) represents your bonus when x > 100,000. V 5 :r 2h (21, 21) g(x) 5 } 3 3. D; 4. H; x x22 The volume is about 66 cubic inches. r(x) 5 Area of square 2 Area of triangle (8, 2) g (2, 0) 6 (22, 24) x22 y5} 3 2. H; (5, 1) (24, 22) 1 y 2 0 5 }3 (x 2 2) (2, 8) (1, 5) (0, 2) y 2 y1 5 m(x 2 x1) V ø 66.03 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 (2, 0), (5, 1) V 5 321(4:)21/2(S 3)1/2 S 3/2 V5 } } 3Ï 4:F x 3x If f (g(x)) 5 x and g( f (x)) 5 x, then the function is indeed the inverse of the original function. x21 1. b. f(x) 5 } 6 x 25 22 y 5 f(x) 21 2}2 1 1 4 7 0 } 1 2 1 5. C; f (x) 5 5 2 x f ( f (x)) 5 5 2 (5 2 x) f( f (x)) 5 x Algebra 2 Worked-Out Solution Key 333