SUPA From weak to ultra-strong matter-light coupling with organic materials Jonathan Keeling
by user
Comments
Transcript
SUPA From weak to ultra-strong matter-light coupling with organic materials Jonathan Keeling
From weak to ultra-strong matter-light coupling with organic materials Jonathan Keeling SUPA University of St Andrews 1413-2013 Snowbird, January 2015 Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 1 Matter-Light coupling with organic molecules What & why? [Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff et al. Nat. Materials ’14, Daskalakis et al. ibid ’14] [Klaers et al. Nature ’10] I I Wide variety of systems: polymers, fluorenes, J-aggregrates, √ molecular crystals. Often large polariton splitting, g N ∼ 0.1 eV ↔ 1000K Theory questions/challenges I I I Ultrastrong coupling Vibrational modes (Partial) thermalisation Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 2 Matter-Light coupling with organic molecules What & why? [Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff et al. Nat. Materials ’14, Daskalakis et al. ibid ’14] [Klaers et al. Nature ’10] I I Wide variety of systems: polymers, fluorenes, J-aggregrates, √ molecular crystals. Often large polariton splitting, g N ∼ 0.1 eV ↔ 1000K Theory questions/challenges I I I Ultrastrong coupling Vibrational modes (Partial) thermalisation Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 2 Matter-Light coupling with organic molecules What & why? [Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff et al. Nat. Materials ’14, Daskalakis et al. ibid ’14] [Klaers et al. Nature ’10] I I Wide variety of systems: polymers, fluorenes, J-aggregrates, √ molecular crystals. Often large polariton splitting, g N ∼ 0.1 eV ↔ 1000K Theory questions/challenges I I I Ultrastrong coupling Vibrational modes (Partial) thermalisation Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 2 Dicke Holstein Model Dicke model: 2LS ↔ photons Molecular vibrational mode I I Phonon frequency Ω Huang-Rhys parameter S — coupling strength Hsys = ωψ † ψ + Xh α Jonathan Keeling 2 i σαz + g ψ + ψ † σα+ + σα− Weak, strong, ultra-strong Snowbird, January 2015 3 Dicke Holstein Model Dicke model: 2LS ↔ photons Molecular vibrational mode I I Phonon frequency Ω Huang-Rhys parameter S — coupling strength Hsys = ωψ † ψ + Xh α 2 i σαz + g ψ + ψ † σα+ + σα− + X n o √ Ω bα† bα + Sσαz bα† + bα α Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 3 Three stories 1 Weak coupling: photon condensation 2 Strong coupling: polaritons 3 Ultra strong coupling: vibrational reconfiguration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 4 Modelling Hsys = X † ωm ψ m ψm + m Xh α 2 i σαz + g ψm σα+ + H.c. + X n o √ Ω bα† bα + Sσαz bα† + bα α 2D harmonic oscillator ωm = ωcutoff + mωH.O. Incoherent processes: excitation, decay, loss, vibrational thermalisation. Weak coupling, perturbative in g Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 5 Modelling Hsys = X † ωm ψ m ψm + m Xh α 2 i σαz + g ψm σα+ + H.c. + X n o √ Ω bα† bα + Sσαz bα† + bα α 2D harmonic oscillator ωm = ωcutoff + mωH.O. Incoherent processes: excitation, decay, loss, vibrational thermalisation. Weak coupling, perturbative in g Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 5 Modelling Hsys = X † ωm ψ m ψm + m Xh α 2 i σαz + g ψm σα+ + H.c. + X n o √ Ω bα† bα + Sσαz bα† + bα α 2D harmonic oscillator ωm = ωcutoff + mωH.O. Incoherent processes: excitation, decay, loss, vibrational thermalisation. Weak coupling, perturbative in g Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 5 Modelling Master equation ρ̇ = −i[H0 , ρ] − Xκ m − X m,α 2 L[ψm ] − X Γ↑ α 2 L[σα+ ] Γ↓ + L[σα− ] 2 Γ(δm = ωm − ) Γ(−δm = − ωm ) + − † L[σα ψm ] + L[σα ψm ] 2 2 1 0.8 Kennard-Stepanov Γ(+δ) ' Γ(−δ)eβδ 0.6 Γ(δ) Γ(−δ) 0.4 Expt: ω0 < 0.2 0 −200 Γ → 0 at large δ −100 0 100 δ [THz] 200 [Marthaler et al PRL ’11, Kirton & JK PRL ’13] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 6 Modelling Master equation ρ̇ = −i[H0 , ρ] − Xκ m − X m,α 2 L[ψm ] − X Γ↑ α 2 L[σα+ ] Γ↓ + L[σα− ] 2 Γ(δm = ωm − ) Γ(−δm = − ωm ) + − † L[σα ψm ] + L[σα ψm ] 2 2 1 0.8 Kennard-Stepanov Γ(+δ) ' Γ(−δ)eβδ 0.6 Γ(δ) Γ(−δ) 0.4 Expt: ω0 < 0.2 0 −200 Γ → 0 at large δ −100 0 100 δ [THz] 200 [Marthaler et al PRL ’11, Kirton & JK PRL ’13] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 6 Distribution gm nm Master equation → Rate equation ∂t nm = −κnm + N Γ(−δm )(nm + 1)hσ ee i − Γ(δm )nM hσ gg i Bose-Einstein distribution without losses Low loss: Thermal [Kirton & JK PRL ’13] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 7 Distribution gm nm Master equation → Rate equation ∂t nm = −κnm + N Γ(−δm )(nm + 1)hσ ee i − Γ(δm )nM hσ gg i Bose-Einstein distribution without losses Low loss: Thermal High loss → Laser [Kirton & JK PRL ’13] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 7 Time evolution Initial state: excited molecules Initial emission, follows gain peak Thermalisation by repeated absorption [Kirton & JK arXiv:1410.6632] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 8 Time evolution 1 Initial state: excited molecules Initial emission, follows gain peak 0.8 0.6 Γ(δ) Γ(−δ) 0.4 Thermalisation by repeated absorption 0.2 0 −200 −100 0 100 δ [THz] 200 [Kirton & JK arXiv:1410.6632] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 8 Time evolution 1 Initial state: excited molecules Initial emission, follows gain peak 0.8 0.6 Γ(δ) Γ(−δ) 0.4 Thermalisation by repeated absorption 0.2 0 −200 −100 0 100 δ [THz] 200 [Kirton & JK arXiv:1410.6632] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 8 Strong coupling: polaritons 1 Weak coupling: photon condensation 2 Strong coupling: polaritons 3 Ultra strong coupling: vibrational reconfiguration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 9 Strong coupling phase diagram — mean field Mean field — single photon mode n oi Xh √ H = ωψ † ψ+ Sαz + g ψSα+ + ψ † Sα− +Ω bα† bα + S bα† + bα Sαz α = ω − ∆, Mott lobes if < ω − 2g S reduces geff Reentrant behaviour — Min µ at kB T ∼ 0.1Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 10 Strong coupling phase diagram — mean field Mean field — single photon mode n oi Xh √ H = ωψ † ψ+ Sαz + g ψSα+ + ψ † Sα− +Ω bα† bα + S bα† + bα Sαz α -x*y S=0 0.8 T 0.4 0.6 0.3 0.4 0.2 0.2 0.1 0 S reduces geff 0 -6 -5 -4 -3 µ-ωc -2 -1 Energy g=2. S=2, ∆=4, Ω=0.1 0.5 = ω − ∆, Mott lobes if < ω − 2g 1 Coherent field 〈ψ〉 0.6 ⇑ Photon 0 nuclear coordinate ⇓ Reentrant behaviour — Min µ at kB T ∼ 0.1Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 10 Strong coupling phase diagram — mean field Mean field — single photon mode n oi Xh √ H = ωψ † ψ+ Sαz + g ψSα+ + ψ † Sα− +Ω bα† bα + S bα† + bα Sαz α -x*y S=0 0.8 T 0.4 0.6 0.3 0.4 0.2 0.2 0.1 0 S reduces geff 0 -6 -5 -4 -3 µ-ωc -2 -1 Energy g=2. S=2, ∆=4, Ω=0.1 0.5 = ω − ∆, Mott lobes if < ω − 2g 1 Coherent field 〈ψ〉 0.6 ⇑ Photon 0 nuclear coordinate ⇓ Reentrant behaviour — Min µ at kB T ∼ 0.1Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 10 Polariton spectrum: photon weight 0.3 T=0.4, S=2, ∆=4, Ω=0.1, g=2 0.2 -4.5 0.1 -4.6 0 -4.7 -0.1 Photon weight, Zn Energy -4.4 -0.2 -4.8 µ 0 0.1 Density ρ -0.3 0.2 2 ∼ g 2 (1 − 2ρ) Saturating 2LS: geff What is nature of polariton mode? GR (t) = −ihψ † (t)ψ(0)i, GR (ν) = X n Zn ν − ωn [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 11 Polariton spectrum: photon weight 0.3 T=0.4, S=2, ∆=4, Ω=0.1, g=2 0.2 -4.5 0.1 -4.6 0 -4.7 -0.1 Photon weight, Zn Energy -4.4 -0.2 -4.8 µ 0 0.1 Density ρ -0.3 0.2 2 ∼ g 2 (1 − 2ρ) Saturating 2LS: geff What is nature of polariton mode? GR (t) = −ihψ † (t)ψ(0)i, GR (ν) = X n Zn ν − ωn [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 11 Polariton spectrum: photon weight 0.3 T=0.4, S=2, ∆=4, Ω=0.1, g=2 0.2 -4.5 0.1 -4.6 0 -4.7 -0.1 Photon weight, Zn Energy -4.4 -0.2 -4.8 µ 0 0.1 Density ρ -0.3 0.2 2 ∼ g 2 (1 − 2ρ) Saturating 2LS: geff What is nature of polariton mode? GR (t) = −ihψ † (t)ψ(0)i, GR (ν) = X n Zn ν − ωn [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 11 Ultra strong coupling: vibrational reconfiguration 1 Weak coupling: photon condensation 2 Strong coupling: polaritons 3 Ultra strong coupling: vibrational reconfiguration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 12 Ultra-strong coupling, changing configuration √ √ Ultra-strong coupling: ω, ∼ g N ∝ concentration Normal state: configuration of molecules [Canaguier-Durand et al. Angew. Chem. ’13 ] I I Polariton vs molecular spectral weight – chemical eqbm Temperature dependent Questions: I I Vibrationally dressed spectrum + disorder Microscopic theory – changing configuration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 13 Ultra-strong coupling, changing configuration √ √ Ultra-strong coupling: ω, ∼ g N ∝ concentration Normal state: configuration of molecules [Canaguier-Durand et al. Angew. Chem. ’13 ] I I Polariton vs molecular spectral weight – chemical eqbm Temperature dependent Questions: I I Vibrationally dressed spectrum + disorder Microscopic theory – changing configuration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 13 Ultra-strong coupling, changing configuration √ √ Ultra-strong coupling: ω, ∼ g N ∝ concentration Normal state: configuration of molecules [Canaguier-Durand et al. Angew. Chem. ’13 ] I I Polariton vs molecular spectral weight – chemical eqbm Temperature dependent Questions: I I Vibrationally dressed spectrum + disorder Microscopic theory – changing configuration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 13 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon 50 Central peak: g√N=0.3 eV Spectral weight 40 30 20 10 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon 50 Spectral weight Central peak: g√N=0.3 eV g√N=0.5 eV 40 30 20 10 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon 50 Spectral weight Central peak: g√N=0.3 eV g√N=0.5 eV g√N=0.7 eV 40 30 20 10 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon 50 Spectral weight Central peak: g√N=0.3 eV g√N=0.5 eV g√N=0.7 eV 40 30 20 10 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon Spectral weight 0.4 Central peak: g√N=0.3 eV g√N=0.5 eV g√N=0.7 eV 0.3 0.2 0.1 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon Spectral weight 0.4 Central peak: g√N=0.3 eV g√N=0.5 eV g√N=0.7 eV 0.3 GR (ν) = 1 R (ν) ν + iκ/2 − ωk − g 2 GExc. 2 κ R A(ν) ∼ − =[GExc. ] GR (ν) 2 0.2 0.1 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 [Houdré et al. , PRA ’96] √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — spectrum Calculate Green’s function GR (ν): T (ν) ∝ |GR (ν)|2 , A(ν) ∝ −=[GR (ν)] + (interference) Ultra-strong coupling — renormalised photon Spectral weight 0.4 Central peak: g√N=0.3 eV g√N=0.5 eV g√N=0.7 eV 0.3 GR (ν) = 1 R (ν) ν + iκ/2 − ωk − g 2 GExc. 2 κ R A(ν) ∼ − =[GExc. ] GR (ν) 2 0.2 0.1 0 1.6 1.8 2 2.2 2.4 2.6 ω [eV] 2.8 3 3.2 [Houdré et al. , PRA ’96] √ Temperature independent (for kB T g N) Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 14 Disordered molecules — vibrational mode With vibrational sidebands, S = 0.02 Spectral weight 0.4 g√N=0.3eV g√N=0.5eV g√N=0.7eV 0.3 0.2 0.1 0 1.6 Jonathan Keeling 1.8 2 2.2 2.4 2.6 ω [eV] Weak, strong, ultra-strong 2.8 3 3.2 Snowbird, January 2015 15 Disordered molecules — vibrational mode Spectral weight 0.4 g√N=0.3eV g√N=0.5eV g√N=0.7eV 0.3 0.2 0.1 Bare molecule With vibrational sidebands, S = 0.02 1.9 2 2.4 2.6 ω [eV] 2.8 2.1 0 1.6 Jonathan Keeling 1.8 2 2.2 Weak, strong, ultra-strong 3 3.2 Snowbird, January 2015 15 Disordered molecules + vibrations – vs temperature Stronger disorder & S = 0.5, σ = 0.025eV vs vs temperature Spectral weight 0.05 0.04 kBT [eV] 0.1 0.03 0 1.7 1.8 1.9 2 Jonathan Keeling 2.1 2.2 ω [eV] 2.3 2.4 2.5 Weak, strong, ultra-strong Snowbird, January 2015 16 Disordered molecules + vibrations – vs temperature Stronger disorder & S = 0.5, σ = 0.025eV vs vs temperature Spectral weight 0.05 0.04 kBT [eV] 0.1 0.03 0 1.7 1.8 1.9 2 Jonathan Keeling 2.1 2.2 ω [eV] 2.3 2.4 2.5 Weak, strong, ultra-strong Snowbird, January 2015 16 Disordered molecules + vibrations – vs temperature Stronger disorder & S = 0.5, σ = 0.025eV vs vs temperature Spectral weight 0.05 0.04 kBT [eV] 0.1 0.03 0 1.7 1.8 1.9 2 Jonathan Keeling 2.1 2.2 ω [eV] 2.3 2.4 2.5 Weak, strong, ultra-strong Snowbird, January 2015 16 Disordered molecules + vibrations – vs temperature Stronger disorder & S = 0.5, σ = 0.025eV vs vs temperature Spectral weight 0.05 0.04 kBT [eV] 0.1 0.03 0 1.7 1.8 1.9 2 Jonathan Keeling 2.1 2.2 ω [eV] 2.3 2.4 2.5 Weak, strong, ultra-strong Snowbird, January 2015 16 Disordered molecules + vibrations – vs temperature Stronger disorder & S = 0.5, σ = 0.025eV vs vs temperature S = 0.02, σ = 0.01eV 1.2 0.05 0.05 Spectral weight Spectral weight 1 0.04 kBT [eV] 0.1 0.03 0.8 0.6 0.04 kBT [eV] 0.4 0.03 0.2 0 0 1.7 1.8 1.9 2 Jonathan Keeling 2.1 2.2 ω [eV] 2.3 2.4 2.5 1.7 Weak, strong, ultra-strong 1.8 1.9 2 2.1 2.2 ω [eV] 2.3 2.4 Snowbird, January 2015 2.5 16 Acknowledgements G ROUP : C OLLABORATORS : Reja (MPI-PKS), Littlewood (ANL & Chicago), De Liberato (Southhampton) F UNDING : Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 17 Summary Photon condensation and thermalisation [Kirton & Keeling, PRL ’13, arXiv:1410.6632] Reentrance, phonon assisted transition, 1st order at S 1 0.3 T 0.4 1 -4.4 0.8 -4.5 0.6 0.3 0.4 0.2 0.2 0.1 0 0 -6 -5 -4 -3 µ-ωc -2 -1 T=0.4, S=2, ∆=4, Ω=0.1, g=2 0.2 0.1 -4.6 0 -4.7 -0.1 Photon weight, Zn S=0 Energy -x*y g=2. S=2, ∆=4, Ω=0.1 0.5 Coherent field 〈ψ〉 0.6 -0.2 -4.8 µ 0 0 0.1 Density ρ -0.3 0.2 [Cwik et al. EPL ’14] Vibrational configuration 0.1 0.05 1 1.9 2 2.4 2.6 ω [eV] 2.8 Spectral weight 0.2 1.2 0.05 Spectral weight g√N=0.3eV g√N=0.5eV g√N=0.7eV 0.3 Bare molecule Spectral weight 0.4 0.04 kBT [eV] 0.1 0.03 0.8 0.04 kBT [eV] 0.6 0.4 0.03 2.1 0.2 0 0 1.6 1.8 2 2.2 3 3.2 0 1.7 1.8 1.9 2 2.1 2.2 ω [eV] 2.3 2.4 2.5 1.7 1.8 1.9 2 2.1 2.2 ω [eV] 2.3 2.4 2.5 [Cwik et al. in preparation] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 18 Extra Slides 4 Dye laser 5 Photon BEC threshold 6 Photon BEC with spatial profile 7 Ultra-strong phonon coupling? 8 Anticrossing vs ρ 9 Polariton spectrum nature 10 Vibrational reconfiguration Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 19 Dicke-Holstein model: dye laser Energy 4 Level Dye Laser Multiple photon modes ⇑ ⇓ I Pump Cavity vibrational coordinate I I Condensate mode is not maximum gain Gain/Absorption in balance Thermalisation (Ultra)strong matter-light coupling No strong coupling No electronic inversion — vibrational inversion. Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 20 Dicke-Holstein model: dye laser Energy 4 Level Dye Laser Multiple photon modes ⇑ ⇓ I Pump Cavity vibrational coordinate I I Typical operation Condensate mode is not maximum gain Gain/Absorption in balance Thermalisation (Ultra)strong matter-light coupling No strong coupling No electronic inversion — vibrational inversion. Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 20 Dicke-Holstein model: dye laser Energy 4 Level Dye Laser In this talk: Multiple photon modes ⇑ ⇓ I Pump Cavity vibrational coordinate I I Typical operation Condensate mode is not maximum gain Gain/Absorption in balance Thermalisation (Ultra)strong matter-light coupling No strong coupling No electronic inversion — vibrational inversion. Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 20 Dicke-Holstein model: dye laser Energy 4 Level Dye Laser In this talk: Multiple photon modes ⇑ ⇓ I Pump Cavity vibrational coordinate I I Typical operation Condensate mode is not maximum gain Gain/Absorption in balance Thermalisation (Ultra)strong matter-light coupling No strong coupling No electronic inversion — vibrational inversion. Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 20 Threshold condition κ =10 MHz κ κ κ =5 GHz κ κ=0.5 GHz 600 500 400 Compare threshold: In cr ea si ng 300 Pump rate (Laser) lo ss Critical density (condensate) 200 10−5 10−4 10−3 10−2 10−1 2 3 4 5 6 7 [Kirton & JK PRL ’13] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 21 Spatially varying pump intensity 7 Jonathan Keeling Weak, strong, ultra-strong Cloud width/lHO 6 ∂t ρ↑ = −Γ̃↓ (r )ρ↑ + Γ̃↑ (r )(ρm − ρ↑ ) Z ∂t nm = Γ(δm ) d~r ρ↑ |ψm (r )|2 (nm + 1) Z 2 − κ + Γ(δm ) d~r (ρm − ρ↑ )|ψm (r )| nm 5 4 3 2 Cloud Pump Thermal 1 0 0 2 4 6 Pump spot width/lHO 8 Snowbird, January 2015 10 22 Spatially varying pump intensity 7 Photons Thermal 20 0.06 0.04 10 0.02 0 0 r/l Jonathan Keeling 10 20 Photons f, pump 0.08 Peak pump power (au) 30 -10 4 3 2 Cloud Pump Thermal 1 0 0 2 4 6 Pump spot width/lHO 0.3 0.1 0 -20 5 8 10 5 4 0.2 3 2 0.1 1 Peak power Integrated power 0 0 extHO Weak, strong, ultra-strong 5 Integrated power (au) Pump ρ↑ Cloud width/lHO 6 ∂t ρ↑ = −Γ̃↓ (r )ρ↑ + Γ̃↑ (r )(ρm − ρ↑ ) Z ∂t nm = Γ(δm ) d~r ρ↑ |ψm (r )|2 (nm + 1) Z 2 − κ + Γ(δm ) d~r (ρm − ρ↑ )|ψm (r )| nm 0 10 15 Spot size (lHO) 20 Snowbird, January 2015 22 Critical coupling with increasing S ε - ω=-4 4 3 Re-orient phase diagram gc√Ν 2 g vs µ, T 1 Colors → Jump of hψi 0-5 Jonathan Keeling Weak, strong, ultra-strong -4 -3 µ-ω -2 -1 0 0 1 0.6 0.8 0.2 0.4 T Snowbird, January 2015 23 Critical coupling with increasing S ε - ω=-4 4 3 Re-orient phase diagram gc√Ν 2 g vs µ, T 1 Colors → Jump of hψi 0-5 -4 -3 µ-ω -2 -1 0 0 1 0.6 0.8 0.2 0.4 T S=3 -4 µ-ω-3 -2 0 Jonathan Keeling 0.1 T 7 6 5 4 3 2 1 0.2 -50 S=6 0.4 gc√ Ν 7 6 5 4 3 2 1 0.2 -50 gc√ Ν gc√ Ν S=0 ∆=4, Ω=1 -4 µ-ω-3 -2 0 0.1 T Weak, strong, ultra-strong 0.3 0.2 0.1 0.2 -4 µ-ω-3 -2 0 0.1 T Jump in 〈 ψ 〉 0.5 7 6 5 4 3 2 1 0 -5 0 Snowbird, January 2015 23 Explanation: Polaron formation Unitary transform √ Hα → H̃α = eKα Hα e−Kα K = SSαz (bα† − bα ) Coupling moves to S ± h i √ † H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c. Optimal phonon displacements, ∼ √ S Reduced geff ∼ g × exp(−S/2) For ψ 6= 0, competition Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 24 Explanation: Polaron formation Unitary transform √ Hα → H̃α = eKα Hα e−Kα K = SSαz (bα† − bα ) Coupling moves to S ± h i √ † H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c. Optimal phonon displacements, ∼ √ S Reduced geff ∼ g × exp(−S/2) For ψ 6= 0, competition Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 24 Explanation: Polaron formation Unitary transform √ Hα → H̃α = eKα Hα e−Kα K = SSαz (bα† − bα ) Coupling moves to S ± h i √ † H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c. Optimal phonon displacements, ∼ √ S Reduced geff ∼ g × exp(−S/2) For ψ 6= 0, competition Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 24 Explanation: Polaron formation Unitary transform √ Hα → H̃α = eKα Hα e−Kα K = SSαz (bα† − bα ) Coupling moves to S ± h i √ † H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c. Optimal phonon displacements, ∼ √ S Reduced geff ∼ g × exp(−S/2) For ψ 6= 0, competition Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 24 Explanation: Polaron formation Unitary transform √ Hα → H̃α = eKα Hα e−Kα K = SSαz (bα† − bα ) Coupling moves to S ± h i √ † H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c. Optimal phonon displacements, ∼ √ S Reduced geff ∼ g × exp(−S/2) For ψ 6= 0, competition Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 24 Collective polaron formation (a) Exact diagonalization Compares well at S 1 Coherent bosonic state 6 5 5 4 g√ Ν 3 4 g√ Ν 3 2 0 -5 S=6, ∆=4, Ω=1 2 1 0.2 -4 µ-ωc -3 -2 0 0.1 T 1 0 -5 -4 µ-ωc -3 -2 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 λ (b) Ansatz 6 0.2 0.1 T Feedback: Large/small geff ↔ λ = hψi Variational free energy η(2 − η) ξ F = (ωc − µ)λ2 + N Ω ζ 2 − S − T ln 2 cosh 4 T Effective 2LS energy in field: 2 √ −µ 2 2 ξ = + Ω S(1 − η)ζ + g 2 λ2 e−Sη 2 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 25 Collective polaron formation (a) Exact diagonalization Compares well at S 1 Coherent bosonic state 6 5 5 4 g√ Ν 3 4 g√ Ν 3 2 0 -5 S=6, ∆=4, Ω=1 2 1 0.2 -4 µ-ωc -3 -2 0 0.1 T 1 0 -5 -4 µ-ωc -3 -2 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 λ (b) Ansatz 6 0.2 0.1 T Feedback: Large/small geff ↔ λ = hψi Variational free energy η(2 − η) ξ F = (ωc − µ)λ2 + N Ω ζ 2 − S − T ln 2 cosh 4 T Effective 2LS energy in field: 2 √ −µ 2 2 ξ = + Ω S(1 − η)ζ + g 2 λ2 e−Sη 2 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 25 Collective polaron formation (a) Exact diagonalization Compares well at S 1 Coherent bosonic state 6 5 5 4 g√ Ν 3 4 g√ Ν 3 2 0 -5 S=6, ∆=4, Ω=1 2 1 0.2 -4 µ-ωc -3 -2 0 0.1 T 1 0 -5 -4 µ-ωc -3 -2 0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 λ (b) Ansatz 6 0.2 0.1 T Feedback: Large/small geff ↔ λ = hψi Variational free energy η(2 − η) ξ F = (ωc − µ)λ2 + N Ω ζ 2 − S − T ln 2 cosh 4 T Effective 2LS energy in field: 2 √ −µ 2 2 ξ = + Ω S(1 − η)ζ + g 2 λ2 e−Sη 2 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 25 Polariton spectrum — coupled oscillators Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 26 Polariton spectrum — coupled oscillators Photon Exciton 1 UP Energy 0 -1 -2 LP -3 0 Jonathan Keeling 0.2 0.4 0.6 0.8 1 1.2 Coupling, g Weak, strong, ultra-strong 1.4 1.6 1.8 2 Snowbird, January 2015 26 Polariton spectrum — coupled oscillators Photon Exciton Exciton-Ω 1 UP Energy 0 -1 -2 LP -3 0 Jonathan Keeling 0.2 0.4 0.6 0.8 1 1.2 Coupling, g Weak, strong, ultra-strong 1.4 1.6 1.8 2 Snowbird, January 2015 26 Polariton spectrum — coupled oscillators Photon Exciton-nΩ 1 UP Energy 0 -1 -2 -3 0 Jonathan Keeling 0.2 0.4 0.6 0.8 1 1.2 Coupling, g Weak, strong, ultra-strong 1.4 1.6 1.8 2 Snowbird, January 2015 26 Polariton spectrum — coupled oscillators Photon Exciton-nΩ 1 UP Energy 0 -1 -2 -3 0 Jonathan Keeling 0.2 0.4 0.6 0.8 1 1.2 Coupling, g Weak, strong, ultra-strong 1.4 1.6 1.8 2 Snowbird, January 2015 26 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T ∼ 2Ω [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 27 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T ∼ 2Ω 1 Sideband spectral weight S=2, ∆=4, Ω=0.1, g=2 T=0.00 0.8 0.6 0.4 0.2 0 -6 -5 -4 -3 -2 -1 0 1 2 3 Absorbed phonons: q-p 4 5 6 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 27 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T ∼ 2Ω 1 Sideband spectral weight S=2, ∆=4, Ω=0.1, g=2 0.8 T=0.00 T=0.05 T=0.15 0.6 0.4 0.2 0 -6 -5 -4 -3 -2 -1 0 1 2 3 Absorbed phonons: q-p 4 5 6 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 27 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T ∼ 2Ω 1 Sideband spectral weight S=2, ∆=4, Ω=0.1, g=2 0.8 0.6 T=0.00 T=0.05 T=0.15 T=0.20 T=0.30 T=0.40 T=0.45 0.4 0.2 0 -6 -5 -4 -3 -2 -1 0 1 2 3 Absorbed phonons: q-p 4 5 6 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 27 Polariton spectrum: what condensed Repeat weight for n-phonon channel Eigenvector that is macroscopically occupied Optimal T ∼ 2Ω 0.8 0.6 T=0.00 T=0.05 T=0.15 T=0.20 T=0.30 T=0.40 T=0.45 0.6 g=2. S=2, ∆=4, Ω=0.1 1 -x*y 0.5 0.8 0.4 0.4 T Sideband spectral weight S=2, ∆=4, Ω=0.1, g=2 0.6 0.3 0.4 0.2 0.2 0.2 0.1 0 -6 -5 -4 -3 -2 -1 0 1 2 3 Absorbed phonons: q-p 4 5 6 0 Coherent field 〈ψ〉 1 0 -6 -5 -4 -3 µ-ωc -2 -1 0 [Cwik et al. EPL ’14] Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 27 Vibrational reconfiguration H = H0 + H1 , H1 = P n,k gn,k (ψk† σn+ + H.c.) Schrieffer-Wolff: admixture of excited state ( " √ #) √ g2N Ω S(b + b† ) Ω 2 g N , Heff,vacuum = H0 − 1− +O 2( + ω) +ω Reduced √ √ vibrational offset S → S(1 − g 2 N/( + ω)) Increased effective coupling: 2 geff = g 2 exp(−S) Numerically tiny effect, Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 28 Vibrational reconfiguration H = H0 + H1 , H1 = P n,k gn,k (ψk† σn+ + H.c.) Energy Schrieffer-Wolff: admixture of excited state ( " √ #) √ g2N Ω S(b + b† ) Ω 2 g N , Heff,vacuum = H0 − 1− +O 2( + ω) +ω Reduced √ √ vibrational offset S → S(1 − g 2 N/( + ω)) ⇑ Photon nuclear coordinate ⇓ l S ×l Increased effective coupling: 2 geff = g 2 exp(−S) Numerically tiny effect, Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 28 Vibrational reconfiguration H = H0 + H1 , H1 = P n,k gn,k (ψk† σn+ + H.c.) Energy Schrieffer-Wolff: admixture of excited state ( " √ #) √ g2N Ω S(b + b† ) Ω 2 g N , Heff,vacuum = H0 − 1− +O 2( + ω) +ω Reduced √ √ vibrational offset S → S(1 − g 2 N/( + ω)) ⇑ Photon nuclear coordinate ⇓ l S ×l Increased effective coupling: 2 geff = g 2 exp(−S) Numerically tiny effect, Ω Jonathan Keeling Weak, strong, ultra-strong Snowbird, January 2015 28