Collective dynamics of Bose–Einstein condensate in optical cavities Munich, April 2011
by user
Comments
Transcript
Collective dynamics of Bose–Einstein condensate in optical cavities Munich, April 2011
Collective dynamics of Bose–Einstein condensate in optical cavities J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Munich, April 2011 Jonathan Keeling Collective dynamics Munich, April 2011 1 / 22 Acknowledgements People: Funding: Jonathan Keeling Collective dynamics Munich, April 2011 2 / 22 Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. Jonathan Keeling Collective dynamics Munich, April 2011 3 / 22 Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. New relevance Rydberg atoms Superconducting qubits Quantum dots (excitons, polaritons, ...) Nitrogen-Vacancies in diamond Mechanical oscillators, ... Ultra-cold atoms Jonathan Keeling Collective dynamics Munich, April 2011 3 / 22 Coupling many atoms to light Old question: What happens to radiation when many atoms interact “collectively” with light. New relevance Rydberg atoms Superconducting qubits Quantum dots (excitons, polaritons, ...) Nitrogen-Vacancies in diamond Mechanical oscillators, ... Ultra-cold atoms Superradiance — dynamical and steady state. Jonathan Keeling Collective dynamics Munich, April 2011 3 / 22 Dicke effect: Enhanced emission Hint = X P gk ψk† Si− + H.c. . Use i Si → S k,i Emission: I ∝ X |hfinal|ψk† S − |initiali|2 final For: |S| = N/2, |Sz | N/2, rate I ∝ N 2 . Jonathan Keeling Collective dynamics Munich, April 2011 4 / 22 Dicke effect: Enhanced emission Hint = X P gk ψk† Si− + H.c. . Use i Si → S k,i Emission: I ∝ X |hfinal|ψk† S − |initiali|2 final For: |S| = N/2, |Sz | N/2, rate I ∝ N 2 . Jonathan Keeling Collective dynamics Munich, April 2011 4 / 22 Dicke effect: Enhanced emission Hint = X P gk ψk† Si− + H.c. . Use i Si → S k,i Emission: I ∝ X |hfinal|ψk† S − |initiali|2 final For: |S| = N/2, |Sz | N/2, rate I ∝ N 2 . Jonathan Keeling Collective dynamics Munich, April 2011 4 / 22 Dicke effect: Enhanced emission Hint = X P gk ψk† Si− + H.c. . Use i Si → S k,i Emission: I ∝ X |hfinal|ψk† S − |initiali|2 final For: |S| = N/2, |Sz | N/2, rate I ∝ N 2 . Jonathan Keeling Collective dynamics Munich, April 2011 4 / 22 Dicke effect and superradiance without a cavity Hint = X gk ψk† Si− e −ik·ri + H.c. k,i Jonathan Keeling Collective dynamics Munich, April 2011 5 / 22 Dicke effect and superradiance without a cavity Hint = X gk ψk† Si− e −ik·ri + H.c. k,i If |ri − rj | λ, use P Si → S. Many modes ψk — integrate out: Γ dρ = − S + S − ρ − S − ρS + + ρS + S − dt 2 Jonathan Keeling i Collective dynamics Munich, April 2011 5 / 22 Dicke effect and superradiance without a cavity Hint = X gk ψk† Si− e −ik·ri + H.c. k,i If |ri − rj | λ, use P Si → S. Many modes ψk — integrate out: Γ dρ = − S + S − ρ − S − ρS + + ρS + S − dt 2 ΓN 2 dhS z i 2 ΓN z = sech t If S = |S| = N/2 initially: I ∝ −Γ dt 4 2 i ΓN2/2 I=-Γd〈Sz〉/dt 〈Sz〉 N/2 0 -N/2 0 tD Jonathan Keeling tD Collective dynamics Munich, April 2011 5 / 22 Dicke effect and superradiance without a cavity Hint = X gk ψk† Si− e −ik·ri + H.c. k,i If |ri − rj | λ, use P Si → S. Many modes ψk — integrate out: Γ dρ = − S + S − ρ − S − ρS + + ρS + S − dt 2 ΓN 2 dhS z i 2 ΓN z = sech t If S = |S| = N/2 initially: I ∝ −Γ dt 4 2 i ΓN2/2 I=-Γd〈Sz〉/dt 〈Sz〉 N/2 0 -N/2 0 tD tD Problem: dipole-dipole interactions dephase. [Friedberg et al, Phys. Lett. 1972] Jonathan Keeling Collective dynamics Munich, April 2011 5 / 22 Collective radiation with a cavity: Dynamics Hint = X ψ † Si− + ψSi+ Single cavity mode: oscillations i [Bonifacio and Preparata PRA 1970; JK PRA 2009] Jonathan Keeling Collective dynamics Munich, April 2011 6 / 22 Collective radiation with a cavity: Dynamics Hint = X ψ † Si− + ψSi+ Single cavity mode: oscillations If S z = |S| = N/2 initially: i __ 1600 __ T=2ln(√N)/√N 1400 |ψ(t)| 2 1200 1000 800 600 400 __ 200 1/√N 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time [Bonifacio and Preparata PRA 1970; JK PRA 2009] Jonathan Keeling Collective dynamics Munich, April 2011 6 / 22 Collective radiation with a cavity: Dynamics Hint = X ψ † Si− + ψSi+ Single cavity mode: oscillations If S z = |S| = N/2 initially: i __ __ 1600 T=2ln(√N)/√N 1400 1400 1200 1200 1000 1000 |ψ(t)|2 |ψ(t)| 2 1600 800 N=2000 800 600 600 400 400 __ 1/√N 200 200 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 1 2 3 4 5 Time Time [Bonifacio and Preparata PRA 1970; JK PRA 2009] Jonathan Keeling Collective dynamics Munich, April 2011 6 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + [Hepp, Lieb, Ann. Phys. 1973] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + Mean-field wf: |Ψi → e λψ † +ηS + |Ωi Spontaneous polarisation if: Ng 2 > ωω0 [Hepp, Lieb, Ann. Phys. 1973] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + Mean-field wf: |Ψi → e λψ † +ηS + |Ωi Spontaneous polarisation if: Ng 2 > ωω0 [Hepp, Lieb, Ann. Phys. 1973] Problem: never occurs. Minimal coupling (p − eA)2 /2m [Rzazewski et al Phys. Rev. Lett 1975] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + Mean-field wf: |Ψi → e λψ † +ηS + |Ωi Spontaneous polarisation if: Ng 2 > ωω0 [Hepp, Lieb, Ann. Phys. 1973] Problem: never occurs. − X e A · pi m ⇔ Minimal coupling (p − eA)2 /2m g (ψ † S − + ψS + ), i [Rzazewski et al Phys. Rev. Lett 1975] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + Mean-field wf: |Ψi → e λψ † +ηS + |Ωi Spontaneous polarisation if: Ng 2 > ωω0 [Hepp, Lieb, Ann. Phys. 1973] Problem: never occurs. − X e A · pi m ⇔ Minimal coupling (p − eA)2 /2m g (ψ † S − + ψS + ), i X A2 2m ⇔ Nζ(ψ + ψ † )2 i [Rzazewski et al Phys. Rev. Lett 1975] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 With a cavity: Superradiance phase transition With detuning: H = ω0 S z + ωψ † ψ + g ψ † S − + ψS + Mean-field wf: |Ψi → e λψ † +ηS + |Ωi Spontaneous polarisation if: Ng 2 > ωω0 [Hepp, Lieb, Ann. Phys. 1973] Problem: never occurs. − X e A · pi m ⇔ Minimal coupling (p − eA)2 /2m g (ψ † S − + ψS + ), i X A2 2m ⇔ Nζ(ψ + ψ † )2 i For large N, ω → ω + 4Nζ. Need Ng 2 > ω0 (ω + 4Nζ). But g 2 /ω0 < 4ζ. No transition [Rzazewski et al Phys. Rev. Lett 1975] Jonathan Keeling Collective dynamics Munich, April 2011 7 / 22 Dicke phase transition: ways out Problem: g 2 /ω0 < 4ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D · r gauge. [JK JPCM 2007 ] Grand canonical ensemble: I I If H → H − µ(S z + ψ † ψ), need only: g 2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polaritons. [JK Semicond. Sci. Technol. 2007] Dissociate g , ω0 , e.g. Raman Scheme: ω0 ω. [Dimer et al PRA 2007; Baumann et al Nature 2010 ] See also [Nataf and Ciuti, Nat. Comm. 2010; Viehmann et al 1103.4639] Jonathan Keeling Collective dynamics Munich, April 2011 8 / 22 Dicke phase transition: ways out Problem: g 2 /ω0 < 4ζ for intrinsic parameters. Solutions: Non-solution Ferroelectric transition in D · r gauge. [JK JPCM 2007 ] Grand canonical ensemble: I I If H → H − µ(S z + ψ † ψ), need only: g 2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polaritons. [JK Semicond. Sci. Technol. 2007] Dissociate g , ω0 , e.g. Raman Scheme: ω0 ω. [Dimer et al PRA 2007; Baumann et al Nature 2010 ] See also [Nataf and Ciuti, Nat. Comm. 2010; Viehmann et al 1103.4639] Jonathan Keeling Collective dynamics Munich, April 2011 8 / 22 Dicke phase transition: ways out Problem: g 2 /ω0 < 4ζ for intrinsic parameters. Solutions: 40 non-condensed Non-solution Ferroelectric transition in D · r gauge. condensed 30 kB T [JK JPCM 2007 ] 20 Grand canonical ensemble: I I If H → H − µ(S z + ψ † ψ), need only: g 2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polaritons. [JK Semicond. Sci. Technol. 2007] 10 0 0 Cavity 9 1×10 n [cm-2] 9 2×10 Dissociate g , ω0 , e.g. Raman Scheme: ω0 ω. [Dimer et al PRA 2007; Baumann et al Nature 2010 ] See also [Nataf and Ciuti, Nat. Comm. 2010; Viehmann et al 1103.4639] Jonathan Keeling Collective dynamics Munich, April 2011 8 / 22 Dicke phase transition: ways out Problem: g 2 /ω0 < 4ζ for intrinsic parameters. Solutions: 40 non-condensed Non-solution Ferroelectric transition in D · r gauge. condensed 30 kB T [JK JPCM 2007 ] 20 Grand canonical ensemble: I I If H → H − µ(S z + ψ † ψ), need only: g 2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polaritons. [JK Semicond. Sci. Technol. 2007] Dissociate g , ω0 , e.g. Raman Scheme: ω0 ω. [Dimer et al PRA 2007; Baumann et al Nature 2010 ] 10 Cavity 0 0 9 9 1×10 n [cm-2] κ κ 2×10 Cavity Pump Pump See also [Nataf and Ciuti, Nat. Comm. 2010; Viehmann et al 1103.4639] Jonathan Keeling Collective dynamics Munich, April 2011 8 / 22 Dicke phase transition: ways out Problem: g 2 /ω0 < 4ζ for intrinsic parameters. Solutions: 40 non-condensed Non-solution Ferroelectric transition in D · r gauge. condensed 30 kB T [JK JPCM 2007 ] 20 Grand canonical ensemble: I I If H → H − µ(S z + ψ † ψ), need only: g 2 N > (ω − µ)(ω0 − µ) Incoherent pumping — polaritons. [JK Semicond. Sci. Technol. 2007] Dissociate g , ω0 , e.g. Raman Scheme: ω0 ω. [Dimer et al PRA 2007; Baumann et al Nature 2010 ] 10 Cavity 0 0 9 9 1×10 n [cm-2] κ κ 2×10 Cavity Pump Pump See also [Nataf and Ciuti, Nat. Comm. 2010; Viehmann et al 1103.4639] Jonathan Keeling Collective dynamics Munich, April 2011 8 / 22 Overview 1 Dicke model and collective emission Ferroelectric transition and gauges 2 Optical lattice realisation and dynamics Fixed points and phase diagram Dynamics and critical slowing down Regions without fixed points 3 Hyperfine levels and extra phases 4 Conclusions Jonathan Keeling Collective dynamics Munich, April 2011 9 / 22 Ferroelectric transition Atoms in Coulomb gauge X X H= ωk ak† ak + [pi − eA(ri )]2 + Vcoul i Jonathan Keeling Collective dynamics Munich, April 2011 10 / 22 Ferroelectric transition Atoms in Coulomb gauge X X H= ωk ak† ak + [pi − eA(ri )]2 + Vcoul i Two-level systems — dipole-dipole coupling H = ω0 S z + ωψ † ψ + g (S + + S − )(ψ + ψ † ) + Nζ(ψ + ψ † )2 −η(S + − S − )2 (nb g 2 , ζ, η ∝ 1/V ). Jonathan Keeling Collective dynamics Munich, April 2011 10 / 22 Ferroelectric transition Atoms in Coulomb gauge X X H= ωk ak† ak + [pi − eA(ri )]2 + Vcoul i Two-level systems — dipole-dipole coupling H = ω0 S z + ωψ † ψ + g (S + + S − )(ψ + ψ † ) + Nζ(ψ + ψ † )2 −η(S + − S − )2 (nb g 2 , ζ, η ∝ 1/V ). Jonathan Keeling Ferroelectric polarisation if ω0 < 2ηN Collective dynamics Munich, April 2011 10 / 22 Ferroelectric transition Atoms in Coulomb gauge X X H= ωk ak† ak + [pi − eA(ri )]2 + Vcoul i Two-level systems — dipole-dipole coupling H = ω0 S z + ωψ † ψ + g (S + + S − )(ψ + ψ † ) + Nζ(ψ + ψ † )2 −η(S + − S − )2 Ferroelectric polarisation if ω0 < 2ηN (nb g 2 , ζ, η ∝ 1/V ). Gauge transform to dipole gauge D · r H = ω0 S z + ωψ † ψ + ḡ (S + − S − )(ψ − ψ † ) “Dicke” transition at ω0 < N ḡ 2 /ω ≡ 2ηN But, ψ describes electric displacement Jonathan Keeling Collective dynamics Munich, April 2011 10 / 22 Overview 1 Dicke model and collective emission Ferroelectric transition and gauges 2 Optical lattice realisation and dynamics Fixed points and phase diagram Dynamics and critical slowing down Regions without fixed points 3 Hyperfine levels and extra phases 4 Conclusions Jonathan Keeling Collective dynamics Munich, April 2011 11 / 22 Extended Dicke model κ κ [Baumann et al. Nature 2010] 2 Level system, | ⇓i, | ⇑i: ⇓: |kx , kz i = |0, 0i, ⇑: |kx , kz i = | ± k, ±ki, ω0 = 2ωrecoil g0ψ Ω z x Pump 2 Level System H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − )+USz ψ † ψ. N atoms: |S| = N/2 Jonathan Keeling Collective dynamics Munich, April 2011 12 / 22 Extended Dicke model κ κ [Baumann et al. Nature 2010] 2 Level system, | ⇓i, | ⇑i: ⇓: |kx , kz i = |0, 0i, ⇑: |kx , kz i = | ± k, ±ki, ω0 = 2ωrecoil g0ψ Ω z x Pump 2 Level System H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − )+USz ψ † ψ. N atoms: |S| = N/2 Jonathan Keeling Collective dynamics Munich, April 2011 12 / 22 Extended Dicke model κ κ [Baumann et al. Nature 2010] 2 Level system, | ⇓i, | ⇑i: ⇓: |kx , kz i = |0, 0i, ⇑: |kx , kz i = | ± k, ±ki, ω0 = 2ωrecoil g0ψ Ω z x Pump 2 Level System Feedback: U ∝ g02 ωc − ωa H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − )+USz ψ † ψ. N atoms: |S| = N/2 Jonathan Keeling Collective dynamics Munich, April 2011 12 / 22 Extended Dicke model κ κ [Baumann et al. Nature 2010] 2 Level system, | ⇓i, | ⇑i: ⇓: |kx , kz i = |0, 0i, ⇑: |kx , kz i = | ± k, ±ki, ω0 = 2ωrecoil g0ψ Ω z Pump x 2 Level System Feedback: U ∝ g02 ωc − ωa H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − )+USz ψ † ψ. N atoms: |S| = N/2 Add decay: Ṡ − = −i(ω0 +Uψ † ψ)S − + 2i(g ψ + g 0 ψ † )S z Ṡ z = −ig (ψS + − ψ † S − ) + ig 0 (ψS − − ψ † S + ) ψ̇ = − [κ + i(ω+US z )] ψ − igS − − ig 0 S + Jonathan Keeling Collective dynamics Munich, April 2011 12 / 22 Fixed points at U = 0 H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − ) Fixed points Ṡ, ψ̇ = 0. Jonathan Keeling S z = ±N/2, ψ = 0 always present ψ 6= 0 if g , g 0 large. Collective dynamics Munich, April 2011 13 / 22 Fixed points at U = 0 H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − ) S z = ±N/2, ψ = 0 always present Fixed points Ṡ, ψ̇ = 0. ψ 6= 0 if g , g 0 large. 2.0 S4 __ g′√N (MHz) 1.5 1.0 S3 SR ⇑ 0.5 SR+⇓ S2 ⇓ 0.0 0.0 ● 0.5 1.0 S1 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 13 / 22 Fixed points at U = 0 H = ωψ † ψ + ω0 S z + g (ψ † S − + ψS + ) + g 0 (ψ † S + + ψS − ) S z = ±N/2, ψ = 0 always present Fixed points Ṡ, ψ̇ = 0. ψ 6= 0 if g , g 0 large. 2.0 S1 g′√N (MHz) 1.5 __ S2 S4 1.0 S3 SR ⇑ 0.5 S4 S2 ⇓ 0.0 0.0 S3 SR+⇓ ● 0.5 1.0 S1 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 13 / 22 Slow dynamics near critical g 0 /g 0.5 Sz 2.0 1.5 -0.5 (b) g′√N (MHz) 1.0 100 SR+⇓ 50 ⇓ 0.0 0.0 (c) 106 |ψ|2 SR ⇑ 0.5 |ψ|2 __ (a) 0 0.5 104 ● 1.0 __ g√N (MHz) 1.5 2.0 200.0 0 60 80 100 120 140 160 t (ms) 200.2 180 200 200.4 220 240 √ ω, κ, g N ∼ MHz, ω0 ∼ kHz. Much slower decay. Treating ω0 /κ perturbatively, linear stability gives Im(ν) = − κω02 κ2 + ω 2 For large κ/ω0 , adiabatically eliminate ψ: ∂t S = {S, H} − ΓS × (S × ẑ), H = ω0 Sz − Λ+ Sx2 − Λ− Sy2 Γ ∝ (g 0 2 − g 2 ) Jonathan Keeling Collective dynamics Munich, April 2011 14 / 22 Slow dynamics near critical g 0 /g 0.5 Sz 2.0 1.5 -0.5 (b) g′√N (MHz) 1.0 100 SR+⇓ 50 ⇓ 0.0 0.0 (c) 106 |ψ|2 SR ⇑ 0.5 |ψ|2 __ (a) 0 0.5 104 ● 1.0 __ g√N (MHz) 1.5 2.0 200.0 0 60 80 100 120 140 160 t (ms) 200.2 180 200 200.4 220 240 √ ω, κ, g N ∼ MHz, ω0 ∼ kHz. Much slower decay. Treating ω0 /κ perturbatively, linear stability gives Im(ν) = − κω02 κ2 + ω 2 For large κ/ω0 , adiabatically eliminate ψ: ∂t S = {S, H} − ΓS × (S × ẑ), H = ω0 Sz − Λ+ Sx2 − Λ− Sy2 Γ ∝ (g 0 2 − g 2 ) Jonathan Keeling Collective dynamics Munich, April 2011 14 / 22 Slow dynamics near critical g 0 /g 0.5 Sz 2.0 1.5 -0.5 (b) g′√N (MHz) 1.0 100 SR+⇓ 50 ⇓ 0.0 0.0 (c) 106 |ψ|2 SR ⇑ 0.5 |ψ|2 __ (a) 0 0.5 104 ● 1.0 __ g√N (MHz) 1.5 2.0 200.0 0 60 80 100 120 140 160 t (ms) 200.2 180 200 200.4 220 240 √ ω, κ, g N ∼ MHz, ω0 ∼ kHz. Much slower decay. Treating ω0 /κ perturbatively, linear stability gives Im(ν) = − κω02 κ2 + ω 2 For large κ/ω0 , adiabatically eliminate ψ: ∂t S = {S, H} − ΓS × (S × ẑ), H = ω0 Sz − Λ+ Sx2 − Λ− Sy2 Γ ∝ (g 0 2 − g 2 ) Jonathan Keeling Collective dynamics Munich, April 2011 14 / 22 Finite U phase diagram, g = g 0 H = ωψ † ψ + ω0 S z + g (ψ † + ψ)(S + + S − ) + USz ψ † ψ Jonathan Keeling Collective dynamics Munich, April 2011 15 / 22 Finite U phase diagram, g = g 0 H = ωψ † ψ + ω0 S z + g (ψ † + ψ)(S + + S − ) + USz ψ † ψ 2.0 1.5 SR g√N (MHz) 1.0 0.5 SR ⇑ SR+⇓ 0.5 SR SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ ⇓ 0.0 0.0 SR+⇑ 1.0 __ __ g′√N (MHz) 1.5 ⇓ ● 1.0 __ g√N (MHz) Jonathan Keeling 1.5 2.0 0.0 -80 ⇑+⇓ -60 Collective dynamics -40 -20 0 20 UN (MHz) 40 60 Munich, April 2011 80 15 / 22 Explaining finite U phase diagram SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 Jonathan Keeling ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) Collective dynamics 40 60 80 Munich, April 2011 16 / 22 Explaining finite U phase diagram SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 If g = g 0 , analytic ψ 6= 0 solution. ∂t S z = ig (ψ + ψ † )(S − − S + ) Jonathan Keeling Collective dynamics Munich, April 2011 16 / 22 Explaining finite U phase diagram SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 If g = g 0 , analytic ψ 6= 0 solution. ∂t S z = ig (ψ + ψ † )(S − − S + ) If |UN| < 2ω: S ± = S x Jonathan Keeling Collective dynamics Munich, April 2011 16 / 22 Explaining finite U phase diagram SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 If g = g 0 , analytic ψ 6= 0 solution. ∂t S z = ig (ψ + ψ † )(S − − S + ) If UN < −2ω Alternate SR If |UN| < 2ω: S ± = S x solution Jonathan Keeling Collective dynamics Munich, April 2011 16 / 22 Explaining finite U phase diagram SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 If g = g 0 , analytic ψ 6= 0 solution. ∂t S z = ig (ψ + ψ † )(S − − S + ) If UN < −2ω Alternate SR If |UN| < 2ω: S ± = S x solution If UN > 2ω No stable fixed points Jonathan Keeling Collective dynamics Munich, April 2011 16 / 22 Persistent optomechanical oscillations SR SR+⇑ ∂t S − = −i(ω0 + U|ψ|2 )S − + 2ig (ψ + ψ † )S z SR 1.0 ∂t S z = i(ψ + ψ † )(S − − S + ) __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ∂t ψ = − [κ + i(ω + US z )] ψ − ig (S − + S + ) ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) Jonathan Keeling 40 60 80 Collective dynamics Munich, April 2011 17 / 22 Persistent optomechanical oscillations SR SR+⇑ ∂t S − = −i(ω0 + U|ψ|2 )S − + 2ig (ψ + ψ † )S z SR 1.0 ∂t S z = i(ψ + ψ † )(S − − S + ) __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ∂t ψ = − [κ + i(ω + US z )] ψ − ig (S − + S + ) ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 Fix S z = −ω/U if Re(ψ) = 0. Jonathan Keeling Collective dynamics Munich, April 2011 17 / 22 Persistent optomechanical oscillations SR SR+⇑ ∂t S − = −i(ω0 + U|ψ|2 )S − + 2ig (ψ + ψ † )S z SR 1.0 ∂t S z = i(ψ + ψ † )(S − − S + ) __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ∂t ψ = − [κ + i(ω + US z )] ψ − ig (S − + S + ) ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 Fix S z = −ω/U if Re(ψ) = 0. Jonathan Keeling Collective dynamics Munich, April 2011 17 / 22 Persistent optomechanical oscillations SR SR+⇑ ∂t S − = −i(ω0 + U|ψ|2 )S − + 2ig (ψ + ψ † )S z SR 1.0 ∂t S z = i(ψ + ψ † )(S − − S + ) __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ∂t ψ = − [κ + i(ω + US z )] ψ − ig (S − + S + ) ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 Fix S z = −ω/U if Re(ψ) = 0. Writing r N2 − −iθ S = re r= − (S z )2 4 Get: ∂t θ = ω0 + U|ψ|2 (∂t + κ)ψ = −2igr cos(θ) Jonathan Keeling Collective dynamics Munich, April 2011 17 / 22 Persistent optomechanical oscillations SR ∂t S − = −i(ω0 + U|ψ|2 )S − + 2ig (ψ + ψ † )S z SR 1.0 SR+⇓ ∂t S z = i(ψ + ψ † )(S − − S + ) Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ∂t ψ = − [κ + i(ω + US z )] ψ − ig (S − + S + ) ⇓ ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 Fix S z = −ω/U if Re(ψ) = 0. Writing r N2 − −iθ S = re r= − (S z )2 4 20 Imψ SR+⇑ __ g√N (MHz) 1.5 0 -20 Get: ∂t θ = ω0 + U|ψ|2 (∂t + κ)ψ = −2igr cos(θ) S/N 0.5 Sx Sy 0 -0.5 1100.0 1100.1 1100.2 t (ms) Jonathan Keeling Collective dynamics Munich, April 2011 17 / 22 Comparison to experiment UN = −40MHz 0 (ω − ωU)/2π 10 20 30 0.0 1.0 g2N [JK et al PRL 2010 ] Jonathan Keeling 2.0 [Baumann et al Nature 2010 ] Collective dynamics Munich, April 2011 18 / 22 Parameters and phases 2.0 1.5 1.0 0.5 ⇑ SR+⇓ 0.5 SR+⇑ SR 1.0 SR+⇓ Limit Cycle 0.5 S2 SR+⇑+⇓ ⇓ 0.0 0.0 S3 SR SR __ __ g′√N (MHz) g√N (MHz) S4 1.5 ● 1.0 S1 1.5 2.0 __ g√N (MHz) Phase ⇓ ⇑ SR (ψ 6= 0) SR + ⇓ Limit cycle 0.0 -80 ⇑+⇓ -60 Seen? X × X ? × Jonathan Keeling ⇓ -40 -20 0 20 UN (MHz) 40 60 80 (not true TLS) Need positive U Collective dynamics Munich, April 2011 19 / 22 Parameters and phases 2.0 1.5 1.0 0.5 ⇑ SR+⇓ 0.5 SR+⇑ I SR+⇓ Limit Cycle SR+⇑+⇓ ● 1.0 S1 1.5 2.0 __ g√N (MHz) Phase ⇓ ⇑ SR (ψ 6= 0) SR + ⇓ Limit cycle I SR 1.0 0.5 S2 ⇓ 0.0 0.0 S3 SR Tunable parameters SR __ __ g′√N (MHz) g√N (MHz) S4 1.5 0.0 -80 I ⇑+⇓ -60 Seen? X × X ? × Jonathan Keeling I ⇓ -40 -20 0 20 UN (MHz) 40 60 80 I g , g 0 X(g = g 0 ) U ? ω X ? κ × (not true TLS) Need positive U Collective dynamics Munich, April 2011 19 / 22 Parameters and phases 2.0 1.5 1.0 0.5 ⇑ SR+⇓ 0.5 SR+⇑ I SR+⇓ Limit Cycle SR+⇑+⇓ ● 1.0 S1 1.5 2.0 __ g√N (MHz) Phase ⇓ ⇑ SR (ψ 6= 0) SR + ⇓ Limit cycle I SR 1.0 0.5 S2 ⇓ 0.0 0.0 S3 SR Tunable parameters SR __ __ g′√N (MHz) g√N (MHz) S4 1.5 0.0 -80 I ⇑+⇓ -60 Seen? X × X ? × Jonathan Keeling I ⇓ -40 -20 0 20 UN (MHz) 40 60 80 I g , g 0 X(g = g 0 ) U ? ω X ? κ × Can we tune g 6= g 0 ? (not true TLS) What other phases occur? Need positive U Collective dynamics Munich, April 2011 19 / 22 Tuning g , g 0 , U ∆a [Dimer et al. Phys. Rev. A. (2007)] ∆b Ωb Ωa g0 ψ g0 ψ 2 Level System Jonathan Keeling Separate pump strength/detuning g0 2 g0 2 g0 Ωb 0 g0 Ωa ,g ∼ ,U ∼ − g∼ ∆b ∆a ∆a ∆b Collective dynamics Munich, April 2011 20 / 22 Tuning g , g 0 , U ∆a [Dimer et al. Phys. Rev. A. (2007)] ∆b Ωb Ωa g0 ψ g0 ψ 2 Level System Separate pump strength/detuning g0 2 g0 2 g0 Ωb 0 g0 Ωa ,g ∼ ,U ∼ − g∼ ∆b ∆a ∆a ∆b Possible realization: Hyperfine levels σ− σ+ mF=+1 B || z mF=0 mF=−1 Jonathan Keeling Collective dynamics Munich, April 2011 20 / 22 Phase diagrams vs g , g 0 , U, ω 2.0 __ g′√N (MHz) 1.5 1.0 0.5 SR ⇑ SR+⇓ ⇓ 0.0 0.0 0.5 ● 1.0 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 21 / 22 Phase diagrams vs g , g 0 , U, ω 2.0 __ g′√N (MHz) 1.5 1.0 0.5 SR ⇑ SR+⇓ ⇓ 0.0 0.0 0.5 ● 1.0 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 21 / 22 Phase diagrams vs g , g 0 , U, ω 2.0 __ g′√N (MHz) 1.5 1.0 SR ⇑ 0.5 SR+⇓ ⇓ 0.0 0.0 0.5 ● 1.0 1.5 2.0 __ g√N (MHz) 1.54 ⇓ SR+⇓ ⇓ SR g√N 1.52 1.5 LC 1.48 1.46 SR -100 -80 -60 -40 -20 ⇑ 0 ω SR+⇑ 20 Jonathan Keeling 40 ⇑ 60 80 100 Collective dynamics Munich, April 2011 21 / 22 Summary Dynamical vs steady state superradiance 1600 ΓN2/2 1200 |ψ(t)|2 0 N=2000 1400 I=-Γd〈Sz〉/dt 〈Sz〉 N/2 1000 800 600 400 200 -N/2 0 tD 0 0 tD 1 2 3 4 5 Time Circumventing no-go theorem: (Ferroelectric?), Open systems, Raman scheme Realisation of (modified) superradiance transition κ Cavity κ Pump Pump For g 6= g 0 , U 6= 0, wide variety of dynamical phases 2.0 0 1.5 SR+⇓ S2 0.5 ● 1.0 __ g√N (MHz) SR+⇓ SR+⇑+⇓ 2.0 20 Limit Cycle 0.5 S1 1.5 10 SR 1.0 __ S3 SR ⇑ ⇓ 0.0 0.0 SR+⇑ (ω − ωU)/2π g√N (MHz) __ g′√N (MHz) 1.0 0.5 SR S4 1.5 0.0 -80 ⇓ 30 ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 80 0.0 1.0 g2N 2.0 Slow dynamics and persistent oscillations Jonathan Keeling Collective dynamics Munich, April 2011 22 / 22 Jonathan Keeling Collective dynamics Munich, April 2011 23 / 33 Extra slides 5 Polaritons and Dicke model 6 Numerical confirmation of FP 7 Dicke Oscillations 8 Extensions to atomic Dicke realisation Jonathan Keeling Collective dynamics Munich, April 2011 24 / 33 Chemical potential and Dicke model H = ωψ † ψ + X ω0 Siz + g (ψSi+ + H.c.) i Cavity Quantum Wells Transition occurs at: 1 Ng 2 tanh β (ω0 − µ) ω−µ= ω0 − µ 2 Analogy to dynamics: Pendulum equation in frame rotating at µ Open system; incoherent pumping. Polariton condensate Jonathan Keeling Collective dynamics Munich, April 2011 25 / 33 Chemical potential and Dicke model H = ωψ † ψ + X ω0 Siz + g (ψSi+ + H.c.) i Cavity Quantum Wells Transition occurs at: 1 Ng 2 tanh β (ω0 − µ) ω−µ= ω0 − µ 2 How to introduce µ Analogy to dynamics: Pendulum equation in frame rotating at µ Open system; incoherent pumping. Polariton condensate Jonathan Keeling Collective dynamics Munich, April 2011 25 / 33 Chemical potential and Dicke model H = ωψ † ψ + X ω0 Siz + g (ψSi+ + H.c.) i Cavity Quantum Wells Transition occurs at: 1 Ng 2 tanh β (ω0 − µ) ω−µ= ω0 − µ 2 How to introduce µ __ 1600 __ T=2ln(√N)/√N 1400 1200 |ψ(t)|2 Analogy to dynamics: Pendulum equation in frame rotating at µ 1000 800 600 Open system; incoherent pumping. Polariton condensate Jonathan Keeling Collective dynamics 400 __ 200 1/√N 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time Munich, April 2011 25 / 33 Chemical potential and Dicke model H = ωψ † ψ + X ω0 Siz + g (ψSi+ + H.c.) i Cavity Transition occurs at: 1 Ng 2 tanh β (ω0 − µ) ω−µ= ω0 − µ 2 Quantum Wells How to introduce µ __ 1600 __ T=2ln(√N)/√N 1400 1200 |ψ(t)|2 Analogy to dynamics: Pendulum equation in frame rotating at µ 1000 800 600 Open system; incoherent pumping. Polariton condensate Ph Jonathan Keeling 400 __ 200 1/√N 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time Ex Collective dynamics Munich, April 2011 25 / 33 Boundaries U = 0 κ 6= 0 2.0 S4 __ g′√N (MHz) 1.5 1.0 S3 SR ⇑ 0.5 SR+⇓ S2 ⇓ 0.0 0.0 ● 0.5 1.0 S1 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 26 / 33 Boundaries U = 0 κ 6= 0 g0 —, — = g s (ω + ω0 )2 + κ2 (ω − ω0 )2 + κ2 2.0 S4 __ g′√N (MHz) 1.5 1.0 S3 SR ⇑ 0.5 SR+⇓ S2 ⇓ 0.0 0.0 ● 0.5 1.0 S1 1.5 2.0 __ g√N (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 26 / 33 Boundaries U = 0 κ 6= 0 —, — g0 g s = κ = 0: )2 κ2 (ω + ω0 + (ω − ω0 )2 + κ2 —N(g + g 0 )2 = ωω0 2.0 2.0 S4 1.0 S3 SR ⇑ 0.5 SR+⇓ S2 ⇓ 0.0 0.0 __ __ g′√N (MHz) 1.5 g′√N (MHz) 1.5 ● 0.5 1.0 1.0 0.5 2.0 0.0 0.0 0.5 1.0 1.5 2.0 __ __ g√N (MHz) g√N (MHz) Jonathan Keeling SR+⇓ ⇓ S1 1.5 SR ⇑ Collective dynamics Munich, April 2011 26 / 33 Numerical confirmation of fixed points SR SR+⇑ SR 1.0 __ g√N (MHz) 1.5 SR+⇓ Limit Cycle 0.5 SR+⇑+⇓ 0.0 -80 ⇓ ⇑+⇓ -60 -40 -20 Jonathan Keeling 0 20 UN (MHz) 40 60 80 Collective dynamics Munich, April 2011 27 / 33 Numerical confirmation of fixed points 0.5 __ SR Sz 1.5 g√N=0.791 0 SR 500 400 __ g√N (MHz) -0.5 SR+⇑ 1.0 SR+⇓ |ψ|2 Limit Cycle 0.5 0.0 -80 ⇓ 100 ⇑+⇓ -60 300 200 SR+⇑+⇓ -40 -20 Jonathan Keeling 0 20 UN (MHz) 40 60 80 Collective dynamics 0 -80 -60 -40 -20 0 20 UN (MHz) 40 Munich, April 2011 60 80 27 / 33 Numerical confirmation of fixed points 0.5 __ SR Sz 1.5 g√N=0.791 0 SR 500 400 __ g√N (MHz) -0.5 SR+⇑ 1.0 SR+⇓ |ψ|2 Limit Cycle 0.5 ⇓ 100 ⇑+⇓ -60 -40 -20 0 20 UN (MHz) 40 60 0 -80 80 -60 -40 -20 0 20 UN (MHz) 40 60 80 300 |ψ|2 0.0 -80 300 200 SR+⇑+⇓ 200 100 0 -42.75 -42.70 -42.65 UN (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 27 / 33 Numerical confirmation of fixed points 0.5 __ SR Sz 1.5 g√N=0.791 0 SR 500 400 __ g√N (MHz) -0.5 SR+⇑ 1.0 SR+⇓ |ψ|2 Limit Cycle 0.5 0.0 -80 ⇓ 100 ⇑+⇓ -60 300 200 SR+⇑+⇓ -40 -20 0 20 UN (MHz) 40 60 0 -80 80 -60 -40 -20 0 20 UN (MHz) 40 60 80 300 |ψ|2 T = 360ms 200 100 0 -42.75 -42.70 -42.65 UN (MHz) Jonathan Keeling Collective dynamics Munich, April 2011 27 / 33 How good is semiclassics? From eigenstates H|Ψq i = Eq |Ψq i: 1600 N=2000 1400 |ψ(t)|2 1200 1000 800 600 400 200 0 0 1 2 3 4 5 Time Jonathan Keeling Collective dynamics Munich, April 2011 28 / 33 How good is semiclassics? If periodic, From eigenstates H|Ψq i = Eq |Ψq i: 1600 N=2000 1400 |ψ(t)|2 1200 1000 Overlap intensity ∆Eq = qΩ, 800 √ N Ω = πg √ ln( N) 50 0 -50 0 20 40 60 80 100 Mode frequency: Ep - Eq 600 400 200 0 0 1 2 3 4 5 Time Jonathan Keeling Collective dynamics Munich, April 2011 28 / 33 How good is semiclassics? If periodic, √ N Ω = πg √ ln( N) From eigenstates H|Ψq i = Eq |Ψq i: 1600 N=2000 1400 |ψ(t)|2 1200 1000 Overlap intensity ∆Eq = qΩ, 50 0 -50 800 0 20 40 60 80 100 Mode frequency: Ep - Eq 600 400 0.6 0 0 1 2 3 4 Time Anharmonicity: ∆Eq − q∆E1 5 (∆Eq - q ∆E1)/∆E1 200 0.5 q=2 q=3 q=4 0.4 0.3 0.2 0.1 0 102 103 104 105 106 107 N Jonathan Keeling Collective dynamics Munich, April 2011 28 / 33 Semiclassical approximation: WKB quantisation Problem is one dimensional; nphot + Sz ≡ N/2, find Ψ(nphot ): √ √ (E + ∆n)Ψn = gn N + 1 − nΨn−1 + g (n + 1) N − nΨn+1 [Keeling PRA 79 053825; see also Babelon et al. J. Stat. Mech p.07011] Jonathan Keeling Collective dynamics Munich, April 2011 29 / 33 Semiclassical approximation: WKB quantisation Problem is one dimensional; nphot + Sz ≡ N/2, find Ψ(nphot ): √ √ (E + ∆n)Ψn = gn N + 1 − nΨn−1 + g (n + 1) N − nΨn+1 0.3 WKB wavefunction: 0.04 0.4 0.02 0.2 0.2 0 0 〈n|ψ〉 -0.02 0.1 -0.2 0 20 40 -0.04 1960 1980 2000 0 -0.1 cos(E Φn + φ + nπ/2) Ψn ' q p (n + 1/2) N − n + 1/2 "s # N +1 1 arcosh Φn ' √ n + 1/2 g N +1 -0.2 0 500 1000 n 1500 2000 Find E , φ by matching assymptotics at n ' 0, n ' N. [Keeling PRA 79 053825; see also Babelon et al. J. Stat. Mech p.07011] Jonathan Keeling Collective dynamics Munich, April 2011 29 / 33 Semiclassical approximation: WKB quantisation Problem is one dimensional; nphot + Sz ≡ N/2, find Ψ(nphot ): √ √ (E + ∆n)Ψn = gn N + 1 − nΨn−1 + g (n + 1) N − nΨn+1 0.3 WKB wavefunction: 0.04 0.4 0.02 0.2 0.2 0 0 〈n|ψ〉 -0.02 0.1 -0.2 0 20 40 -0.04 1960 1980 2000 0 -0.1 cos(E Φn + φ + nπ/2) Ψn ' q p (n + 1/2) N − n + 1/2 "s # N +1 1 arcosh Φn ' √ n + 1/2 g N +1 -0.2 0 500 1000 n 1500 2000 Find E , φ by matching assymptotics at n ' 0, n ' N. Hard boundary at n = 0: breakdown of Bohr-Sommerfeld quantisation. [Keeling PRA 79 053825; see also Babelon et al. J. Stat. Mech p.07011] Jonathan Keeling Collective dynamics Munich, April 2011 29 / 33 Scaling with system size Simple approximation: match WKB soln to eqn for Ψ0 , Ψ1 : " √ # E ln( N) 2√ E √ N tan , 1=− π g g N Jonathan Keeling Collective dynamics Munich, April 2011 30 / 33 Scaling with system size Simple approximation: match WKB soln to eqn for Ψ0 , Ψ1 : " √ # E ln( N) 2√ E √ N tan , 1=− π g g N √ √ πg N 3 Cg N √ Eq = q √ +q ln( N) [ln( N)]4 Jonathan Keeling Collective dynamics Munich, April 2011 30 / 33 Scaling with system size Simple approximation: match WKB soln to eqn for Ψ0 , Ψ1 : " √ # E ln( N) 2√ E √ N tan , 1=− π g g N √ √ πg N 3 Cg N √ Eq = q √ +q ln( N) [ln( N)]4 3 4 10 N 10 5 10 10 Semiclassics controlled by 1/ ln(N). 6 [(∆Eq - q ∆E1)/∆E1]-1/3 5 4 q=2 q=3 q=4 3 2 0.8 1 1.2 __ 1.4 (2/π2) ln[2√N] Jonathan Keeling 1.6 Collective dynamics Munich, April 2011 30 / 33 Scaling with system size Simple approximation: match WKB soln to eqn for Ψ0 , Ψ1 : " √ # E ln( N) 2√ E √ N tan , 1=− π g g N √ √ πg N 3 Cg N √ Eq = q √ +q ln( N) [ln( N)]4 3 4 10 N 10 5 10 10 Semiclassics controlled by 1/ ln(N). N 6 103 4 105 106 5 [(∆Eq - q ∆E1)/∆E1]-1/3 [(∆Eq - q ∆E1)/∆E1]-1/3 5 104 q=2 q=3 q=4 3 2 0.8 1 1.2 __ 1.4 (2/π2) ln[2√N] Jonathan Keeling 4 Exact n0=0 n0=2 3 2 0.8 1.6 1 1.2 __ 1.4 1.6 (2/π2) ln[2√N] Collective dynamics Munich, April 2011 30 / 33 Overview 5 Polaritons and Dicke model 6 Numerical confirmation of FP 7 Dicke Oscillations 8 Extensions to atomic Dicke realisation Jonathan Keeling Collective dynamics Munich, April 2011 31 / 33 Many photon modes (a) Transition breaks Z2 ⊗ Zn — crystallisation (b) Pump No cubic mode-mode coupling — Brazovskii transition “Supersmectic” phase Jonathan Keeling Collective dynamics Munich, April 2011 32 / 33 Dynamics during/following sweep Jonathan Keeling Collective dynamics Munich, April 2011 33 / 33 Dynamics during/following sweep 2.5 g√N (MHz) 2.0 __ __ g√N (MHz) 2.0 1.5 1.5 1.0 0.5 0.0 1.0 16 18 20 22 ω (MHz) 24 0.5 0.0 -20 Jonathan Keeling -10 0 ω (MHz) 10 Collective dynamics 20 Munich, April 2011 33 / 33 Dynamics during/following sweep 2.5 1.5 0.5 Sz 1.5 1.0 0.0 1.0 0 -0.5 1200 0.5 1000 16 200 18 20 22 ω (MHz) 24 800 |ψ|2 __ 300 __ 0 g√N (MHz) Sz 2.0 -0.5 400 |ψ|2 g√N (MHz) 2.0 0.5 0.5 600 400 100 200 0.0 0 0 0.5 1 t (ms) Jonathan Keeling 1.5 2 -20 -10 0 ω (MHz) 10 Collective dynamics 20 0 0 0.5 1 t (ms) Munich, April 2011 1.5 2 33 / 33