Comments
Description
Transcript
Document 1807175
Chapter 6, continued 4 1 3. } 5 } 16 a13 a 36. Let } 5 r. b a c e Because r 5 }b 5 }d 5 }f , you know the following: a c e 2. r 5 }d 1. r 5 }b a 5 br 3. r 5 }f c 5 dr e 5 fr br 1 dr 1 fr r(b 1 d 1 f ) a a1c1e So, } 5 } 5} 5 r 5 }b . b1d1f (b 1 d 1 f ) b1d1f 37. Water content in 5 kg of fresh apricots: 5(0.86) 5 4.3 kg Let x be the number of kilograms of water removed from the fruit. Water removed: Water content after dehydration 75% 5 }}} Weight after dehydration 3 4 4.3 2 x 52x }5} 16 5 4(a 1 3) 48 5 4(d 2 6) 16 5 4a 1 12 48 5 4d 2 24 15a 18 5 d 5 x 9 9 5. If } 5 }, then } 5 }. 2 2 5 x Property of Proportions (Property 3) y 15 x x 6. If } 5 }, then } 5 }. 21 21 15 y Property of Proportions (Property 3) y y 1 12 x18 x 7. If } 5 }, then } 5 }. 12 12 8 8 Property of Proportions (Property 4) x1y x 32 37 8. If } 5 }, then } 5 }. y y 5 5 Property of Proportions (Property 4) } 3(5 2 x) 5 4(4.3 2 x) 9. The midpoint of AD is B and AD 5 10, 15 2 3x 5 17.2 2 4x so AB 5 BD 5 5. x 5 2.2 } AC 5 ÏAB + AD So, about 2.2 kilograms of water are removed from the fruit. The weight of the dehydrated apricots is about 5 2 2.2 5 2.8 kg. Mixed Review for TAKS } 5 Ï 5 + 10 } 5 Ï 50 } 5 5Ï 2 } So, AC is 5Ï2 ø 7.1 units. 38. A; Lesson 6.3 f (x) 5 25(x 1 3) Investigating Geometry Activity 6.3 (p. 371) y 5 25(x 1 3) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 6 4. } 5 } 8 d26 y 5 25x 2 15 The y-intercept is 215. 39. F; Total Number of Number of student 1 non-student 5 number of tickets tickets tickets Total Cost of Number Cost of Number dollar 1 nonof non1 student + of student 1 5 + amount student student ticket tickets of tickets ticket tickets The system that represents the situation is s 1 n 5 535 Photo 1 Photo 2 Measurement Photo 1 Photo 2 } AB 35 mm 25 mm 1.4 AC 14 mm 10 mm 1.4 DE 28 mm 20 mm 1.4 m 1 608 608 1 m 2 288 288 1 1. When a figure is reduced, the ratios of each pair of corresponding lengths are equal. 2. When a figure is reduced, corresponding angles are congruent. 4s 1 5.5n 5 2455. 3. The corresponding angles are congruent, so the measure Quiz 6.1– 6.2 (p. 370) 5 10 1. } 5 } 2 y of the corresponding angle in Photo 1 is 358. 2. x 6 9 3 }5} 20 5 5y 3x 5 54 45y x 5 18 Length in Photo 1 1.4 4. }} 5 } 1 Length in Photo 2 x cm 1 cm 1.4 1 }5} x 5 1.4 The measure of the corresponding segment in Photo 2 is about 1.4 centimeters. Geometry Worked-Out Solution Key 161 Chapter 6, continued Length in Photo 1 1.4 5. }} 5 } 1 Length in Photo 2 5 cm 6.3 Exercises (pp. 376–379) Skill Practice 1.4 1 } x cm 5 } 1. Two polygons are similar if corresponding angles 5 5 1.4x are congruent and corresponding side lengths are proportional. 3.571 ø x The measure of the corresponding segment in Photo 2 is about 3.6 centimeters. 6.3 Guided Practice (pp. 372–375) 1. J > P, K > Q, L > R; KL QR LJ RP TQ 5 6 8 1 QR 1 TS 1 2. } 5 } 5 }, } 5 } 5 }, } 5 } 5 } 10 2 AB 12 2 DC 16 2 DA 1 The scale factor of QRST to ABCD is }2 . 4. D > P, E > Q, F > R, G > S; x 4 }5} DE PQ 4. Because ABCDE is similar to FGHJK, the scale factor is 15 3 5 }2 . the ratio of the lengths, } 10 15 10 18 x 5. } 5 } HJ WX JK XY KL YZ LH ZW }5}5}5} BC AB 6. D; n ABC , nDEF, so } 5 }. DE EF The correct answer is D. }5} 7. All angles are right angles, so corresponding angles are congruent. 180 5 15x 12 5 x 6. Perimeter of FGHJK: 15 1 9 1 12 1 15 1 18 5 69 units Use Theorem 6.1 to find the perimeter x of ABCDE. 69 3 }5} x 2 }5}5} RS WX 64 32 2 1 }5}5} TU YZ 64 32 2 1 }5}5} }5}5} ST XY 48 24 2 1 UR ZW 48 24 2 1 The ratios are equal, so the corresponding side lengths are proportional. So, RSTU , WXYZ. The scale factor 2 of RSTU to WXYZ is }1. 138 5 3x 8. You can see that C > T, D > U, E > V. 46 5 x So, corresponding angles are congruent. The perimeter of ABCDE is 46. 7. Scale factor of nJKL to nEFG: CD TU 10 8 5 4 } 5 } 5 }, 5 4 DE UV } 5 }, EC VT 12 9.6 120 96 5 4 }5}5}5} }5}5} The ratios are equal, so the corresponding side lengths are proportional. So, nCDE , nTUV. The scale factor Because the ratio of the lengths of the medians in similar triangles is equal to the scale factor, you can write the following proportion. of nCDE , nTUV is }4. JL EG 96 80 KM FH 6 5 x 35 6 5 6 5 }5} }5} x 5 42 } The length of the median KM is 42. 162 GD SP 5. H > W, J > X, K > Y, L > Z; 85x KF EA FG RS EF QR }5}5}5} 64 5 8x FG AB If two polygons are similar, then corresponding angles are congruent and corresponding side lengths are proportional. Because two proportional side lengths are not always congruent, two similar polygons are not always similar. BC CA AB 3. A > L, B > M, C > N; } 5 } 5 } LM MN NL DC BC 3. } 5 } TS RS 16 8 the corresponding angles are congruent and the corresponding side lengths are congruent. The ratio of the side lengths of congruent sides is 1 : 1, so the corresponding side lengths are proportional. So, two congruent polygons must be similar. Geometry Worked-Out Solution Key 5 JK 20 5 9. } 5 } 5 } EF 8 2 5 The scale factor of JKLM to EFGH is }2. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. JK PQ }5}5} 2. Yes; no; If two polygons are congruent, then Chapter 6, continued JK KL 10. Find x: } 5 } EF FG Find y: } 5} HE EF 20 8 }5} x 11 }5} 8x 5 220 MJ JK 30 y 20 8 240 5 20y x 5 27.5 12 5 y isosceles triangle has at least two congruent sides. So, the ratios of corresponding side lengths of a scalene triangle and an isosceles triangle can never all be equal. So, a scalene triangle and an isosceles triangle are never similar. 18. x : 1; The definition states that the “ratio of a to b is a : b. Find z: J > E You can determine that the “ratio of b to a” is b : a. So, switch the order of the given ratio. 65 5 z 19. The special segment shown in blue is the altitude. 11. Perimeter of EFGH: EF 1 FG 1 GH 1 HE 5 8 1 11 1 3 1 12 5 34 Perimeter of JKLM: Use Theorem 6.1 to find the perimeter x. 27 18 x 16 }5} 432 5 18x 24 5 x 5 2 x 34 17. Never; A scalene triangle has no congruent sides and an }5} 20. The special segment shown in blue is the median. 2x 5 170 18 y x 5 85 The periemter of EFGH is 34 and the perimeter of JKLM is 85. 18y 2 18 5 16y 2y 5 18 y59 12. Let x be the small sign’s perimeter. 60 in. x in. 5 3 6 8 21. } 5 } 8 x }5} 180 5 5x 6 8 36 5 x 6y 5 80 2 2 1 2 13 }3 inches. Perimeter of A: 10 1 12 1 6 5 28 6 3 22. Scale factor: } 5 } 8 4 2 Perimeter of B: } 5 }1 x 4.8 x x 5 14 19.2 5 3x 6.4 5 x 14. Sometimes; A 8 5 3 4 }5} The perimeter of B is 14. 5 y 5 13 }3 The other two sides of nRST are 10 }3 inches and Scale factor of A to B: } 5 }1 5 28 1 x 5 10 }3 13. The scale factor was used incorrectly. 10 8 B 4 4 C 6 12 3 nB , nC, but n A ï nB. 15. Always; The angles of all equilateral triangles are congruent, so corresponding angles are always congruent. Because the sides of an equilateral triangle are congruent, the ratios of corresponding side lengths of two equilateral triangles are always congruent. So, two equilateral triangles are always similar. 16. Sometimes; The length of the corresponding altitude in nRST is 6.4 inches. 4 19 }5 BC 19.8 198 11 23. } 5 } 5 } 5 } 5 } EF 5 9 9 90 11 The scale factor of n ABC to nDEF is } . 5 AB 11 24. Find DE: } 5 } DE 5 22 x 11 5 }5} 110 5 11x 6 6 2 10 y }5} 6x 5 64 The small sign’s perimeter is 36 inches. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 16 y21 }5} 8 D 8 E 4 4 F 6 4 AC 11 y 11 Find AC: } 5} DF 5 }5} 2 5 10 }5 5y 5 114.4 10 5 x y 5 22.88 } } The length of DE is 10 and the length of AC is 22.88. 4 2 nD , nF, but n D ï nE. Geometry Worked-Out Solution Key 163 Chapter 6, 25. x 8 continued 11 5 }5} Problem Solving length of court 78 ft 26 31. }} 5 } 5 } 3 length of table 9 ft 5x 5 88 x 5 17.6 The length of the altitude shown in n ABC is 17.6. 1 26. Area of n ABC: A 5 } bh 2 1 5 }2 (22.88)(17.6) 5 201.344 width of court width of table 36 5 The ratios are not equal, so the corresponding side lengths are not proportional, and the surfaces are not similar. width of computer screen 13.25 in. 1 32. }} 5 } 5 } 4 width of projected image 53 in. height of computer screen height of projected image 10.6 in. 42.4 in. 1 4 }} 5 } 5 } 1 Area of n DEF: A 5 }2 bh 5 }2 1 10}5 2(8) The ratios are equal, so the corresponding side lengths are proportional, and the surfaces are similar. The scale 5 41.6 factor of the computer screen to the projected image is }4. 2 1 1 The ratio of the area of n ABC to n DEF is 201.344 41.6 33. a. } 5 4.84, which is the square of the scale 15 36 ft 5 ft }} 5 } 5 } BC 4 CD 6 7 10 }5} 2 2 11 121 factor } 5} 5 4.84 . 2 25 7 10 }5} 7 10 DE 8 }5} BC 5 2.8 CD 5 4.2 DE 5 5.6 27. No; Because the triangles are similar, the angle measures EA 3 7 10 }5} EA 5 2.1 AB BC CD DE EA Fig. 1 3.5 2.8 4.2 5.6 2.1 3 4 28. D; Other leg of nUVW: } 5 } x 4.5 Fig. 2 5.0 4.0 6.0 8.0 3.0 3x 5 18 b. are congruent. So, the extended ratio of the angle measures in nXYZ is x : x 1 30 : 3x. y So, the legs of nUVW are 4.5 feet and 6 feet. The hypotenuse is the longest side, so it must be greater than 6 feet. The correct answer is D. 29. 1 21 x Yes, the relationship is linear because the points lie in a line. 30. Similarity is reflexive, symmetric, and transitive. Sample answer: Given: nRAN , nTAG A nTAG , nCAB C R 7 x c. Because } 5 }, you know that 10x 5 7y. So, an 4 10 10 10 equation is y 5 } x. The slope is } . The slope and 7 7 the scale factor are the same. 34. a. B B A Sun N 93,000,000 mi C 432,500 mi D 240,000 mi E Moon Earth b. Sample answer: Because nBDA , nCDE, T } BDA ù CDA, so CE shows that any line of sight } from Earth to AB is blocked by the moon. All direct light from the sun is blocked in this way during a total eclipse. G Reflexive: nRAN , nRAN Symmetric: nRAN , nTAG, so nTAG , nRAN. Transitive: nRAN , nTAG and nTAG , nCAB, so nRAN , nCAB. c. CE ED DA AB 240,000 r }5} 93,000,000 432,500 }5} 103,800,000,000 5 93,000,000r 1116.13 ø r The radius of the moon is about 1116 miles. 164 Geometry Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x56 Chapter 6, continued OA 3 1 d. } 5 } 5 } 6 2 OC 35. Yes; the images are similar if the original image is a square. The result will be a square, and all squares are similar. 21153 1 2 5 10 AB CD 1 2 }5}5} 38. Let ABCD and FGHJ be similar rectangles. 21153 2 4 8 The ratios are equal, so the corresponding side lengths are proportional. Because corresponding angles are congruent and corresponding side lengths are proportional, n AOB , n COD. Sample answer: 2 OB OD }5}5} 2 The figures are similar squares with a scale factor of }3. L 36. The ratio of the areas of similar rectangles is the square K b M a of the scale factor. c d Q N bx R Sample answer: 6 4 2 A523458 cx ax 3 Scale factor: }2 P 18 8 9 4 S 3 2 kFG 1 kGH 1 kHJ 1 kJF AB 1 BC 1 CD 1 DA 5 }} So, }} FG 1 GH 1 HJ 1 JF FG 1 GH 1 HJ 1 JF k(FG 1 GH 1 HJ 1 JF) 37. a. The two lines are parallel because they have the same 5 }} FG 1 GH 1 HJ 1 JF slope. 5k b. BOA > DOC by the Vertical Angles Theorem. OBA > ODC by the Alternate Interior Angles Theorem. BAO > DCO by the Alternate Interior Angles Theorem. c. Coordinates of A: (x, 0) y 5 }3 x 2 8 4 0 5 }3 x 2 8 24 5 }3 x 4 8 5 }3 x 23 5 x 65x Coordinates of B: (0, y) Coordinates of D: (0, y) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 0 5 }3 x 1 4 4 y 5 }3 x 1 4 4 AB 5} . FG Because ABCD , FGHJ, you know that AB FG CD HJ DA JF AB 1 BC 1 CD 1 DA AB BC CD DA 5} 5} 5} 5} . So, }} HJ JF FG 1 GH 1 HJ 1 JF FG GH 4 4 BC GH } 5 } 5 } 5 }. Coordinates of C: (x, 0) 4 y 5 }3 x 1 4 AB The scale factor of ABCD to FGHJ is } . Let k 5 } . FG FG 5 1 }2 2 3 A 5 3 3 6 5 18 dx AB Ratio of Areas: } 5 } 39. MS RQ LM MR }5} x 1 1 x21 }5} 4 x(x 2 1) 5 1 4 y 5 }3 x 2 8 x2 2 x 2 1 5 0 Quadratic Formula: } 2a 2 4 y 5 }3 (0) 1 4 y 5 }3 (0) 2 8 y54 y 5 28 } } 26 6 Ïb 2 2 4ac 1 6 Ï5 1 6 Ï1 1 4 }} 5 } 5 } 2 } 1 2 Ï5 because it is a negative number. You can disregard } 2 } 1 1 Ï5 The coordinates of A, B, C, and D are (23, 0), (0, 4), (6, 0), and (0, 28), respectively. The exact value of x is } . 2 } 1 1 Ï5 } } Lengths of sides of n AOB: MS 1 1 Ï5 2 }5}5} LM 1 2 OA 5 {0 2 (23){ 5 3 So, PLMS is a golden rectangle. OB 5 {0 2 4{ 5 4 }} } AB 5 Ï(4 2 0)2 1 [0 2 (23)]2 5 Ï25 5 5 Lengths of sides of n COD: OC 5 {0 2 6{ 5 6 OD 5 {0 2 (28){ 5 8 }} } CD 5 Ï(28 2 0)2 1 (0 2 6)2 5 Ï100 5 10 Geometry Worked-Out Solution Key 165 Chapter 6, 1 x21 }5} 2. H; 1 1 Ï5 }21 11,400 5 285x 2 40 5 x 1 5} } Ï5 2 1 } 2 x j dimension on model 190 ft jdimension on actual building 60 in. 285 ft }5} 1 5} } The model of the building is 40 inches wide along the corresponding front. } (Ï5 1 1) 2 5} +} } } Ï 5 2 1 (Ï 5 1 1) 3. D; MN } 2 2 3 12 QS } }5} 1 1 Ï5 5} 2 36 5 2(QS) So, LMRQ is a golden rectangle. 18 5 QS Perimeter of nQRS 5 QR 1 RS 1 QS Mixed Review for TAKS 5 15 1 15 1 18 40. A; 5 48 The rate of change is the slope. Choose two points on the graph: (0, 23) and (2, 0). y2 2 y1 0 2 (23) 3 5} 5 }2 m5} x2 2 x1 220 The perimeter of nQRS is 48 centimeters. 4. H; 150 x 1 j number of U.S. dollars 10.63 jnumber of Mexican pesos }5} 3 The rate of change is }2. 150(10.63) 5 x 1594.5 5 x 41. G; 6 2 4 3 3 1 1 } 5 } inch, } inch, } 5 } inch, } 5 } inch, 32 32 32 16 32 8 16 7 32 1 4 8 32 Kelly has 1594.5 2 640 5 954.5 Mexican pesos left. 5. B; 5 32 } inch, and } 5 } inch. So, the } inch bit is missing. 1,504,000,000 lb 290,000,000 people }} ø 5.2 pounds per person 42. D; x The approximate per capita consumption of peaches in the U.S. in 2002 was 5.2 pounds per person. 0 y 5 6x 2 17 6(0) 2 17 5 0 2 17 5 217 x 4 y 5 6x 2 17 6(4) 2 17 5 24 2 17 5 7 6. AC DF 2 3 AC 6 2 3 }5} }5} 3(AC) 5 12 AC 5 4 x 7 y 5 6x 2 17 6(7) 2 17 5 42 2 17 5 25 The range of the function is {217, 7, 25}. Mixed Review for TEKS (p. 380) 1. C; AB BC 3 8 426 x 3 8 }5} }5} 3408 5 3x 1136 5 x So, BC 5 1136 units and AC 5 AB 1 BC 5 426 1 1136 5 1562 units. 166 10 cm Scale factor: } 5} 5 }3 15 cm RS 2(Ï5 1 1) 5} 4 Geometry Worked-Out Solution Key AC is 4 units. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. LM MR continued