...

600 Pairing Phases of Polaritons, and photon condensates Jonathan Keeling

by user

on
Category: Documents
11

views

Report

Comments

Transcript

600 Pairing Phases of Polaritons, and photon condensates Jonathan Keeling
Pairing Phases of Polaritons, and photon
condensates
Jonathan Keeling
University of
St Andrews
600
YEARS
ICSCE7, Hakone, April 2014
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
1 / 21
Outline
1
Pairing phases of polaritons
Pairing phases and Feshbach for polaritons
Phase diagram: Critical detunings
Signatures
Phase diagram: Critical temperatures
2
Photon condensation
Modelling organic molecules: Vibrational modes
Strong coupling?
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
2 / 21
Pairing phases of atoms
Fermions
BEC-BEC transition
†
Ĥ = . . . + ψ̂m
ψ̂a1 ψ̂a2 + h.c.
I
From Randeria, Nat. Phys. ’10
I
If hψ̂m i =
6 0, MSF
If hψ̂a1 i =
6 0, hψ̂a2 i =
6 0. AMSF
High density → metastability.
BEC-BCS crossover
[Eagles, Leggett, Keldysh, Nozières,
Randeria, . . . ]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
3 / 21
Pairing phases of atoms
Bosons
Fermions
T
MSF
AMSF
(B−B0 )
BEC-BEC transition
†
Ĥ = . . . + ψ̂m
ψ̂a1 ψ̂a2 + h.c.
I
From Randeria, Nat. Phys. ’10
[Eagles, Leggett, Keldysh, Nozières,
Jonathan Keeling
If hψ̂m i =
6 0, MSF
If hψ̂a1 i =
6 0, hψ̂a2 i =
6 0. AMSF
High density → metastability.
BEC-BCS crossover
Randeria, . . . ]
I
[Nozières, St James, Timmermanns,
Mueller, Thouless, Radzihovsky, Stoof,
Sachdev . . . ]
Pairing phases & photons
ICSCE7, April 2014
3 / 21
Pairing phases of atoms
Bosons
Fermions
T
MSF
AMSF
(B−B0 )
BEC-BEC transition
†
Ĥ = . . . + ψ̂m
ψ̂a1 ψ̂a2 + h.c.
I
From Randeria, Nat. Phys. ’10
[Eagles, Leggett, Keldysh, Nozières,
Jonathan Keeling
If hψ̂m i =
6 0, MSF
If hψ̂a1 i =
6 0, hψ̂a2 i =
6 0. AMSF
High density → metastability.
BEC-BCS crossover
Randeria, . . . ]
I
[Nozières, St James, Timmermanns,
Mueller, Thouless, Radzihovsky, Stoof,
Sachdev . . . ]
Pairing phases & photons
ICSCE7, April 2014
3 / 21
Polariton Feshbach
Hybridisation of bound states:
I
I
Biexciton: opposite spins (two-species):
2ω0X − Eb
h
i
p
Hybridisation with photons: 2 21 (ω0C + ω0X ) − 12 Ω2r + δ 2
Control δ change ν, m,
Interaction . . .
[Ivanov, Haug, Keldysh ’98], [Wouters ’07], [Caursotto et al. ’10], [Deveaud-Pledran et
al. ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
4 / 21
Polariton Feshbach
Hybridisation of bound states:
I
I
Biexciton: opposite spins (two-species):
2ω0X − Eb
h
i
p
Hybridisation with photons: 2 21 (ω0C + ω0X ) − 12 Ω2r + δ 2
Control δ change ν, m,
Interaction . . .
[Ivanov, Haug, Keldysh ’98], [Wouters ’07], [Caursotto et al. ’10], [Deveaud-Pledran et
al. ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
4 / 21
Polariton Feshbach
Hybridisation of bound states:
I
I
Biexciton: opposite spins (two-species):
2ω0X − Eb
h
i
p
Hybridisation with photons: 2 21 (ω0C + ω0X ) − 12 Ω2r + δ 2
E
X
2ω0
ωXX
|Eb|
LP
2ω0
X
E−ω0 [meV]
6
Control δ change ν, m,
Interaction . . .
UP
4
UP
2
C
ω0
C
ω0
0
X
ω0
−2
ν>0
−4
LP
−2
X
δ (ΩR2+δ2)1/2
LP
ω0
2
0
k [µm−1]
4
[Ivanov, Haug, Keldysh ’98], [Wouters ’07], [Caursotto et al. ’10], [Deveaud-Pledran et
al. ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
4 / 21
Polariton Feshbach
Hybridisation of bound states:
I
I
Biexciton: opposite spins (two-species):
2ω0X − Eb
h
i
p
Hybridisation with photons: 2 21 (ω0C + ω0X ) − 12 Ω2r + δ 2
E
X
2ω0
LP
2ω0 = ωXX
X
ν=0
Control δ change ν, m,
Interaction . . .
UP
6
E−ω0 [meV]
|Eb|
UP
ω0
C
4
C
ω0
2
X
X
0
ω0
LP
ω0
LP
−2
−4
−2
0
k [µm−1]
2
δ (ΩR2+δ2)1/2
4
[Ivanov, Haug, Keldysh ’98], [Wouters ’07], [Caursotto et al. ’10], [Deveaud-Pledran et
al. ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
4 / 21
Polariton Feshbach
Hybridisation of bound states:
I
I
Biexciton: opposite spins (two-species):
2ω0X − Eb
h
i
p
Hybridisation with photons: 2 21 (ω0C + ω0X ) − 12 Ω2r + δ 2
E
Control δ change ν, m,
Interaction . . .
X
X
ν=0
UP
6
E−ω0 [meV]
|Eb|
ν [meV]
2ω0
LP
2ω0 = ωXX
UP
ω0
C
4
C
ω0
2
X
X
0
ω0
LP
ω0
LP
−2
−4
−2
0 −1
k [µm ]
2
δ (ΩR2+δ2)1/2
10
8
6
4
2
0
−2
Bound state
|Eb |
0
10 20 30 40 50
δ [meV]
4
[Ivanov, Haug, Keldysh ’98], [Wouters ’07], [Caursotto et al. ’10], [Deveaud-Pledran et
al. ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
4 / 21
MSF
SF
12
10
8
6
4
2
0
M
δ [meV]
Phase diagram (ground state, T = 0)
AMSF
PS
N
−0.6
AMSF
−0.4 −0.2
µ [meV]
0
0
11
1x10
n [cm−2]
δ < 0: “standard” BEC.
Small |δ|: 1st order transition
I
I
Larkin-Pikin mechanism
Large phase-separation region
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
5 / 21
MSF
SF
12
10
8
6
4
2
0
M
δ [meV]
Phase diagram (ground state, T = 0)
AMSF
PS
N
−0.6
AMSF
−0.4 −0.2
µ [meV]
0
0
11
1x10
n [cm−2]
δ < 0: “standard” BEC.
Small |δ|: 1st order transition
I
I
Larkin-Pikin mechanism
Large phase-separation region
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
5 / 21
MSF
SF
12
10
8
6
4
2
0
M
δ [meV]
Phase diagram (ground state, T = 0)
AMSF
PS
N
−0.6
AMSF
−0.4 −0.2
µ [meV]
0
0
11
1x10
n [cm−2]
δ < 0: “standard” BEC.
Small |δ|: 1st order transition
I
I
Larkin-Pikin mechanism
Large phase-separation region
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
5 / 21
Consequences and Signatures
Phase separation
Phase coherence
I
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
Consequences and Signatures
Phase separation
Phase coherence
I
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
Consequences and Signatures
Phase separation
Phase coherence
I
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
Consequences and Signatures
Phase separation
Phase coherence
I
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
Consequences and Signatures
Phase separation
Phase coherence
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
I
MSF: gσ = 0 but
APD
I
APD
φ
(1)
A
Adjustable delay
(1)
B
APD
gm = hψ↑† (r, t)ψ↓† (r, t)ψ↓ (0, 0)ψ↑ (0, 0)i =
6 0
APD
θ
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
Consequences and Signatures
Phase separation
Phase coherence
(1)
AMSF: standard gσ = hψσ† (r , t)ψσ (0, 0)i. (2D, QLRO)
I
MSF: gσ = 0 but
APD
I
APD
φ
(1)
A
Adjustable delay
(1)
B
APD
gm = hψ↑† (r, t)ψ↓† (r, t)ψ↓ (0, 0)ψ↑ (0, 0)i =
6 0
APD
θ
Novel half vortices, ψ↑ = eim↑θ , ψ↓ = eim↓ θ ,
MSF has (m↑ , m↓ ) = (1/2, 1/2)
.
Previous half-vortex (m↑ , m↓ ) = (1, 0) [Lagoudakis et al. Science ’09]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
6 / 21
20
T= 0.58 K
MSF
15
AMSF
AMSF
N
N
−0.8 −0.6 −0.4 −0.2
µ [meV]
Jonathan Keeling
Pairing phases & photons
5
PS
0 0
10
δ [meV]
MSF
Phase diagram, T > 0
−2
n [cm ]
11
0
2x10
ICSCE7, April 2014
7 / 21
20
T= 0.58 K
MSF
15
AMSF
AMSF
N
N
T [K]
3 δ=10 meV
2
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
5
PS
0 0
10
δ [meV]
MSF
Phase diagram, T > 0
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
7 / 21
Phase diagram, T > 0
N
2
MSF
15
MSF
AMSF
N
AMSF
AMSF
N
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
0 0
10
5
PS
MSF
0
3 δ=10 meV
2
20
T= 0.58 K
AMSF
N
1
T [K]
PS
δ [meV]
T [K]
δ=8.3 meV
MSF
0
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
7 / 21
Phase diagram, T > 0
2
δ=6.5 meV
N
PS
T [K]
δ=8.3 meV
N
2
MSF
15
MSF
AMSF
N
AMSF
AMSF
N
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
0 0
10
5
PS
MSF
0
3 δ=10 meV
2
20
T= 0.58 K
AMSF
N
1
T [K]
PS
δ [meV]
0
AMSF
MSF
MSF
0.5
MSF
N
1
AMSF
T [K]
1.5
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
7 / 21
Evolution of triple point
Exciton fraction =
1
δ
1+ √
.
2
δ 2 + Ω2
GaAs, need low T/high exciton fraction
ZnO, easy to attain MSF
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
8 / 21
Evolution of triple point
GaAs
ZnO
δ [meV]
40
95
30
90
20
85
10
80
0
0
5
Exciton fraction =
10
T [K]
15 0
5
10
T [K]
excitonic fraction [%]
100
50
15
1
δ
1+ √
.
2
δ 2 + Ω2
GaAs, need low T/high exciton fraction
ZnO, easy to attain MSF
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
8 / 21
Evolution of triple point
GaAs
ZnO
δ [meV]
40
95
30
90
20
85
10
80
0
0
5
Exciton fraction =
10
T [K]
15 0
5
10
T [K]
excitonic fraction [%]
100
50
15
1
δ
1+ √
.
2
δ 2 + Ω2
GaAs, need low T/high exciton fraction
ZnO, easy to attain MSF
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
8 / 21
Evolution of triple point
GaAs
ZnO
δ [meV]
40
95
30
90
20
85
10
80
0
0
5
Exciton fraction =
10
T [K]
15 0
5
10
T [K]
excitonic fraction [%]
100
50
15
1
δ
1+ √
.
2
δ 2 + Ω2
GaAs, need low T/high exciton fraction
ZnO, easy to attain MSF
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
8 / 21
Outline
1
Pairing phases of polaritons
Pairing phases and Feshbach for polaritons
Phase diagram: Critical detunings
Signatures
Phase diagram: Critical temperatures
2
Photon condensation
Modelling organic molecules: Vibrational modes
Strong coupling?
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
9 / 21
Photon BEC experiments
Dye filled microcavity
No strong coupling
[Klaers et al, Nature, 2010]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
10 / 21
Photon BEC experiments
Dye filled microcavity
No strong coupling
[Klaers et al, Nature, 2010]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
10 / 21
Photon BEC experiments
Dye filled microcavity
No strong coupling
[Klaers et al, Nature, 2010]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
10 / 21
Relation to dye laser
No single cavity mode
I
I
Condensate mode is not maximum gain
Gain/Absorption in balance
Thermalised many-mode system
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
11 / 21
Relation to dye laser
Energy
4 Level Dye Laser
⇑
Cavity
nuclear coordinate
⇓
No single cavity mode
I
I
Condensate mode is not maximum gain
Gain/Absorption in balance
Thermalised many-mode system
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
11 / 21
Relation to dye laser
Energy
4 Level Dye Laser
⇑
Cavity
nuclear coordinate
⇓
But:
No single cavity mode
I
I
Condensate mode is not maximum gain
Gain/Absorption in balance
Thermalised many-mode system
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
11 / 21
Relation to dye laser
Energy
4 Level Dye Laser
⇑
Cavity
nuclear coordinate
⇓
But:
No single cavity mode
I
I
Condensate mode is not maximum gain
Gain/Absorption in balance
Thermalised many-mode system
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
11 / 21
Modelling
Hsys =
X
†
ωm ψ m
ψm +
m
Xh
α
2
i
σαz + g ψm σα+ + H.c.
2D harmonic cavity
ωm = ωcutoff + mωH.O.
Degeneracies gm = m + 1
Local vibrational mode
I
I
Phonon frequency Ω
Huang-Rhys parameter S —
phonon coupling
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
12 / 21
Modelling
Hsys =
X
†
ωm ψ m
ψm +
m
Xh
α
2
i
σαz + g ψm σα+ + H.c.
X
n
o
√
+Ω bα† bα + Sσαz bα† + bα
α
2D harmonic cavity
ωm = ωcutoff + mωH.O.
Degeneracies gm = m + 1
Local vibrational mode
I
I
Phonon frequency Ω
Huang-Rhys parameter S —
phonon coupling
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
12 / 21
Modelling
Rate equation
ρ̇ = −i[H0 , ρ] −
Xκ
m
−
X
m,α
2
L[ψm ] −
X Γ↑
α
2
L[σα+ ]
Γ↓
+ L[σα− ]
2
Γ(δm = ωm − )
Γ(−δm = − ωm )
+
− †
L[σα ψm ] +
L[σα ψm ]
2
2
1
0.8
Kennard-Stepanov
Γ(+δ) ' Γ(−δ)eβδ
0.6
Γ(δ)
Γ(−δ)
0.4
Expt: ω0 < 0.2
0
−200
Γ → 0 at large δ
−100
0
100
δ [THz]
200
[Marthaler et al PRL ’11, Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
13 / 21
Modelling
Rate equation
ρ̇ = −i[H0 , ρ] −
Xκ
m
−
X
m,α
2
L[ψm ] −
X Γ↑
α
2
L[σα+ ]
Γ↓
+ L[σα− ]
2
Γ(δm = ωm − )
Γ(−δm = − ωm )
+
− †
L[σα ψm ] +
L[σα ψm ]
2
2
1
0.8
Kennard-Stepanov
Γ(+δ) ' Γ(−δ)eβδ
0.6
Γ(δ)
Γ(−δ)
0.4
Expt: ω0 < 0.2
0
−200
Γ → 0 at large δ
−100
0
100
δ [THz]
200
[Marthaler et al PRL ’11, Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
13 / 21
Distribution gm nm
Rate equation — include spontaneous emission
Bose-Einstein distribution without losses
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
14 / 21
Distribution gm nm
Rate equation — include spontaneous emission
Bose-Einstein distribution without losses
Low loss: Thermal
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
14 / 21
Distribution gm nm
Rate equation — include spontaneous emission
Bose-Einstein distribution without losses
Low loss: Thermal
High loss → Laser
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
14 / 21
Outline
1
Pairing phases of polaritons
Pairing phases and Feshbach for polaritons
Phase diagram: Critical detunings
Signatures
Phase diagram: Critical temperatures
2
Photon condensation
Modelling organic molecules: Vibrational modes
Strong coupling?
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
15 / 21
Energy
Strong coupling limit
⇑
Xh
σαz + g ψσα+ + ψ † σα−
H = ωψ † ψ+
2
α
n
oi
√ +Ω bα† bα + S bα† + bα σαz
Photon
nuclear coordinate
⇓
Phonon frequency Ω
l
Huang-Rhys parameter S — phonon
coupling
S ×l
Polaron formation (dressing by vibrational modes)
Vibrational replicas and BEC
Ultra-strong phonon coupling
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
16 / 21
Energy
Strong coupling limit
⇑
Xh
σαz + g ψσα+ + ψ † σα−
H = ωψ † ψ+
2
α
n
oi
√ +Ω bα† bα + S bα† + bα σαz
Photon
nuclear coordinate
⇓
Phonon frequency Ω
l
Huang-Rhys parameter S — phonon
coupling
Strong coupling and vibrational modes
S ×l
Polaron formation (dressing by vibrational modes)
Vibrational replicas and BEC
Ultra-strong phonon coupling
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
16 / 21
Energy
Strong coupling limit
⇑
Xh
σαz + g ψσα+ + ψ † σα−
H = ωψ † ψ+
2
α
n
oi
√ +Ω bα† bα + S bα† + bα σαz
Photon
nuclear coordinate
⇓
Phonon frequency Ω
l
Huang-Rhys parameter S — phonon
coupling
Strong coupling and vibrational modes
S ×l
Polaron formation (dressing by vibrational modes)
Vibrational replicas and BEC
Ultra-strong phonon coupling
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
16 / 21
Energy
Strong coupling limit
⇑
Xh
σαz + g ψσα+ + ψ † σα−
H = ωψ † ψ+
2
α
n
oi
√ +Ω bα† bα + S bα† + bα σαz
Photon
nuclear coordinate
⇓
Phonon frequency Ω
l
Huang-Rhys parameter S — phonon
coupling
Strong coupling and vibrational modes
S ×l
Polaron formation (dressing by vibrational modes)
Vibrational replicas and BEC
Ultra-strong phonon coupling
First attempt — equilibrium [Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
16 / 21
Organic materials in microcavities
Strong coupling with organic materials
Polariton lasing
[Lidzey, Nature ’98]
Ωr ' 0.1eV
[Kena Cohen and Forrest, Nat. Photon 2010]
Thermalisation, condensation interactions
T = 300K
[Daskalakis et al. Nat. Photon 2014; Plumhoff et al. ibid.]
Ultrastrong coupling regime
Ωr ' 0.6eV!
[Canaguier-Durand Ang. Chem. ’13, . . . ]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
17 / 21
Phase diagram
n
oi
Xh
√ Sαz + g ψSα+ + ψ † Sα− +Ω bα† bα + S bα† + bα Sαz
H = ωψ † ψ+
α
S suppresses condensation — reduces overlap
Reentrant behaviour — Min µ at T ∼ 0.2
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
18 / 21
Phase diagram
n
oi
Xh
√ Sαz + g ψSα+ + ψ † Sα− +Ω bα† bα + S bα† + bα Sαz
H = ωψ † ψ+
α
g=2. S=2, ∆=4, Ω=0.1
0.5
1
-x*y
S=0
0.8
T
0.4
0.6
0.3
0.4
0.2
0.2
0.1
0
Coherent field 〈ψ〉
0.6
0
-6
-5
-4
-3
µ-ωc
-2
-1
0
S suppresses condensation — reduces overlap
Reentrant behaviour — Min µ at T ∼ 0.2
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
18 / 21
Critical coupling with increasing S
ε - ω=-4
4
3
Re-orient phase diagram
gc√Ν
2
g vs µ, T
1
Colors → Jump of hψi
0-5
Jonathan
Keeling
[Cwik et
al. EPL
’14]
Pairing phases & photons
-4 -3
µ-ω
-2
-1
0 0
1
0.6 0.8
0.2 0.4 T
ICSCE7, April 2014
19 / 21
Critical coupling with increasing S
ε - ω=-4
4
3
Re-orient phase diagram
gc√Ν
2
g vs µ, T
1
Colors → Jump of hψi
0-5
-4 -3
µ-ω
-2
-1
0 0
1
0.6 0.8
0.2 0.4 T
-4
µ-ω-3 -2 0
Jonathan
Keeling
[Cwik et
al. EPL
’14]
0.1
T
7
6
5
4
3
2
1
0.2 -50
S=6
0.4
gc√ Ν
S=3
gc√ Ν
gc√ Ν
S=0
∆=4, Ω=1
7
6
5
4
3
2
1
0.2 -50
-4
µ-ω-3 -2 0
0.1
T
Pairing phases & photons
0.3
0.2
0.1
0.2
-4
µ-ω-3 -2 0
0.1
T
ICSCE7, April 2014
Jump in 〈 ψ 〉
0.5
7
6
5
4
3
2
1
0
-5
0
19 / 21
Acknowledgements
G ROUP :
C OLLABORATORS :
Francesca Marchetti, UAM
F UNDING :
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
20 / 21
Summary
−0.4 −0.2
µ [meV]
0
0
MSF
MSF
0
11
1x10
n [cm−2]
AMSF
−0.5
−0.3 0
−0.4
µ [meV]
95
30
90
20
85
10
11
−2
n [cm ]
2x10
80
APD
APD
φ
A
Adjustable delay
B
APD
T [K]
AMSF
GaAs
ZnO
40
AMSF
1
N
−0.6
PS
N
N
excitonic fraction [%]
SF
PS
2
100
50
3 δ=10 meV
MSF
AMSF
δ [meV]
12
10
8
6
4
2
0
M
δ [meV]
Polaritons pairing phase feasible for ZnO, signatures in coherence
and vortices
APD
θ
0
0
5
10
T [K]
15 0
5
10
T [K]
15
[Marchetti and Keeling, arXiv:1308.1032]
Photon condensation and thermalisation; vibrational modes
[Kirton and Keeling, PRL ’13]
Vibrational modes and strong coupling
0.2
0.1
0
0
-5
-4
-3
µ-ωc
-2
-1
0
7
6
5
4
3
2
1
0.2 -50
S=3
-4
µ-ω-3 -2 0
0.1
T
7
6
5
4
3
2
1
0.2 -50
S=6
0.4
-4
µ-ω-3 -2 0
0.1
T
0.3
0.2
0.1
0.2
-4
µ-ω-3 -2 0
0.1
T
Jump in 〈 ψ 〉
0.4
S=0
∆=4, Ω=1
gc√ Ν
T
0.6
0.2
7
6
5
4
3
2
1
0
-5
gc√ Ν
0.8
0.3
-6
0.5
1
-x*y
S=0
0.4
gc√ Ν
g=2. S=2, ∆=4, Ω=0.1
0.5
Coherent field 〈ψ〉
0.6
0
[Cwik, Reja, Littlewood, Keeling EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
21 / 21
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
22 / 39
3
Pairing phases model
Excitons and photons
Polaritons
Exciton spin
4
Calculation details
Variational wavefunction
Variational MFT
WIDBG result
5
More phase diagrams
6
Photon phase diagram
7
Organic polaritons
Polarons
Condensation of phonon replicas?
Anticrossing vs ρ
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
23 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
24 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
24 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
24 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
24 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
24 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
25 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
25 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
25 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
25 / 39
Exciton-photon model
Microscopic model — coupled exciton-photon system

2
2
X k
k
†
†

H=
δ+
− µ X̂kσ X̂kσ +
− µ Ĉkσ
Ĉkσ
2mX
2mC
σ=±1
σ=±2,±1
k
# ZZ
X
X
†
†
+
ΩR Ĉkσ
X̂kσ + X̂kσ
Ĉkσ +
d 2 rd 2 R
UσXX
0 τ 0 τ σ (r)
X
X
σ,σ 0 ,τ,τ 0 =±2,±1
σ=±1
× X̂σ†0 R +
r
2
X̂τ†0 R −
r
2
X̂τ R −
r
r
X̂σ R +
2
2
Interaction U XX has exchange structure
For large ΩR , neglect σ = ±2
XX
Interaction supports bound states in U+1,−1,−1,+1
channel —
bipolariton
NB, bipolariton, bound polaritons, but larger exciton fraction.
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
25 / 39
Polariton model

H=
X
k

2
X k2
k
†
†

− µ ψ̂σk
ψ̂σk +
+ ν − 2µ ψ̂mk
ψ̂mk 
2m
2mm
σ=↑,↓

Z
X
+ d 2R 
σ=↑,↓,m

Uσσ † †
g
ψ̂ ψ̂ ψ̂ ψ̂ + U↑↓ ψ̂↓† ψ̂↑† ψ̂↑ ψ̂↓ +
ψ̂↑† ψ̂↓† ψ̂m + h.c. 
2 σ σ σ σ
2
E
X
2ω0
ωXX
Polariton dispersion m,
detuning ν, interactions
depend on δ
X
E−ω0 [meV]
6
Resonance width, dispersion
derived from dressed exciton
T matrix.
Jonathan Keeling
|Eb|
ν>0
LP
2ω0
UP
4
UP
2
C
ω0
C
ω0
0
X
ω0
−2
−4
Pairing phases & photons
LP
−2
X
δ (ΩR2+δ2)1/2
LP
ω0
2
0
k [µm−1]
4
ICSCE7, April 2014
26 / 39
Polariton model

H=
X
k

2
X k2
k
†
†

− µ ψ̂σk
ψ̂σk +
+ ν − 2µ ψ̂mk
ψ̂mk 
2m
2mm
σ=↑,↓

Z
X
+ d 2R 
σ=↑,↓,m

Uσσ † †
g
ψ̂ ψ̂ ψ̂ ψ̂ + U↑↓ ψ̂↓† ψ̂↑† ψ̂↑ ψ̂↓ +
ψ̂↑† ψ̂↓† ψ̂m + h.c. 
2 σ σ σ σ
2
E
X
2ω0
ωXX
Polariton dispersion m,
detuning ν, interactions
depend on δ
X
E−ω0 [meV]
6
Resonance width, dispersion
derived from dressed exciton
T matrix.
Jonathan Keeling
|Eb|
ν>0
LP
2ω0
UP
4
UP
2
C
ω0
C
ω0
0
X
ω0
−2
−4
Pairing phases & photons
LP
−2
X
δ (ΩR2+δ2)1/2
LP
ω0
2
0
k [µm−1]
4
ICSCE7, April 2014
26 / 39
Polariton model

H=
X
k

2
X k2
k
†
†

− µ ψ̂σk
ψ̂σk +
+ ν − 2µ ψ̂mk
ψ̂mk 
2m
2mm
σ=↑,↓

Z
X
+ d 2R 
σ=↑,↓,m

Uσσ † †
g
ψ̂ ψ̂ ψ̂ ψ̂ + U↑↓ ψ̂↓† ψ̂↑† ψ̂↑ ψ̂↓ +
ψ̂↑† ψ̂↓† ψ̂m + h.c. 
2 σ σ σ σ
2
E
X
2ω0
LP
2ω0 = ωXX
Polariton dispersion m,
detuning ν, interactions
depend on δ
X
E−ω0 [meV]
UP
ω0
C
4
C
ω0
2
X
X
0
ω0
LP
ω0
LP
−2
−4
Jonathan Keeling
ν=0
UP
6
Resonance width, dispersion
derived from dressed exciton
T matrix.
|Eb|
Pairing phases & photons
−2
0
k [µm−1]
2
δ (ΩR2+δ2)1/2
4
ICSCE7, April 2014
26 / 39
Polariton model

H=
X
k

2
X k2
k
†
†

− µ ψ̂σk
ψ̂σk +
+ ν − 2µ ψ̂mk
ψ̂mk 
2m
2mm
σ=↑,↓

Z
X
+ d 2R 
σ=↑,↓,m

Uσσ † †
g
ψ̂ ψ̂ ψ̂ ψ̂ + U↑↓ ψ̂↓† ψ̂↑† ψ̂↑ ψ̂↓ +
ψ̂↑† ψ̂↓† ψ̂m + h.c. 
2 σ σ σ σ
2
E
X
2ω0
LP
2ω0 = ωXX
Polariton dispersion m,
detuning ν, interactions
depend on δ
X
E−ω0 [meV]
UP
ω0
C
4
C
ω0
2
X
X
0
ω0
LP
ω0
LP
−2
−4
Jonathan Keeling
ν=0
UP
6
Resonance width, dispersion
derived from dressed exciton
T matrix.
|Eb|
Pairing phases & photons
−2
0
k [µm−1]
2
δ (ΩR2+δ2)1/2
4
ICSCE7, April 2014
26 / 39
Polariton model

σ=↑,↓
k

Z
X
+ d 2R 
σ=↑,↓,m

Uσσ † †
g
ψ̂ ψ̂ ψ̂ ψ̂ + U↑↓ ψ̂↓† ψ̂↑† ψ̂↑ ψ̂↓ +
ψ̂↑† ψ̂↓† ψ̂m + h.c. 
2 σ σ σ σ
2
ν>0
Biexciton in
continuum
mLP/mX
10
10
Jonathan Keeling
-2
10
10
-1
-3
-4
|Eb|
~mC/mX
0 10 20 30
δ [meV]
40
Pairing phases & photons
10
8
6
4
2
0
-2
ν [meV]
H=

2
X k2
k
†
†

− µ ψ̂σk
+ ν − 2µ ψ̂mk
ψ̂σk +
ψ̂mk 
2m
2mm
X
ν<0
Bound biexciton.
(Excitonic limit)
50
ICSCE7, April 2014
27 / 39
Exciton and polariton spin degrees of freedom
Photon: two circular polarisation modes
Exciton: bound state of electron & hole
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Exciton and polariton spin degrees of freedom
Photon: two circular polarisation modes
Exciton: bound state of electron & hole
E
c
v
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
k
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Exciton and polariton spin degrees of freedom
Photon: two circular polarisation modes
E
Exciton: bound state of electron & hole
c
v, J=3/2 HH
v, J=3/2 LH
v, J=1/2
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
k
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Exciton and polariton spin degrees of freedom
z
Photon: two circular polarisation modes
Exciton: bound state of electron & hole
E
Cavity
c
v, J=3/2 HH
v, J=3/2 LH
v, J=1/2
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
k
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Exciton and polariton spin degrees of freedom
z
Photon: two circular polarisation modes
Exciton: bound state of electron & hole
E
Cavity
c
v, J=3/2 HH
v, J=3/2 LH
v, J=1/2
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
k
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Exciton and polariton spin degrees of freedom
z
Photon: two circular polarisation modes
Exciton: bound state of electron & hole
E
Cavity
c
v, J=3/2 HH
v, J=3/2 LH
v, J=1/2
I
J = 1 ± 1/2 hole (p-orbital),
J = 1/2 electron
I
Spin orbit splits hole bands,
4 × 2 states.
I
Quantum well fixes kz of hole
2 × 2 states.
k
Exciton spin states Jz = +2, +1, −1, −2
Optically active states Jz = ±1
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
28 / 39
Beyond mean-field
Fluctuation effects?
I
I
Polariton fluctuations irrelevant: mU ∼ 10−4 .
Exciton fluctuations important: mm U ∼ 1.
Next order theory: [Nozières & St James, J. Phys ’82]


X
X
†
†
.
|Ψi ∝ exp −
ψσ ψ̂k=0,σ +
tanh(θkγ )b̂kγ
b̂−kγ
σ=↑,↓,m
where
†
b̂km
=
†
ψ̂km
and
k,γ=a,b,m
†
ψ̂k↑
†
ψ̂−k↓
!
1
=√
2
1 1
−1 1
†
b̂ka
†
b̂−kb
!
,
Variational functional E[ψ0 , ψm , θkγ ]
Can show minimum θk γ has form tanh(2θkγ ) =
I
I
αγ
βγ + k 2 /2mγ
Finite only if |αγ | < βγ
Variational function E(ψ0 , ψm , αγ , βγ )
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
29 / 39
Beyond mean-field
Fluctuation effects?
I
I
Polariton fluctuations irrelevant: mU ∼ 10−4 .
Exciton fluctuations important: mm U ∼ 1.
Next order theory: [Nozières & St James, J. Phys ’82]


X
X
†
†
.
|Ψi ∝ exp −
ψσ ψ̂k=0,σ +
tanh(θkγ )b̂kγ
b̂−kγ
σ=↑,↓,m
where
†
b̂km
=
†
ψ̂km
and
k,γ=a,b,m
†
ψ̂k↑
†
ψ̂−k↓
!
1
=√
2
1 1
−1 1
†
b̂ka
†
b̂−kb
!
,
Variational functional E[ψ0 , ψm , θkγ ]
Can show minimum θk γ has form tanh(2θkγ ) =
I
I
αγ
βγ + k 2 /2mγ
Finite only if |αγ | < βγ
Variational function E(ψ0 , ψm , αγ , βγ )
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
29 / 39
Beyond mean-field
Fluctuation effects?
I
I
Polariton fluctuations irrelevant: mU ∼ 10−4 .
Exciton fluctuations important: mm U ∼ 1.
Next order theory: [Nozières & St James, J. Phys ’82]


X
X
†
†
.
|Ψi ∝ exp −
ψσ ψ̂k=0,σ +
tanh(θkγ )b̂kγ
b̂−kγ
σ=↑,↓,m
where
†
b̂km
=
†
ψ̂km
and
k,γ=a,b,m
†
ψ̂k↑
†
ψ̂−k↓
!
1
=√
2
1 1
−1 1
†
b̂ka
†
b̂−kb
!
,
Variational functional E[ψ0 , ψm , θkγ ]
Can show minimum θk γ has form tanh(2θkγ ) =
I
I
αγ
βγ + k 2 /2mγ
Finite only if |αγ | < βγ
Variational function E(ψ0 , ψm , αγ , βγ )
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
29 / 39
Beyond mean-field
Fluctuation effects?
I
I
Polariton fluctuations irrelevant: mU ∼ 10−4 .
Exciton fluctuations important: mm U ∼ 1.
Next order theory: [Nozières & St James, J. Phys ’82]


X
X
†
†
.
|Ψi ∝ exp −
ψσ ψ̂k=0,σ +
tanh(θkγ )b̂kγ
b̂−kγ
σ=↑,↓,m
where
†
b̂km
=
†
ψ̂km
and
k,γ=a,b,m
†
ψ̂k↑
†
ψ̂−k↓
!
1
=√
2
1 1
−1 1
†
b̂ka
†
b̂−kb
!
,
Variational functional E[ψ0 , ψm , θkγ ]
Can show minimum θk γ has form tanh(2θkγ ) =
I
I
αγ
βγ + k 2 /2mγ
Finite only if |αγ | < βγ
Variational function E(ψ0 , ψm , αγ , βγ )
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
29 / 39
Finite T calculation
Finite T — minimize free energy
Use Feynman-Jensen inequality:
h
i
F = −kB T ln Tre−Ĥ/kB T ≤ FMF + hĤ − ĤMF iMF
Where h. . .iMF calculated using ρ = e(FMF −ĤMF )/kB T
Ansatz ĤMF → Variational F (ψ0 , ψm , αγ , βγ ).
(
ĤMF =
X
−
√
†
Aψγ (αγ + βγ ) b̂0γ
+ b̂0γ
γ
1 X †
+
b̂kγ
2
k
Jonathan Keeling
b̂−kγ
kγ
+ βγ
αγ
Pairing phases & photons
αγ
kγ + βγ
b̂kγ
†
b̂−kγ
!)
ICSCE7, April 2014
.
30 / 39
Finite T calculation
Finite T — minimize free energy
Use Feynman-Jensen inequality:
h
i
F = −kB T ln Tre−Ĥ/kB T ≤ FMF + hĤ − ĤMF iMF
Where h. . .iMF calculated using ρ = e(FMF −ĤMF )/kB T
Ansatz ĤMF → Variational F (ψ0 , ψm , αγ , βγ ).
(
ĤMF =
X
−
√
†
Aψγ (αγ + βγ ) b̂0γ
+ b̂0γ
γ
1 X †
+
b̂kγ
2
k
Jonathan Keeling
b̂−kγ
kγ
+ βγ
αγ
Pairing phases & photons
αγ
kγ + βγ
b̂kγ
†
b̂−kγ
!)
ICSCE7, April 2014
.
30 / 39
Finite T calculation
Finite T — minimize free energy
Use Feynman-Jensen inequality:
h
i
F = −kB T ln Tre−Ĥ/kB T ≤ FMF + hĤ − ĤMF iMF
Where h. . .iMF calculated using ρ = e(FMF −ĤMF )/kB T
Ansatz ĤMF → Variational F (ψ0 , ψm , αγ , βγ ).
(
ĤMF =
X
−
√
†
Aψγ (αγ + βγ ) b̂0γ
+ b̂0γ
γ
1 X †
+
b̂kγ
2
k
Jonathan Keeling
b̂−kγ
kγ
+ βγ
αγ
Pairing phases & photons
αγ
kγ + βγ
b̂kγ
†
b̂−kγ
!)
ICSCE7, April 2014
.
30 / 39
Variational MFT for WIDBG
Z
X k2 †
U
ψ ψ +
d 2 r ψ † ψ † ψψ
Test validity. WIDBG Ĥ =
2m k k
2
k
VMFT for WIDBG:
√
ĤMF = − Aψ(α + β)(b̂0† + b̂0 )
!
+ β
1 X †
b̂k
α
k
.
+
b̂k b̂−k
†
α
k + β
2
b̂−k
k
Compare to 2D EOS, ρ(µ) = Tf (µ/T )
CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
31 / 39
Variational MFT for WIDBG
Z
X k2 †
U
ψ ψ +
d 2 r ψ † ψ † ψψ
Test validity. WIDBG Ĥ =
2m k k
2
k
VMFT for WIDBG:
√
ĤMF = − Aψ(α + β)(b̂0† + b̂0 )
!
+ β
1 X †
b̂k
α
k
.
+
b̂k b̂−k
†
α
k + β
2
b̂−k
k
Compare to 2D EOS, ρ(µ) = Tf (µ/T )
CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
31 / 39
Variational MFT for WIDBG
Z
X k2 †
U
ψ ψ +
d 2 r ψ † ψ † ψψ
Test validity. WIDBG Ĥ =
2m k k
2
k
6
mU=0.01, εc=100 [a.u.]
Density ρ/T
√
4
ĤMF = − Aψ(α + β)(b̂0† + b̂0 )
!3
+ β
2
1 X †
b̂
α
k
k
.
+
b̂k b̂−k
†
α
k + β
2
b̂−k 1
2
VMFT
QMC [PRA 66 043608]
5
k
1.25
0
Temperature, T [a.u.]
VMFT for WIDBG:
0.5
-0.02
0
0.02
µ/T
0.04
0.06
Compare to 2D EOS, ρ(µ) = Tf (µ/T )
CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
31 / 39
Variational MFT for WIDBG
Z
X k2 †
U
ψ ψ +
d 2 r ψ † ψ † ψψ
Test validity. WIDBG Ĥ =
2m k k
2
k
6
mU=0.01, εc=100 [a.u.]
Density ρ/T
√
4
ĤMF = − Aψ(α + β)(b̂0† + b̂0 )
!3
+ β
2
1 X †
b̂
α
k
k
.
+
b̂k b̂−k
†
α
k + β
2
b̂−k 1
2
VMFT
QMC [PRA 66 043608]
5
k
1.25
0
Temperature, T [a.u.]
VMFT for WIDBG:
0.5
-0.02
0
0.02
µ/T
0.04
0.06
Compare to 2D EOS, ρ(µ) = Tf (µ/T )
CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
31 / 39
δ [meV]
20
15
MSF
Phase diagram, finite temperature
T= 0.58 K
MSF
AMSF
10
5
0
−0.8 −0.6 −0.4 −0.2
µ [meV]
Jonathan Keeling
AMSF
N
N
PS
0 0
−2
n [cm ]
11
2x10
Pairing phases & photons
ICSCE7, April 2014
32 / 39
Phase diagram, finite temperature
δ [meV]
MSF
20
15
MSF
AMSF
10
MSF
0
20
15
PS
T=1.16 K
AMSF
10
5
AMSF
N
N
5
δ [meV]
T= 0.58 K
MSF
N
N
0
−0.8 −0.6 −0.4 −0.2
µ [meV]
Jonathan Keeling
AMSF
PS
0 0
−2
n [cm ]
11
2x10
Pairing phases & photons
ICSCE7, April 2014
32 / 39
Phase diagram, finite temperature
δ [meV]
MSF
20
15
10
MSF
15
PS
T=1.16 K
AMSF
MSF
N
10
5
AMSF
N
N
0
20
δ [meV]
MSF
AMSF
5
N
AMSF
PS
MSF
0
20
δ [meV]
T= 0.58 K
T =2.32 K
MSF
15
5
N
AMSF
10
N
0
−0.8 −0.6 −0.4 −0.2
µ [meV]
Jonathan Keeling
AMSF
PS
0 0
−2
n [cm ]
11
2x10
Pairing phases & photons
ICSCE7, April 2014
32 / 39
Phase diagram, finite temperature
MSF
15
10
MSF
15
PS
T=1.16 K
AMSF
MSF
N
10
5
AMSF
N
N
0
20
δ [meV]
MSF
AMSF
5
N
AMSF
PS
MSF
0
20
δ [meV]
T= 0.58 K
T =2.32 K
MSF
15
AMSF
10
5
N
N
0
−0.8 −0.6 −0.4 −0.2
µ [meV]
Jonathan Keeling
AMSF
5
N
0
PS
AMSF
7
PS
0 0
δ [meV]
δ [meV]
20
8
9
10
10 10 10 10
−2
n [cm ]
−2
n [cm ]
11
10
11
2x10
Pairing phases & photons
ICSCE7, April 2014
32 / 39
20
T= 0.58 K
MSF
15
AMSF
AMSF
N
N
T [K]
3 δ=10 meV
2
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
5
PS
0 0
10
δ [meV]
MSF
Phase diagram, vs temperature
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
33 / 39
Phase diagram, vs temperature
N
2
MSF
15
MSF
AMSF
N
AMSF
AMSF
N
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
0 0
10
5
PS
MSF
0
3 δ=10 meV
2
20
T= 0.58 K
AMSF
N
1
T [K]
PS
δ [meV]
T [K]
δ=8.3 meV
MSF
0
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
33 / 39
Phase diagram, vs temperature
2
δ=6.5 meV
N
PS
T [K]
δ=8.3 meV
N
2
MSF
15
MSF
AMSF
N
AMSF
AMSF
N
−0.8 −0.6 −0.4 −0.2
µ [meV]
PS
N
0 0
10
5
PS
MSF
0
3 δ=10 meV
2
20
T= 0.58 K
AMSF
N
1
T [K]
PS
δ [meV]
0
AMSF
MSF
MSF
0.5
MSF
N
1
AMSF
T [K]
1.5
−2
n [cm ]
11
0
2x10
N
AMSF
1
AMSF
MSF
MSF
0
−0.5
−0.4
µ [meV]
Jonathan Keeling
−0.3 0
11
−2
n [cm ]
2x10
Pairing phases & photons
ICSCE7, April 2014
33 / 39
Threshold condition
κ =10 MHz
κ
κ
κ =5 GHz
κ
κ=0.5 GHz
600
500
400
Compare threshold:
In
cr
ea
si
ng
300
Pump rate (Laser)
lo
ss
Critical density
(condensate)
200
10−5 10−4 10−3 10−2 10−1 2
3
4
5
6
7
Thermal at low κ/high temperature
High loss, κ competes with Γ(±δ0 )
Low temperature, Γ(±δ0 ) shrinks
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
34 / 39
Threshold condition
κ =10 MHz
κ
κ
κ =5 GHz
κ
κ=0.5 GHz
600
500
400
Compare threshold:
In
cr
ea
si
ng
300
Pump rate (Laser)
lo
ss
Critical density
(condensate)
200
10−5 10−4 10−3 10−2 10−1 2
3
4
5
6
7
Thermal at low κ/high temperature
High loss, κ competes with Γ(±δ0 )
Low temperature, Γ(±δ0 ) shrinks
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
34 / 39
Threshold condition
κ =10 MHz
κ
κ
κ =5 GHz
κ
κ=0.5 GHz
600
500
400
Compare threshold:
In
cr
ea
si
ng
300
Pump rate (Laser)
lo
ss
Critical density
(condensate)
200
10−5 10−4 10−3 10−2 10−1 2
3
4
5
6
7
1
0.8
Thermal at low κ/high temperature
0.6
Γ(δ)
Γ(−δ)
High loss, κ competes with Γ(±δ0 )
Low temperature, Γ(±δ0 ) shrinks
0.4
0.2
0
−200
−100
0
100
δ [THz]
200
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
34 / 39
Threshold condition
κ =10 MHz
κ
κ
κ =5 GHz
κ
κ=0.5 GHz
600
500
400
Compare threshold:
In
cr
ea
si
ng
300
Pump rate (Laser)
lo
ss
Critical density
(condensate)
200
10−5 10−4 10−3 10−2 10−1 2
3
4
5
6
7
1
0.8
Thermal at low κ/high temperature
0.6
Γ(δ)
Γ(−δ)
High loss, κ competes with Γ(±δ0 )
Low temperature, Γ(±δ0 ) shrinks
0.4
0.2
0
−200
−100
0
100
δ [THz]
200
[Kirton & JK PRL ’13]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
34 / 39
Explanation: Polaron formation
Unitary transform
√
Hα → H̃α = eKα Hα e−Kα
K =
SSαz (bα† − bα )
Coupling moves to S ±
h
i
√
†
H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c.
Optimal phonon displacements, ∼
√
S
Reduced geff ∼ g × exp(−S/2)
For ψ 6= 0, competition
Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
35 / 39
Explanation: Polaron formation
Unitary transform
√
Hα → H̃α = eKα Hα e−Kα
K =
SSαz (bα† − bα )
Coupling moves to S ±
h
i
√
†
H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c.
Optimal phonon displacements, ∼
√
S
Reduced geff ∼ g × exp(−S/2)
For ψ 6= 0, competition
Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
35 / 39
Explanation: Polaron formation
Unitary transform
√
Hα → H̃α = eKα Hα e−Kα
K =
SSαz (bα† − bα )
Coupling moves to S ±
h
i
√
†
H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c.
Optimal phonon displacements, ∼
√
S
Reduced geff ∼ g × exp(−S/2)
For ψ 6= 0, competition
Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
35 / 39
Explanation: Polaron formation
Unitary transform
√
Hα → H̃α = eKα Hα e−Kα
K =
SSαz (bα† − bα )
Coupling moves to S ±
h
i
√
†
H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c.
Optimal phonon displacements, ∼
√
S
Reduced geff ∼ g × exp(−S/2)
For ψ 6= 0, competition
Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
35 / 39
Explanation: Polaron formation
Unitary transform
√
Hα → H̃α = eKα Hα e−Kα
K =
SSαz (bα† − bα )
Coupling moves to S ±
h
i
√
†
H̃α = const. + Sαz + Ωbα† bα + g ψSα+ e S(bα −bα ) + H.c.
Optimal phonon displacements, ∼
√
S
Reduced geff ∼ g × exp(−S/2)
For ψ 6= 0, competition
Variational MFT |ψiα ∼ exp(−ηKα − ζbα† )|0, Siα
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
35 / 39
Collective polaron formation
(a) Exact diagonalization
Compares well at S 1
Coherent bosonic state
6
5
5
4
g√ Ν 3
4
g√ Ν 3
2
0
-5
S=6, ∆=4, Ω=1
2
1
0.2
-4
µ-ωc
-3
-2
0
0.1
T
1
0
-5
-4
µ-ωc
-3
-2
0
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
λ
(b) Ansatz
6
0.2
0.1
T
Feedback: Large/small geff ↔ λ = hψi
Variational free energy
η(2 − η)
ξ
F = (ωc − µ)λ2 + N Ω ζ 2 − S
− T ln 2 cosh
4
T
Effective 2LS energy in field:
2
√
−µ
2
2
ξ =
+ Ω S(1 − η)ζ + g 2 λ2 e−Sη
2
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
36 / 39
Collective polaron formation
(a) Exact diagonalization
Compares well at S 1
Coherent bosonic state
6
5
5
4
g√ Ν 3
4
g√ Ν 3
2
0
-5
S=6, ∆=4, Ω=1
2
1
0.2
-4
µ-ωc
-3
-2
0
0.1
T
1
0
-5
-4
µ-ωc
-3
-2
0
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
λ
(b) Ansatz
6
0.2
0.1
T
Feedback: Large/small geff ↔ λ = hψi
Variational free energy
η(2 − η)
ξ
F = (ωc − µ)λ2 + N Ω ζ 2 − S
− T ln 2 cosh
4
T
Effective 2LS energy in field:
2
√
−µ
2
2
ξ =
+ Ω S(1 − η)ζ + g 2 λ2 e−Sη
2
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
36 / 39
Collective polaron formation
(a) Exact diagonalization
Compares well at S 1
Coherent bosonic state
6
5
5
4
g√ Ν 3
4
g√ Ν 3
2
0
-5
S=6, ∆=4, Ω=1
2
1
0.2
-4
µ-ωc
-3
-2
0
0.1
T
1
0
-5
-4
µ-ωc
-3
-2
0
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
λ
(b) Ansatz
6
0.2
0.1
T
Feedback: Large/small geff ↔ λ = hψi
Variational free energy
η(2 − η)
ξ
F = (ωc − µ)λ2 + N Ω ζ 2 − S
− T ln 2 cosh
4
T
Effective 2LS energy in field:
2
√
−µ
2
2
ξ =
+ Ω S(1 − η)ζ + g 2 λ2 e−Sη
2
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
36 / 39
Polariton spectrum: photon weight
0.3
T=0.4, S=2, ∆=4, Ω=0.1, g=2
0.2
-4.5
0.1
-4.6
0
-4.7
-0.1
Photon weight, Zn
Energy
-4.4
-0.2
-4.8
µ
0
0.1
Density ρ
-0.3
0.2
2 ∼ g 2 (1 − 2ρ)
Saturating 2LS: geff
What is nature of polariton mode?
D(t) = −ihψ † (t)ψ(0)i,
D(ω) =
X
n
Zn
ω − ωn
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
37 / 39
Polariton spectrum: photon weight
0.3
T=0.4, S=2, ∆=4, Ω=0.1, g=2
0.2
-4.5
0.1
-4.6
0
-4.7
-0.1
Photon weight, Zn
Energy
-4.4
-0.2
-4.8
µ
0
0.1
Density ρ
-0.3
0.2
2 ∼ g 2 (1 − 2ρ)
Saturating 2LS: geff
What is nature of polariton mode?
D(t) = −ihψ † (t)ψ(0)i,
D(ω) =
X
n
Zn
ω − ωn
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
37 / 39
Polariton spectrum: photon weight
0.3
T=0.4, S=2, ∆=4, Ω=0.1, g=2
0.2
-4.5
0.1
-4.6
0
-4.7
-0.1
Photon weight, Zn
Energy
-4.4
-0.2
-4.8
µ
0
0.1
Density ρ
-0.3
0.2
2 ∼ g 2 (1 − 2ρ)
Saturating 2LS: geff
What is nature of polariton mode?
D(t) = −ihψ † (t)ψ(0)i,
D(ω) =
X
n
Zn
ω − ωn
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
37 / 39
Polariton spectrum: what condensed
Repeat weight for n-phonon channel
Eigenvector that is macroscopically occupied
Optimal T ∼ 2Ω
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
38 / 39
Polariton spectrum: what condensed
Repeat weight for n-phonon channel
Eigenvector that is macroscopically occupied
Optimal T ∼ 2Ω
1
Sideband spectral weight
S=2, ∆=4, Ω=0.1, g=2
T=0.00
0.8
0.6
0.4
0.2
0
-6 -5 -4 -3 -2 -1 0 1 2 3
Absorbed phonons: q-p
4
5
6
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
38 / 39
Polariton spectrum: what condensed
Repeat weight for n-phonon channel
Eigenvector that is macroscopically occupied
Optimal T ∼ 2Ω
1
Sideband spectral weight
S=2, ∆=4, Ω=0.1, g=2
0.8
T=0.00
T=0.05
T=0.15
0.6
0.4
0.2
0
-6 -5 -4 -3 -2 -1 0 1 2 3
Absorbed phonons: q-p
4
5
6
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
38 / 39
Polariton spectrum: what condensed
Repeat weight for n-phonon channel
Eigenvector that is macroscopically occupied
Optimal T ∼ 2Ω
1
Sideband spectral weight
S=2, ∆=4, Ω=0.1, g=2
0.8
0.6
T=0.00
T=0.05
T=0.15
T=0.20
T=0.30
T=0.40
T=0.45
0.4
0.2
0
-6 -5 -4 -3 -2 -1 0 1 2 3
Absorbed phonons: q-p
4
5
6
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
38 / 39
Polariton spectrum: what condensed
Repeat weight for n-phonon channel
Eigenvector that is macroscopically occupied
Optimal T ∼ 2Ω
0.8
0.6
T=0.00
T=0.05
T=0.15
T=0.20
T=0.30
T=0.40
T=0.45
0.6
g=2. S=2, ∆=4, Ω=0.1
1
-x*y
0.5
0.8
0.4
0.4
T
Sideband spectral weight
S=2, ∆=4, Ω=0.1, g=2
0.6
0.3
0.4
0.2
0.2
0.2
0.1
0
-6 -5 -4 -3 -2 -1 0 1 2 3
Absorbed phonons: q-p
4
5
6
0
Coherent field 〈ψ〉
1
0
-6
-5
-4
-3
µ-ωc
-2
-1
0
[Cwik et al. EPL ’14]
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
38 / 39
Polariton spectrum — coupled oscillators
Jonathan Keeling
Pairing phases & photons
ICSCE7, April 2014
39 / 39
Polariton spectrum — coupled oscillators
Photon
Exciton
1
UP
Energy
0
-1
-2
LP
-3
0
Jonathan Keeling
0.2
0.4
0.6
0.8
1
1.2
Coupling, g
Pairing phases & photons
1.4
1.6
1.8
2
ICSCE7, April 2014
39 / 39
Polariton spectrum — coupled oscillators
Photon
Exciton
Exciton-Ω
1
UP
Energy
0
-1
-2
LP
-3
0
Jonathan Keeling
0.2
0.4
0.6
0.8
1
1.2
Coupling, g
Pairing phases & photons
1.4
1.6
1.8
2
ICSCE7, April 2014
39 / 39
Polariton spectrum — coupled oscillators
Photon
Exciton-nΩ
1
UP
Energy
0
-1
-2
-3
0
Jonathan Keeling
0.2
0.4
0.6
0.8
1
1.2
Coupling, g
Pairing phases & photons
1.4
1.6
1.8
2
ICSCE7, April 2014
39 / 39
Polariton spectrum — coupled oscillators
Photon
Exciton-nΩ
1
UP
Energy
0
-1
-2
-3
0
Jonathan Keeling
0.2
0.4
0.6
0.8
1
1.2
Coupling, g
Pairing phases & photons
1.4
1.6
1.8
2
ICSCE7, April 2014
39 / 39
Fly UP