SUPA Superradiance and self-organisation of cold atoms in optical cavities Jonathan Keeling
by user
Comments
Transcript
SUPA Superradiance and self-organisation of cold atoms in optical cavities Jonathan Keeling
Superradiance and self-organisation of cold atoms in optical cavities Jonathan Keeling SUPA University of St Andrews 1413-2013 Strathclyde, September 2014 Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 1 Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 2 Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Superradiance — dynamical and steady state. New relevance Superconducting qubits Quantum dots & NV centres Ultra-cold atoms κ κ Cavity Pump Pump Rydberg atoms/polaritons Microcavity Polaritons Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 2 Dicke effect: Superradiance Hint ¸ gk pψk eikri H.c.qpSi Si q k,i Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 3 Dicke effect: Superradiance Hint ¸ gk pψk eikri H.c.qpSi Si q k,i If |ri rj | ! λ, use Collective decay: Jonathan Keeling ° i Si ÑS dρ dt 2Γ S S ρ S ρS Superradiance of atoms in cavities ρS S Strathclyde, September 2014. 3 Dicke effect: Superradiance Hint ¸ gk pψk eikri H.c.qpSi Si q k,i If |ri rj | ! λ, use Collective decay: ° i Si ÑS dρ dt |S| N {2 initially: ΓN 2 ΓN d xS z y sech2 t I9 Γ dt 4 2 2Γ S S ρ S ρS ρS S N/2 ΓN2/2 z I=-Γd〈S 〉/dt z 〈S 〉 If S z 0 -N/2 0 tD Jonathan Keeling Superradiance of atoms in cavities tD Strathclyde, September 2014. 3 Dicke effect: Superradiance Hint ¸ gk pψk eikri H.c.qpSi Si q k,i If |ri rj | ! λ, use Collective decay: ° i Si ÑS dρ dt |S| N {2 initially: ΓN 2 ΓN d xS z y sech2 t I9 Γ dt 4 2 2Γ S S ρ S ρS ρS S N/2 ΓN2/2 z z I=-Γd〈S 〉/dt If S z 〈S 〉 0 -N/2 0 tD tD Problem: dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 3 Dicke model and Dicke-Hepp-Lieb transition H ωψ:ψ ¸ ω0 Siz g pψ ψ : qpSi Si q i Coherent state: |Ψy Ñ eλψ Small g, min at λ, η 0 : ηS |Ωy [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 4 Dicke model and Dicke-Hepp-Lieb transition H ωψ:ψ ωψ:ψ ¸ g pψ ω0 Siz i ω0 S z g pψ ψ : qpS Coherent state: |Ψy Ñ eλψ Small g, min at λ, η 0 Si q ψ : qpSi : ηS Sq |Ωy [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 4 Dicke model and Dicke-Hepp-Lieb transition H ωψ:ψ ωψ:ψ ¸ g pψ ω0 Siz i ω0 S z g pψ ψ : qpS Coherent state: |Ψy Ñ eλψ Small g, min at λ, η 0 Si q ψ : qpSi : ηS Sq |Ωy [Hepp, Lieb, Ann. Phys. ’73] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 4 Dicke model and Dicke-Hepp-Lieb transition ô H ωψ:ψ ωψ:ψ ¸ g pψ ω0 Siz i ω0 S z g pψ ψ : qpS Coherent state: |Ψy Ñ eλψ Small g, min at λ, η : 0 Non-zero cavity field if: 4Ng 2 Jonathan Keeling Si q ψ : qpSi Sq ηS |Ωy ¡ ωω0 Superradiance of atoms in cavities [Hepp, Lieb, Ann. Phys. ’73] Strathclyde, September 2014. 4 Dicke model and Dicke-Hepp-Lieb transition ô ωψ:ψ ωψ:ψ ¸ g pψ ω0 Siz i ω0 S z g pψ ψ : qpS Coherent state: |Ψy Ñ eλψ Small g, min at λ, η : 0 Non-zero cavity field if: 4Ng 2 Jonathan Keeling Si q ψ : qpSi Sq ηS ⇓ ω H |Ωy ¡ ωω0 Superradiance of atoms in cavities SR 0 0 g-√N [Hepp, Lieb, Ann. Phys. ’73] Strathclyde, September 2014. 4 No go theorem for Dicke-Hepp-Lieb transition ô Spontaneous polarisation if: 4Ng 2 ¡ ωω0 [Rzazewski et al PRL ’75] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 5 No go theorem for Dicke-Hepp-Lieb transition ô Spontaneous polarisation if: 4Ng 2 No go theorem:. ¸e i m A pi ¡ ωω0 Minimal coupling pp eAq2 {2m ô g pψ : ψ qpS S q, ¸ A2 i 2m ô Nζ pψ ψ : q2 [Rzazewski et al PRL ’75] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 5 No go theorem for Dicke-Hepp-Lieb transition ô Spontaneous polarisation if: 4Ng 2 No go theorem:. ¸e i m For large N, ω Minimal coupling pp eAq2 {2m ô g pψ : A pi ¡ ωω0 ψ qpS S q, ¸ A2 i Ñω 2m ô Nζ pψ ψ : q2 4Nζ. (RWA) [Rzazewski et al PRL ’75] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 5 No go theorem for Dicke-Hepp-Lieb transition ô Spontaneous polarisation if: 4Ng 2 No go theorem:. ¸e i m For large N, ω Minimal coupling pp eAq2 {2m ô g pψ : A pi ¡ ωω0 ψ qpS S ¸ A2 q, i Ñω 2m ô Nζ pψ ψ : q2 4Nζ. (RWA) Need 4Ng 2 ¡ ω0pω 4Nζ q. [Rzazewski et al PRL ’75] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 5 No go theorem for Dicke-Hepp-Lieb transition ô Spontaneous polarisation if: 4Ng 2 No go theorem:. ¸e i m For large N, ω Minimal coupling pp eAq2 {2m ô g pψ : A pi ¡ ωω0 ψ qpS S ¸ A2 q, i Ñω 2m ô Nζ pψ ψ : q2 4Nζ. (RWA) Need 4Ng 2 But f -sum rule states: g 2 {ω0 ¡ ω0pω 4Nζ q. ζ. No transition [Rzazewski et al PRL ’75] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 5 Ways around the no-go theorem Problem: g 2 {ω0 1 ζ for intrinsic parameters. Solutions: Ferroelectric transition in D r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] 2 Grand canonical ensemble: 3 Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] If H Ñ H µpS z ψ : ψ), need only: g 2 N ¡ pω µqpω0 µq Incoherent pumping — polariton condensation. Dissociate g, ω0 , e.g. Raman scheme: ω0 ! ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 6 Ways around the no-go theorem Problem: g 2 {ω0 1 ζ for intrinsic parameters. Solutions: Ferroelectric transition in D r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] 2 Grand canonical ensemble: 3 Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] If H Ñ H µpS z ψ : ψ), need only: g 2 N ¡ pω µqpω0 µq Incoherent pumping — polariton condensation. Dissociate g, ω0 , e.g. Raman scheme: ω0 ! ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 6 Ways around the no-go theorem Problem: g 2 {ω0 1 ζ for intrinsic parameters. Solutions: Ferroelectric transition in D r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] 2 1 Grand canonical ensemble: 3 If H Ñ H µpS z ψ : ψ), need only: g 2 N ¡ pω µqpω0 µq Incoherent pumping — polariton condensation. Dissociate g, ω0 , e.g. Raman scheme: ω0 unstable 0 (µ-ω)/g 2 -1 SR -2 -3 -4 -5 -4 -3 -2 -1 0 (ω0 - ω)/g 1 2 ! ω. [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 6 Ways around the no-go theorem Problem: g 2 {ω0 1 ζ for intrinsic parameters. Solutions: Ferroelectric transition in D r gauge. [JK JPCM ’07, Vukics & Domokos PRA 2012 ] Circuit QED [Nataf and Ciuti, Nat. Comm. ’10; Viehmann et al. PRL ’11] 2 1 Grand canonical ensemble: 3 If H Ñ H µpS z ψ : ψ), need only: g 2 N ¡ pω µqpω0 µq Incoherent pumping — polariton condensation. Dissociate g, ω0 , e.g. Raman scheme: ω0 unstable 0 (µ-ω)/g 2 ! ω. -1 SR -2 -3 -4 -5 -4 -3 -2 -1 0 (ω0 - ω)/g κ κ [Dimer et al. PRA ’07; Baumann et al. Nature ’10. Also, Black et al. PRL ’03 ] Jonathan Keeling Superradiance of atoms in cavities 1 2 Cavity Pump Pump Strathclyde, September 2014. 6 Outline 1 Dicke model, superradiance and no–go theorem 2 Superradiance and self-organisation Raman scheme Hierarchies of approximation Equilibrium theory of Dicke 3 Fermionic self organisation Equilibrium phase diagrams Landau theory and microscopics Open system? 4 Open system dynamics of Bososn Attractors of open Dicke model Bosons beyond Dicke 5 Conclusions Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 7 Outline 1 Dicke model, superradiance and no–go theorem 2 Superradiance and self-organisation Raman scheme Hierarchies of approximation Equilibrium theory of Dicke 3 Fermionic self organisation Equilibrium phase diagrams Landau theory and microscopics Open system? 4 Open system dynamics of Bososn Attractors of open Dicke model Bosons beyond Dicke 5 Conclusions Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 8 Raman scheme, decoupling g, ω0 ∆ ∆ H g0ψ ω0Sz ω0 2 level system Imbalanced case (internal states): H ω0 S z g pψS ψ : S q g 1 pψS Imbalance: g S 2 Level system, | óy, | òy g0 Ω Coupling g 2∆ Rotating frame of pump, ω Ω Ω ψ : qpS g pψ ψ:S q q ωψ : ψ ωcavity ωpump ωψ : ψ Uψ : ψS z 0 Ωb 0 Ωa g2∆ g 1 g2∆ a b New “feedback” term U g02 2 g0 2∆ 2∆ b a [Dimer et al. PRA ’07 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 9 Raman scheme, decoupling g, ω0 ∆ ∆ H g0ψ ω0 2 level system Imbalanced case (internal states): H ω0 S z g pψS ψ : S q g 1 pψS Imbalance: g S 2 Level system, | óy, | òy g0 Ω Coupling g 2∆ Rotating frame of pump, ω Ω Ω ψ : qpS g pψ ω0Sz ψ:S q q ωψ : ψ ωcavity ωpump ωψ : ψ Uψ : ψS z 0 Ωb 0 Ωa g2∆ g 1 g2∆ a b New “feedback” term U g02 2 g0 2∆ 2∆ b a [Dimer et al. PRA ’07 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 9 Raman scheme, decoupling g, ω0 ∆ ∆ H g0ψ ω0 2 level system Imbalanced case (internal states): H ω0 S z g pψS ψ : S q g 1 pψS Imbalance: g S 2 Level system, | óy, | òy g0 Ω Coupling g 2∆ Rotating frame of pump, ω Ω Ω ψ : qpS g pψ ω0Sz ψ:S q q ωψ : ψ ωcavity ωpump ωψ : ψ Uψ : ψS z 0 Ωb 0 Ωa g2∆ g 1 g2∆ a b New “feedback” term U g02 2 g0 2∆ 2∆ b a [Dimer et al. PRA ’07 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 9 Raman scheme, decoupling g, ω0 ∆ ∆ H g0ψ S 2 Level system, | óy, | òy g0 Ω Coupling g 2∆ Rotating frame of pump, ω Ω Ω ψ : qpS g pψ ω0Sz ω0 2 level system Imbalanced case (internal states): H ω0 S z g pψS ψ : S q g 1 pψS ψ:S q q ωψ : ψ ωcavity ωpump ωψ : ψ ∆b ∆a Imbalance: g g0ψ 0 Ωb 0 Ωa g2∆ g 1 g2∆ a b New “feedback” term U g02 g02 2∆ 2∆ b Uψ : ψS z a Ωb Ωa ω0 2 level system [Dimer et al. PRA ’07 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 9 Raman scheme, decoupling g, ω0 ∆ ∆ H g0ψ S 2 Level system, | óy, | òy g0 Ω Coupling g 2∆ Rotating frame of pump, ω Ω Ω ψ : qpS g pψ ω0Sz ω0 2 level system Imbalanced case (internal states): H ω0 S z g pψS ψ : S q g 1 pψS ψ:S q q ωψ : ψ ωcavity ωpump ωψ : ψ ∆b ∆a Imbalance: g g0ψ 0 Ωb 0 Ωa g2∆ g 1 g2∆ a b New “feedback” term U g02 g02 2∆ 2∆ b Uψ : ψS z a Ωb Ωa ω0 2 level system [Dimer et al. PRA ’07 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 9 Transversely pumped cavity Internal state Ñ momentum states 1 Full description » H0 ωcavity ψ : ψ zx Pump Jonathan Keeling ωatom ce: ce Superradiance of atoms in cavities 2 d r ¸ α e,g c: α E px, z, t qpce: cg ∇ 2 c 2m cg: ce q Strathclyde, September 2014. α 10 Transversely pumped cavity Internal state Ñ momentum states 1 Full description » H0 ωcavity ψ : ψ zx ωatom ce: ce Pump 2 d r ¸ c: α ∇ 2 c 2m α e,g E px, z, t qpce: cg cg: ce q α No cavity field With cavity field 2 Eliminate e state H Rotating frame ω ωψ:ψ V prq » d 2 rc : prq ωcavity ωpump Nδ g2 : ψ ψ cosp2qx q 2∆ Jonathan Keeling ∇2 2m V prq c prq gΩ pψ ∆ 0 -1 V(r) -2 -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q Superradiance of atoms in cavities 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ Strathclyde, September 2014. 10 Transversely pumped cavity Internal state Ñ momentum states 1 Full description » H0 ωcavity ψ : ψ zx 2 d r c: α ∇ 2 c 2m α e,g ωatom ce: ce Pump ¸ E px, z, t qpce: cg cg: ce q α No cavity field With cavity field Eliminate e state 2 H ωψ:ψ V prq 3 Rotating frame ω » d 2 rc : prq g2 : ψ ψ cosp2qx q 2∆ ∇2 -1 V(r) -2 2m V prq c prq gΩ pψ ∆ -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q Dicke: project to atomic states φpx, z q9 Jonathan Keeling 0 ωcavity ωpump Nδ # Superradiance of atoms in cavities 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ 1 cospqz q cospqz q Strathclyde, September 2014. 10 Mapping transverse pumping to Dicke model κ κ g0ψ Ω z Pump x 2 Level System Reduced#basis: 1 φpx, z q9 cospqz q cospqz q H ωψ:ψ ω0 S z g pψ ψ : qpS ó ò S q USz ψ : ψ. [Baumann et al Nature ’10 ] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 11 Mapping transverse pumping to Dicke model κ g0ψ κ Ω z Pump x 2 Level System Reduced#basis: 1 φpx, z q9 cospqz q cospqz q H ωψ:ψ ω0 S z g pψ ψ : qpS ó ò S q USz ψ : ψ. 2 “Feedback” due to extra states U Jonathan Keeling g0 4∆ Superradiance of atoms in cavities [Baumann et al Nature ’10 ] Strathclyde, September 2014. 11 Experimental phase diagram ? Pump power g 9 Power Pump-cavity detuning ω Jonathan Keeling ∆ [Baumann et al Nature ’10 ] Superradiance of atoms in cavities Strathclyde, September 2014. 12 Phase diagram of extended Dicke model ? Ground state energy, λ xψ y{ N: E N b ωλ2 N2 pω0 Superradiant transition: UN 2 4g N ¡ ω ω0 2 Jonathan Keeling UNλ2 q2 16g 2 Nλ2 Stability, λ Ñ 8 |U |N λ2 E ω 2 Superradiance of atoms in cavities ... Strathclyde, September 2014. 13 Phase diagram of extended Dicke model ? Ground state energy, λ xψ y{ N: E N b ωλ2 N2 pω0 Superradiant transition: UN 2 4g N ¡ ω ω0 2 Jonathan Keeling UNλ2 q2 16g 2 Nλ2 Stability, λ Ñ 8 |U |N λ2 E ω 2 Superradiance of atoms in cavities ... Strathclyde, September 2014. 13 Phase diagram of extended Dicke model ? Ground state energy, λ xψ y{ N: E N b ωλ2 N2 pω0 Superradiant transition: UN 2 4g N ¡ ω ω0 2 Jonathan Keeling UNλ2 q2 16g 2 Nλ2 Stability, λ Ñ 8 |U |N λ2 E ω 2 Superradiance of atoms in cavities ... Strathclyde, September 2014. 13 Phase diagram of extended Dicke model ? Ground state energy, λ xψ y{ N: b ωλ2 N2 pω0 E N UNλ2 q2 16g 2 Nλ2 Stability, λ Ñ 8 |U |N λ2 E ω 2 Superradiant transition: UN 2 4g N ¡ ω ω0 2 ... 40 0.1 UN=-10 UN=0 UN=10 ωD 0.06 20 Normal SR Normal SR Normal SR 0.04 10 Cavity field, λ 0.08 30 0.02 Unstable 0 0 0.5 Unstable 1 __ g√N Jonathan Keeling 1.5 0 0.5 1 1.5 __ g√N Superradiance of atoms in cavities 0 0.5 0 1 1.5 __ g√N Strathclyde, September 2014. 13 Outline 1 Dicke model, superradiance and no–go theorem 2 Superradiance and self-organisation Raman scheme Hierarchies of approximation Equilibrium theory of Dicke 3 Fermionic self organisation Equilibrium phase diagrams Landau theory and microscopics Open system? 4 Open system dynamics of Bososn Attractors of open Dicke model Bosons beyond Dicke 5 Conclusions Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 14 Fermions in optical cavities H ωψ:ψ V prq » d 2 rc : prq g2 : ψ ψ cosp2qx q 2∆ ∇2 No cavity field With cavity field 2m V prq c prq gΩ pψ ∆ 0 -1 V(r) -2 -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ [Domokos & Ritsch, PRL ’03; Black et al. PRL ’03; Piazza, Strack, Zwerger, Ann. Phys ’13] Pauli blocking Commensurability effects Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 15 Fermions in optical cavities H ωψ:ψ V prq » d 2 rc : prq g2 : ψ ψ cosp2qx q 2∆ ∇2 No cavity field With cavity field 2m V prq c prq gΩ pψ ∆ 0 -1 V(r) -2 -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ [Domokos & Ritsch, PRL ’03; Black et al. PRL ’03; Piazza, Strack, Zwerger, Ann. Phys ’13] Pauli blocking Commensurability effects Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 15 Fermions in optical cavities H ωψ:ψ V prq » d 2 rc : prq g2 : ψ ψ cosp2qx q 2∆ ∇2 No cavity field With cavity field 2m V prq c prq gΩ pψ ∆ 0 -1 V(r) -2 -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ [Domokos & Ritsch, PRL ’03; Black et al. PRL ’03; Piazza, Strack, Zwerger, Ann. Phys No cavity field With cavity field M ’13] q Pauli blocking Commensurability effects kz X 0 Γ M -q -q Jonathan Keeling Superradiance of atoms in cavities 0 kx Strathclyde, September 2014. q 15 Fermions in optical cavities H ωψ:ψ V prq » d 2 rc : prq g2 : ψ ψ cosp2qx q 2∆ ∇2 No cavity field With cavity field 2m V prq c prq gΩ pψ ∆ 0 -1 V(r) -2 -3 -40 5 10 x (cavity) ψ : q cospqx q cospqz q 15 0 5 15 10 z (pump) Ω2 cosp2qz q 2∆ [Domokos & Ritsch, PRL ’03; Black et al. PRL ’03; Piazza, Strack, Zwerger, Ann. Phys No cavity field With cavity field M ’13] q Pauli blocking Commensurability effects kz X 0 Γ M [JK, Bhaseen, & Simons; Piazza & Strack; Chen et al. All PRL ’14.] -q -q Jonathan Keeling Superradiance of atoms in cavities 0 kx Strathclyde, September 2014. q 15 Dimensionless variables and free energy Rescale with N { NL ? nF Free energy f f pω̃, η, nF 2q, ωr ~2q 2{2m, Dimensionless variables: ω Ñ ω̃ F {NLωr Ñ µ; φq ω̃φ2 µnF β1 k,n from ĥ ∇2 V pη, φ; rq Momentum space: hk,k1 k 2 δk,k1 vk,k1 φ2 ¸ δk,k1 s ηφ ΩÑη » d 2k BZ ¸ ln 1 xψ y Ñ φ eβ pk,n µq n vk,k1 ? s 2x̂ ¸ s,s1 δk,k1 ?s x̂ ?s1 ẑ 2 2 η2 ¸ δk,k1 ? s 2ẑ s Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 16 Dimensionless variables and free energy Rescale with N { NL ? nF Free energy f f pω̃, η, nF 2q, ωr ~2q 2{2m, Dimensionless variables: ω Ñ ω̃ F {NLωr Ñ µ; φq ω̃φ2 µnF β1 k,n from ĥ ∇2 V pη, φ; rq Momentum space: hk,k1 k 2 δk,k1 vk,k1 φ2 ¸ δk,k1 s ηφ ΩÑη » d 2k BZ ¸ ln 1 xψ y Ñ φ eβ pk,n µq n vk,k1 ? s 2x̂ ¸ s,s1 δk,k1 ?s x̂ ?s1 ẑ 2 2 η2 ¸ δk,k1 ? s 2ẑ s Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 16 Dimensionless variables and free energy Rescale with N { NL ? nF Free energy f f pω̃, η, nF 2q, ωr ~2q 2{2m, Dimensionless variables: ω Ñ ω̃ F {NLωr Ñ µ; φq ω̃φ2 µnF β1 k,n from ĥ ∇2 V pη, φ; rq Momentum space: hk,k1 k 2 δk,k1 vk,k1 φ2 ¸ δk,k1 s ηφ ΩÑη » d 2k BZ ¸ ln 1 xψ y Ñ φ eβ pk,n µq n vk,k1 ? s 2x̂ ¸ s,s1 δk,k1 ?s x̂ ?s1 ẑ 2 2 η2 ¸ 2 δk,k1 ? s 2ẑ s Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 16 Phase diagram Free energy f f pω̃, η, nF nF F {NLωr Ñ µ; φq ω̃φ 2 µnF 1 β » d 2k BZ ¸ ln 1 eβ pk,n µq n Ñ 0, Dicke, expect SR. Instability, φ Ñ 8, k,n Ñ 2φ2 f pω̃ 2nF qφ2 First order at low η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 17 Phase diagram Free energy f f pω̃, η, nF nF F {NLωr Ñ µ; φq ω̃φ 2 µnF 1 β » d 2k BZ ¸ ln 1 eβ pk,n µq n Ñ 0, Dicke, expect SR. Instability, φ Ñ 8, k,n Ñ 2φ2 f pω̃ 2nF qφ2 First order at low η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 17 Phase diagram Free energy f f pω̃, η, nF nF F {NLωr Ñ µ; φq ω̃φ 2 µnF 1 β » d 2k BZ ¸ ln 1 eβ pk,n µq n Ñ 0, Dicke, expect SR. Instability, φ Ñ 8, k,n Ñ 2φ2 f pω̃ 2nF qφ2 First order at low η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 17 Phase diagram Free energy f f pω̃, η, nF nF F {NLωr Ñ µ; φq ω̃φ 2 µnF 1 β » d 2k BZ ¸ ln 1 eβ pk,n µq n Ñ 0, Dicke, expect SR. Instability, φ Ñ 8, k,n Ñ 2φ2 f pω̃ 2nF qφ2 First order at low η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 17 Phase diagram Free energy f f pω̃, η, nF nF F {NLωr Ñ µ; φq ω̃φ 2 µnF 1 β » d 2k BZ ¸ ln 1 eβ pk,n µq n Ñ 0, Dicke, expect SR. Instability, φ Ñ 8, k,n Ñ 2φ2 f pω̃ 2nF qφ2 First order at low η aφ2 bφ4 cφ6 b 0 at small η. f Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 17 Origin of first order transition k,n from ĥ k 2 δk,k1 Vk,k1 φ ¸ 2 ηφ η2 s ¸ s,s1 ¸ δk,k1 Vk,k1 ? s 2x̂ δk,k1 ?s x̂ ?s1 ẑ 2 2 δk,k1 ? s 2ẑ s Landau expansion: f apω̃, η, nF qφ2 bpη, nF qφ4 c pη, nF qφ6 Second order perturbation theory, φ4|mk,k1 |2{pEk1 Ekq Larkin-Pikin like mechanism Survives to low nF : Bosons! ? But needs state φpx, z q cosp 2x q Missed by Dicke model Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 18 Origin of first order transition k,n from ĥ k 2 δk,k1 Vk,k1 φ ¸ 2 ηφ η2 s ¸ s,s1 ¸ δk,k1 Vk,k1 ? s 2x̂ δk,k1 ?s x̂ ?s1 ẑ 2 2 δk,k1 ? s 2ẑ s Landau expansion: f apω̃, η, nF qφ2 bpη, nF qφ4 c pη, nF qφ6 Second order perturbation theory, φ4|mk,k1 |2{pEk1 Ekq Larkin-Pikin like mechanism Survives to low nF : Bosons! ? But needs state φpx, z q cosp 2x q Missed by Dicke model Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 18 Origin of first order transition k,n from ĥ k 2 δk,k1 Vk,k1 φ ¸ 2 ηφ η2 s ¸ s,s1 ¸ δk,k1 Vk,k1 ? s 2x̂ δk,k1 ?s x̂ ?s1 ẑ 2 2 δk,k1 ? s 2ẑ s apω̃, η, nF qφ2 bpη, nF qφ4 Second order perturbation theory, φ4|mk,k1 |2{pEk1 Ekq Larkin-Pikin like mechanism Survives to low nF : Bosons! ? But needs state φpx, z q cosp 2x q Missed by Dicke model Jonathan Keeling Superradiance of atoms in cavities c pη, nF qφ6 2 b(η,nF)/nF Landau expansion: f nF → 0 1 0 -1 -2 0 0.2 0.4 0.6 ηc Pump field, η Strathclyde, September 2014. 0.8 18 Origin of first order transition k,n from ĥ k 2 δk,k1 Vk,k1 φ ¸ 2 ηφ η2 s ¸ s,s1 ¸ δk,k1 Vk,k1 ? s 2x̂ δk,k1 ?s x̂ ?s1 ẑ 2 2 δk,k1 ? s 2ẑ s apω̃, η, nF qφ2 bpη, nF qφ4 Second order perturbation theory, φ4|mk,k1 |2{pEk1 Ekq Larkin-Pikin like mechanism Survives to low nF : Bosons! ? But needs state φpx, z q cosp 2x q Missed by Dicke model Jonathan Keeling Superradiance of atoms in cavities c pη, nF qφ6 2 b(η,nF)/nF Landau expansion: f nF → 0 1 0 -1 -2 0 0.2 0.4 0.6 ηc Pump field, η Strathclyde, September 2014. 0.8 18 Higher fillings f aφ2 bφ4 cφ6 Phase diagram unchanged for nF 1 2nd order line a 0 Tricritical at a b 0 2nd band, new structure. Critical end-point a 0 line cut by 1st order SR–SR phase boundary Jonathan Keeling No symmetry breaking Liquid–gas type (metamagnetic) Superradiance of atoms in cavities Strathclyde, September 2014. 19 Higher fillings f aφ2 bφ4 cφ6 Phase diagram unchanged for nF 1 2nd order line a 0 Tricritical at a b 0 2nd band, new structure. Critical end-point a 0 line cut by 1st order SR–SR phase boundary Jonathan Keeling No symmetry breaking Liquid–gas type (metamagnetic) Superradiance of atoms in cavities Strathclyde, September 2014. 19 Higher fillings f aφ2 bφ4 cφ6 Phase diagram unchanged for nF 1 2nd order line a 0 Tricritical at a b 0 2nd band, new structure. Critical end-point a 0 line cut by 1st order SR–SR phase boundary Jonathan Keeling No symmetry breaking Liquid–gas type (metamagnetic) Superradiance of atoms in cavities Strathclyde, September 2014. 19 Why liquid–gas transition? ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 0 nF=1.5, η=0.8 0.5 f pφq Ñ multiple minima η 1 1.5 Cavity field, φ Plot bands infk rk,n s Contribution of 2nd band Non-trivial form: px , pz orbitals cross at η φ n ¡ 1 bands initially go up Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 20 Why liquid–gas transition? ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 px , pz orbitals cross at η φ n ¡ 1 bands initially go up 1 1.5 1 0 -1 -2 η=0.8 -3 0 Jonathan Keeling η 2 Atomic energy bands Contribution of 2nd band Non-trivial form: nF=1.5, η=0.8 0.5 Cavity field, φ f pφq Ñ multiple minima Plot bands infk rk,n s 0 0.2 Superradiance of atoms in cavities 0.4 0.6 0.8 Cavity field, φ 1 1.2 Strathclyde, September 2014. 1.4 20 Why liquid–gas transition? ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 px , pz orbitals cross at η φ n ¡ 1 bands initially go up 1 1.5 1 0 -1 Filled bands, nF=1.5 -2 η=0.8 -3 0 Jonathan Keeling η 2 Atomic energy bands Contribution of 2nd band Non-trivial form: nF=1.5, η=0.8 0.5 Cavity field, φ f pφq Ñ multiple minima Plot bands infk rk,n s 0 0.2 Superradiance of atoms in cavities 0.4 0.6 0.8 Cavity field, φ 1 1.2 Strathclyde, September 2014. 1.4 20 Why liquid–gas transition? ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 px , pz orbitals cross at η φ n ¡ 1 bands initially go up 1 1.5 1 0 -1 Filled bands, nF=1.5 -2 η=0.8 -3 0 Jonathan Keeling η 2 Atomic energy bands Contribution of 2nd band Non-trivial form: nF=1.5, η=0.8 0.5 Cavity field, φ f pφq Ñ multiple minima Plot bands infk rk,n s 0 0.2 Superradiance of atoms in cavities 0.4 0.6 0.8 Cavity field, φ 1 1.2 Strathclyde, September 2014. 1.4 20 Phase diagram vs density Phase topology change: Fix η, plot vs nF SR–SR after critical point Peak in 2nd order line 0 apω̃, nF , η q ω̃ Susceptibility χ asymptote η Ñ 8 1 nF χ 16η 2 ln 1 nf Jonathan Keeling Superradiance of atoms in cavities χpη, nF q Strathclyde, September 2014. 21 Phase diagram vs density Phase topology change: Fix η, plot vs nF SR–SR after critical point Peak in 2nd order line 0 apω̃, nF , η q ω̃ Susceptibility χ asymptote η Ñ 8 1 nF χ 16η 2 ln 1 nf Jonathan Keeling Superradiance of atoms in cavities χpη, nF q Strathclyde, September 2014. 21 Phase diagram vs density Phase topology change: Fix η, plot vs nF SR–SR after critical point Peak in 2nd order line 0 apω̃, nF , η q ω̃ Susceptibility χ asymptote η Ñ 8 1 nF χ 16η 2 ln 1 nf Jonathan Keeling Superradiance of atoms in cavities χpη, nF q Strathclyde, September 2014. 21 Phase diagram vs density Phase topology change: Fix η, plot vs nF SR–SR after critical point Peak in 2nd order line 0 apω̃, nF , η q ω̃ Susceptibility χ asymptote η Ñ 8 1 nF χ 16η 2 ln 1 nf Jonathan Keeling Superradiance of atoms in cavities χpη, nF q Strathclyde, September 2014. 21 Phase diagram vs density Phase topology change: Fix η, plot vs nF SR–SR after critical point Peak in 2nd order line 0 apω̃, nF , η q ω̃ Susceptibility χ asymptote η Ñ 8 1 nF χ 16η 2 ln 1 nf At nF 1, nesting ° of vk,k1 . . . ηφ s,s1 δk,k1 ?s x̂ ?s1 ẑ . . .. 2 Jonathan Keeling χpη, nF q 2/ 2 1/ 2 2 Superradiance of atoms in cavities Strathclyde, September 2014. 21 Open system vs ground state phase diagram Open system, ρ9 i rH, ρs κLrψ s. Stable attractors What survives — Normal-SR boundary Fluctuations δφ ueiνt v eiν t , Secular equation: pi ω̃r ν κ̃q2 ω̃rω̃ χpν, η, nF qs 0 Stable if Imrν s ¡ 0. Boundary: ω̃ 2 κ̃2 ω̃ χpη, nF q What must change Unstable region Ñ new attractors Known unkowns: Limit cycles? Multistability? Spinodal lines? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 22 Open system vs ground state phase diagram Open system, ρ9 i rH, ρs κLrψ s. Stable attractors What survives — Normal-SR boundary Fluctuations δφ ueiνt v eiν t , Secular equation: pi ω̃r ν κ̃q2 ω̃rω̃ χpν, η, nF qs 0 Stable if Imrν s ¡ 0. Boundary: ω̃ 2 κ̃2 ω̃ χpη, nF q What must change Unstable region Ñ new attractors Known unkowns: Limit cycles? Multistability? Spinodal lines? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 22 Open system vs ground state phase diagram Open system, ρ9 i rH, ρs κLrψ s. Stable attractors What survives — Normal-SR boundary Fluctuations δφ ueiνt v eiν t , Secular equation: pi ω̃r ν κ̃q2 ω̃rω̃ χpν, η, nF qs 0 Stable if Imrν s ¡ 0. Boundary: ω̃ 2 κ̃2 ω̃ χpη, nF q What must change Unstable region Ñ new attractors Known unkowns: Limit cycles? Multistability? Spinodal lines? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 22 Open system vs ground state phase diagram Open system, ρ9 i rH, ρs κLrψ s. Stable attractors What survives — Normal-SR boundary Fluctuations δφ ueiνt v eiν t , Secular equation: pi ω̃r ν κ̃q2 ω̃rω̃ χpν, η, nF qs 0 Stable if Imrν s ¡ 0. Boundary: ω̃ 2 κ̃2 ω̃ χpη, nF q What must change Unstable region Ñ new attractors Known unkowns: Limit cycles? Multistability? Spinodal lines? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 22 Open system vs ground state phase diagram Open system, ρ9 i rH, ρs κLrψ s. Stable attractors What survives — Normal-SR boundary Fluctuations δφ ueiνt v eiν t , Secular equation: pi ω̃r ν κ̃q2 ω̃rω̃ χpν, η, nF qs 0 Stable if Imrν s ¡ 0. Boundary: ω̃ 2 κ̃2 ω̃ χpη, nF q What must change Unstable region Ñ new attractors Known unkowns: Limit cycles? Multistability? Spinodal lines? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 22 Outline 1 Dicke model, superradiance and no–go theorem 2 Superradiance and self-organisation Raman scheme Hierarchies of approximation Equilibrium theory of Dicke 3 Fermionic self organisation Equilibrium phase diagrams Landau theory and microscopics Open system? 4 Open system dynamics of Bososn Attractors of open Dicke model Bosons beyond Dicke 5 Conclusions Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 23 Experimental phase diagram ? Pump power g 9 Power Pump-cavity detuning ω Jonathan Keeling ∆ [Baumann et al Nature ’10 ] Superradiance of atoms in cavities Strathclyde, September 2014. 24 Dicke model classical dynamics Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Fixed points: S9 0, ψ9 USz ψ : ψ. 0 Limit cycles? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 25 Dicke model classical dynamics Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Classical EOM (|S| N {2 " 1) USz ψ : ψ. S9 i pω0 U |ψ|2qS 2ig pψ ψqSz S z ig pψ ψ qpS S q ψ rκ i pω US z qs ψ ig pS S q 9 9 Fixed points: S9 0, ψ9 0 Limit cycles? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 25 Dicke model classical dynamics Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Classical EOM (|S| N {2 " 1) USz ψ : ψ. S9 i pω0 U |ψ|2qS 2ig pψ ψqSz S z ig pψ ψ qpS S q ψ rκ i pω US z qs ψ ig pS S q 9 9 Long-time behaviour: Fixed points: S9 0, ψ9 0 Limit cycles? Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 25 Equilibrium Dicke vs open phase diagram, UN 40 0.1 40 UN=0 ω0=0.05 30 UN=0 0.08 20 Normal SR 0.04 10 0 0 0.5 1 ω (MHz) 20 0.06 ωD 0 SR ⇑ SR 0 0.02 -20 0 -40 1.5 ⇓ 0 __ 0.5 1 g√N (MHz) 1.5 g√N Shift boundary pκ2 Allow negative ω Jonathan Keeling ω 2 q{ω χpω0q Ñ inverted Superradiance of atoms in cavities Strathclyde, September 2014. 26 Equilibrium Dicke vs open phase diagram, UN 40 0.1 40 UN=0 ω0=0.05 30 UN=0 0.08 20 Normal SR 0.04 10 0 0 0.5 1 ω (MHz) 20 0.06 ωD 0 SR ⇑ SR 0 0.02 -20 0 -40 1.5 ⇓ 0 __ 0.5 1 g√N (MHz) 1.5 g√N Shift boundary pκ2 Allow negative ω Jonathan Keeling ω 2 q{ω χpω0q Ñ inverted Superradiance of atoms in cavities Strathclyde, September 2014. 26 Equilibrium Dicke vs open phase diagram, UN 40 0.1 40 UN=0 ω0=0.05 30 UN=0 0.08 20 Normal SR 0.04 10 0 0 0.5 1 ω (MHz) 20 0.06 ωD 0 SR ⇑ SR 0 0.02 -20 0 -40 1.5 ⇓ 0 __ 0.5 1 g√N (MHz) 1.5 g√N Shift boundary pκ2 Allow negative ω Jonathan Keeling ω 2 q{ω χpω0q Ñ inverted Superradiance of atoms in cavities Strathclyde, September 2014. 26 . . . Dicke . . . UN 10MHz 40 0.1 40 UN=-10 ω0=0.05 30 20 Normal SR 0.04 10 Unstable 0 0 0.5 1 1.5 ω (MHz) 20 0.06 ωD UN=-10 0.08 0 0.02 -20 0 -40 0 __ g√N ⇓ SRA ⇓+⇑ SRB ⇑ SRA 0.5 1 g√N (MHz) 1.5 Coexistence regions Unstable Ñ SRB Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 27 . . . Dicke . . . UN 10MHz 40 0.1 40 UN=-10 ω0=0.05 30 ⇓ 20 Normal SR 0.04 10 Unstable 0 0 0.5 1 1.5 ω (MHz) 20 0.06 ωD UN=-10 0.08 SRA+⇑ SRA SRA ⇓+⇑ 0 0.02 -20 0 -40 ⇑ 0 __ g√N SRB SRA+⇓ 0.5 1 g√N (MHz) SRA 1.5 Coexistence regions Unstable Ñ SRB Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 27 . . . Dicke . . . UN 10MHz 40 0.1 40 UN=-10 ω0=0.05 30 ⇓ 20 Normal SR 0.04 10 Unstable 0 0 0.5 1 1.5 ω (MHz) 20 0.06 ωD UN=-10 0.08 SRA+⇑ SRA SRA ⇓+⇑ 0 0.02 -20 0 -40 ⇑ 0 __ g√N SRB SRA+⇓ 0.5 1 g√N (MHz) SRA 1.5 Coexistence regions Unstable Ñ SRB Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 27 . . . Dicke . . . UN 40MHz 40 0.1 UN=40 ω0=0.05 30 g0ψ Changing U: 0.08 ωD 0.06 20 Normal Ω 10 SR 0.04 Unstable 0.02 0 2 Level System 0 0 0.5 1 1.5 __ g√N 40 UN=40 ω (MHz) 20 0 -20 -40 0 0.5 Jonathan Keeling 1 g√N (MHz) 1.5 Superradiance of atoms in cavities Strathclyde, September 2014. 28 . . . Dicke . . . UN 40MHz 40 30 g0ψ 0.08 0.06 ωD Changing U: 0.1 UN=40 ω0=0.05 20 Normal Ω 10 SR 0.04 Unstable 0.02 0 2 Level System 0 0 0.5 1 1.5 __ g√N 40 UN=40 ω (MHz) 20 0 -20 -40 0 0.5 Jonathan Keeling 1 g√N (MHz) 1.5 Superradiance of atoms in cavities Strathclyde, September 2014. 28 . . . Dicke . . . UN 40MHz 40 30 g0ψ 0.08 0.06 ωD Changing U: 0.1 UN=40 ω0=0.05 20 Normal Ω SR 10 0.04 Unstable 0.02 0 2 Level System 0 0 0.5 1 1.5 __ g√N 40 UN=40 ⇓ 1000 1200 SRA 20 800 |ψ|2 ω (MHz) 1200 Persistent Oscillations 0 800 600 400 400 -20 ⇑ SRA 200 0 0 0 -40 0 0.5 Jonathan Keeling 1 g√N (MHz) 1.5 Superradiance of atoms in cavities 0 2 5 4 10 6 15 8 10 t (ms) 12 14 16 Strathclyde, September 2014. 18 28 Outline 1 Dicke model, superradiance and no–go theorem 2 Superradiance and self-organisation Raman scheme Hierarchies of approximation Equilibrium theory of Dicke 3 Fermionic self organisation Equilibrium phase diagrams Landau theory and microscopics Open system? 4 Open system dynamics of Bososn Attractors of open Dicke model Bosons beyond Dicke 5 Conclusions Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 29 Open system and Beyond Dicke? 10MHz figures 40 0.1 40 UN=-10 ω0=0.05 30 20 0.06 ωD UN=-10 0.08 20 Normal SR 0.04 10 Unstable 0 0 0.5 1 1.5 ω (MHz) UN 0 0.02 -20 0 -40 0 __ g√N Jonathan Keeling Superradiance of atoms in cavities ⇓ SRA ⇓+⇑ SRB ⇑ SRA 0.5 1 g√N (MHz) 1.5 Strathclyde, September 2014. 30 Open system and Beyond Dicke? 10MHz figures 40 0.1 40 UN=-10 ω0=0.05 30 ⇓ 20 0.06 ωD UN=-10 0.08 20 Normal SR 0.04 10 Unstable 0 0 0.5 1 1.5 ω (MHz) UN SRA+⇑ SRA SRA ⇓+⇑ 0 0.02 -20 0 -40 ⇑ 0 __ g√N SRB SRA+⇓ 0.5 1 g√N (MHz) SRA 1.5 From fermions, found: Survives to low nF : Bosons! ? But needs state φpx, z q cosp 2x q Missed by Dicke model Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 30 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Cavity intensity, |φ|2 3 Dicke nM=2 nM=3 nM=5 nM=10 2.5 2 ~ =2.6 ω 1.5 1 0.5 0 0.4 0.5 0.6 0.7 0.8 Pump field, η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Cavity intensity, |φ|2 3 Dicke nM=2 nM=3 nM=5 nM=10 2.5 2 ~ =2.7 ω 1.5 1 0.5 0 0.4 0.5 0.6 0.7 0.8 Pump field, η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Cavity intensity, |φ|2 3 Dicke nM=2 nM=3 nM=5 nM=10 2.5 2 ~ =2.8 ω 1.5 1 0.5 0 0.4 0.5 0.6 0.7 0.8 Pump field, η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Cavity intensity, |φ|2 3 Dicke nM=2 nM=3 nM=5 nM=10 2.5 2 ~ =2.9 ω 1.5 1 0.5 0 0.4 0.5 0.6 0.7 0.8 Pump field, η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Bosons beyond Dicke ° BEC self organisation: |Ψatoms y p i B t χk k χk ak qN |0y, χk obeys: ωr |k|2δk,k1 Vk,k1 pφq χk ¸ p1q ¸ p2q χk mk,k1 χk1 χk mk,k1 χk1 iκqφ ηE0 i Bt φ pω E0 k,k1 k,k1 Truncate |k| nM , nM 1 Ñ Dicke Boundary moves ω0 2ωr Hysteresis – Larkin-Pikin 2nd order at large ω̃ Cavity intensity, |φ|2 3 Dicke nM=2 nM=3 nM=5 nM=10 2.5 2 ~ =3.0 ω 1.5 1 0.5 0 0.4 0.5 0.6 0.7 0.8 Pump field, η Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 31 Acknowledgements G ROUP : C OLLABORATORS : F UNDING : Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 32 Summary Fermions self organisation, liquid gas, and multicritical points Atomic energy bands 2 1 0 -1 Filled bands, nF=1.5 -2 η=0.8 -3 0 0.2 0.4 0.6 0.8 Cavity field, φ 1 1.2 1.4 First order transitions for bosons, outside Dicke model b(η,nF)/nF 2 nF → 0 1 0 -1 -2 0 0.2 0.4 0.6 ηc Pump field, η 0.8 JK, Bhassen, Simons PRL ’14 Bosons: Dicke model shows many dynamical phases 0 -20 ⇑ SRA -40 40 UN=0 ⇓ 20 SR 0 ⇑ -20 SR -40 0 0.5 1 g√N (MHz) 1.5 0 SRA SRB -20 ⇑ SRA -40 0 0.5 1 g√N (MHz) 1.5 40 UN=-40 ⇓ ⇓+⇑ 20 g-√N=1 20 ω (MHz) SRA ω (MHz) ω (MHz) 40 UN=40 ⇓ 20 ω (MHz) 40 0 -20 -40 0 0.5 1 g√N (MHz) 1.5 -0.01 -0.005 0 δg/g- 0.005 0.01 JK et al. PRL ’10, Bhaseen et al. PRA ’12 Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 33 Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 34 6 Liquid gas bistability 7 Confined Fermi gas 8 Classical dynamics Dicke model timescales 9 Ferroelectric transition 10 Grand canonical Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 35 Bistability, signatures ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 0 nF=1.5, η=0.8 0.5 Narrow bistable region 2 1 1.5 η=0.8, nF=1.5 Global min Extrema Unstable Cavity field, φ 1.5 η Cavity field, φ 1 0.5 0 0 2 4 6 8 10~ Cavity-pump detuning, ω Jonathan Keeling 12 14 Superradiance of atoms in cavities Strathclyde, September 2014. 36 Bistability, signatures ~ =5.2 ω ~ =5.3 ω ~ =5.4 ω ~ =5.5 ω ~ =5.6 ω Free energy, f 1 0 -1 Narrow bistable region 2 nF=1.5, η=0.8 0.5 FS distortion 0.5 kz η 1 1.5 Cavity field, φ ~ =5.1, φ=1.09 ω ~ =5.5, φ=0.63 ω nF=1.50 η=0.8, nF=1.5 Global min Extrema Unstable Cavity field, φ 1.5 0 0 1 -0.5 b) SRhi 0.5 -0.5 c) SRlo 0 kx 0.5 -0.5 0 kx 0.5 0 0 2 4 6 8 10~ Cavity-pump detuning, ω Jonathan Keeling 12 14 Superradiance of atoms in cavities Strathclyde, September 2014. 36 Fermi gas in a trap Trapped gas, V pr q ER pr {r0 qα Rescale via A πr02 Commensuration visible if flat enough (α ¡ 4) Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 37 Classical dynamics of the extended Dicke model Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H USz ψ : ψ. Neglects quantum fluctuations Linearisation about fixed point Ñ stability, spectrum [JK et al. PRL ’10, Bhaseen et al. PRA ’12] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 38 Classical dynamics of the extended Dicke model Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Classical EOM (|S| N {2 " 1) USz ψ : ψ. S9 i pω0 U |ψ|2qS 2ig pψ ψqSz S z ig pψ ψ qpS S q ψ rκ i pω US z qs ψ ig pS S q 9 9 Neglects quantum fluctuations Linearisation about fixed point Ñ stability, spectrum [JK et al. PRL ’10, Bhaseen et al. PRA ’12] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 38 Classical dynamics of the extended Dicke model Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Classical EOM (|S| N {2 " 1) USz ψ : ψ. S9 i pω0 U |ψ|2qS 2ig pψ ψqSz S z ig pψ ψ qpS S q ψ rκ i pω US z qs ψ ig pS S q 9 9 Neglects quantum fluctuations Linearisation about fixed point Ñ stability, spectrum [JK et al. PRL ’10, Bhaseen et al. PRA ’12] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 38 Classical dynamics of the extended Dicke model Open dynamical system: ωψ:ψ ω0Sz g pψ ψ:qpS S q Bt ρ i rH, ρsκpψ:ψρ 2ψρψ: ρψ:ψq H Classical EOM (|S| N {2 " 1) USz ψ : ψ. S9 i pω0 U |ψ|2qS 2ig pψ ψqSz S z ig pψ ψ qpS S q ψ rκ i pω US z qs ψ ig pS S q 9 9 Neglects quantum fluctuations Linearisation about fixed point Ñ stability, spectrum [JK et al. PRL ’10, Bhaseen et al. PRA ’12] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 38 Fixed points (steady states) 0 i pω0 U |ψ |2 qS 0 ig pψ 0 rκ 2ig pψ ψ qpS S i pω US Jonathan Keeling z ψ qS z q qs ψ ig pS S q ψ 0, S p0, 0, N {2q always a solution. If g ¡ gc , ψ 0 too Superradiance of atoms in cavities A S y =rS s 0 B ψ 1 <r ψ s 0 Strathclyde, September 2014. 39 Fixed points (steady states) 0 i pω0 U |ψ |2 qS 2ig pψ ψ qpS S 0 ig pψ 0 rκ i pω US z ψ qS z q qs ψ ig pS S q ψ 0, S p0, 0, N {2q always a solution. If g ¡ gc , ψ 0 too A S y =rS s 0 B ψ 1 <r ψ s 0 Sz Sy Sx Jonathan Keeling Small g: ò, ó only. (ω 30MHz, UN 40MHz) Superradiance of atoms in cavities Strathclyde, September 2014. 39 Fixed points (steady states) 0 i pω0 U |ψ |2 qS 2ig pψ ψ qpS S 0 ig pψ 0 rκ i pω US z ψ qS z q qs ψ ig pS S q ψ 0, S p0, 0, N {2q always a solution. If g ¡ gc , ψ 0 too A S y =rS s 0 B ψ 1 <r ψ s 0 Sz Sy Sx Jonathan Keeling Small g: ò, ó only. (ω 30MHz, UN Larger g: SR too. 40MHz) Superradiance of atoms in cavities Strathclyde, September 2014. 39 Outline 6 Liquid gas bistability 7 Confined Fermi gas 8 Classical dynamics Dicke model timescales 9 Ferroelectric transition 10 Grand canonical Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 40 Comparison to experiment: UN 10MHz (ωp -ωc) (2π MHz) 0 -10 -20 -30 -40 0 0.5 1 1.5 g2 N (MHz)2 2 2.5 UN 10MHz [Baumann et al Nature ’10 ] Adapted from: [Bhaseen et al. PRA ’12] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 41 Timescale to reach steady state 40 Asymptotic state ⇑ SRA 103 102 0 SRB 101 |ψ|2 -ω (MHz) 20 ⇓ -20 100 SRA -40 0 0.5 1 g√N (MHz) Jonathan Keeling 1.5 10-1 Superradiance of atoms in cavities Strathclyde, September 2014. 42 Timescale to reach steady state 40 10ms sweep 103 20 -ω (MHz) 2 10 0 -20 101 -40 100 -60 0.0 0.5 1.0 1.5 2 2 2.0 2.5 10-1 g N (MHz ) 40 Asymptotic state ⇑ SRA 103 102 0 SRB 101 |ψ|2 -ω (MHz) 20 ⇓ -20 100 SRA -40 0 0.5 1 g√N (MHz) Jonathan Keeling 1.5 10-1 Superradiance of atoms in cavities Strathclyde, September 2014. 42 Timescale to reach steady state 40 10ms sweep 103 20 -ω (MHz) 2 10 0 -20 101 -40 100 -60 0.0 0.5 1.0 1.5 2 2 2.0 2.5 10-1 g N (MHz ) 40 Asymptotic state ⇑ SRA 40 103 200ms sweep 1 10 ⇓ -20 100 SRA -1 -40 0 0.5 1 g√N (MHz) 1.5 10 -ω (MHz) SRB 103 20 102 0 |ψ|2 -ω (MHz) 20 102 0 -20 101 -40 100 -60 0.0 0.5 1.0 1.5 2 2 2.0 2.5 10-1 g N (MHz ) Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 42 Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ ∆a ∆b Ωb Ωa g0 ψ g0 ψ H ... g pψ : S ψS q g 1 pψ : S ψS q ... 2 Level System SR(A) near phase boundary at small δg Ñ Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 43 Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ ∆a ∆b Ωb Ωa g0 ψ H g0 ψ ... g pψ : S ψS q g 1 pψ : S ψS q ... 2 Level System 40 UN=-10 ω (MHz) 20 0 -20 ⇓ SRA ⇓+⇑ SRB ⇑ SRA -40 0 0.5 1 g√N (MHz) 1.5 SR(A) near phase boundary at small δg Ñ Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 43 Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ ∆a ∆b Ωb Ωa g0 ψ H g0 ψ ... g pψ : S δg 2 Level System 40 -20 SRA ⇓+⇑ SRB ⇑ SRA 2ḡ g1 g -0.005 0 δg/g- ψS q ... 0.005 0.01 40 g-√N=1 20 ω (MHz) 0 ⇓ g 1 pψ : S q g 1 g, UN=-10 20 ω (MHz) ψS 0 -20 -40 -40 0 0.5 1 g√N (MHz) 1.5 -0.01 SR(A) near phase boundary at small δg Ñ Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 43 Timescales for dynamics: Why so slow and varied? Suppose co- and counter-rotating terms differ ∆a ∆b Ωb Ωa g0 ψ H g0 ψ ... g pψ : S δg 2 Level System 40 -20 SRA ⇓+⇑ SRB ⇑ SRA 2ḡ g1 g -0.005 0 δg/g- ψS q ... 0.005 0.01 40 g-√N=1 20 ω (MHz) 0 ⇓ g 1 pψ : S q g 1 g, UN=-10 20 ω (MHz) ψS 0 -20 -40 -40 0 0.5 1 g√N (MHz) 1.5 -0.01 SR(A) near phase boundary at small δg Ñ Critical slowing down SR(A), SR(B) continuously connect Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 43 Ferroelectric transition Atoms in Coulomb gauge H ¸ ωk ak: ak ¸ rpi eApri qs2 Vcoul i Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 44 Ferroelectric transition Atoms in Coulomb gauge H ¸ ωk ak: ak ¸ rpi eApri qs2 Vcoul i Two-level systems — dipole-dipole coupling H ω0Sz ωψ : ψ g pS S qpψ ψ:q Nζ pψ ψ : q2 η pS S q2 (nb g 2 , ζ, η 91{V ). Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 44 Ferroelectric transition Atoms in Coulomb gauge H ¸ ωk ak: ak ¸ rpi eApri qs2 Vcoul i Two-level systems — dipole-dipole coupling H ω0Sz ωψ : ψ (nb g 2 , ζ, η 91{V ). Jonathan Keeling g pS S qpψ ψ:q Nζ pψ Ferroelectric polarisation if ω0 Superradiance of atoms in cavities ψ : q2 η pS S q2 2ηN Strathclyde, September 2014. 44 Ferroelectric transition Atoms in Coulomb gauge H ¸ ωk ak: ak ¸ rpi eApri qs2 Vcoul i Two-level systems — dipole-dipole coupling H ω0Sz ωψ : ψ g pS S qpψ ψ:q Nζ pψ Ferroelectric polarisation if ω0 (nb g 2 , ζ, η 91{V ). Gauge transform to dipole gauge D r H ω0 S z “Dicke” transition at ω0 ωψ : ψ ḡ pS ψ : q2 η pS S q2 2ηN Sqpψ ψ:q N ḡ 2{ω 2ηN But, ψ describes electric displacement Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 44 Grand canonical ensemble Grand canonical ensemble: If H Ñ H µ pS z ψ : ψ), need only: g 2 N Fix density / fix µ ¡ 0 — pumping ¡ pω µq|ω0 µ| Transition at: g 2 N ¡ pω µqpω0 µq µ hits lowest mode [Eastham and Littlewood, PRB ’01] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 45 Grand canonical ensemble Grand canonical ensemble: If H Ñ H µ pS z ψ : ψ), need only: g 2 N Fix density / fix µ ¡ 0 — pumping ¡ pω µq|ω0 µ| Transition at: g 2 N ¡ pω µqpω0 µq µ hits lowest mode [Eastham and Littlewood, PRB ’01] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 45 Grand canonical ensemble Grand canonical ensemble: If H Ñ H µ pS z ψ : ψ), need only: g 2 N Fix density / fix µ ¡ 0 — pumping ¡ pω µq|ω0 µ| 2 1 unstable (µ-ω)/g 0 -1 SR Transition at: g 2 N ¡ pω µqpω0 µq -2 -3 µ hits lowest mode -4 -5 -4 -3 -2 -1 (ε - ω)/g 0 1 2 [Eastham and Littlewood, PRB ’01] Jonathan Keeling Superradiance of atoms in cavities Strathclyde, September 2014. 45