...

Virtex-6 FPGA GTX Transceiver XAUI Protocol www.BDTIC.com/XILINX

by user

on
Category: Documents
18

views

Report

Comments

Transcript

Virtex-6 FPGA GTX Transceiver XAUI Protocol www.BDTIC.com/XILINX
Virtex-6 FPGA
GTX Transceiver
XAUI Protocol
Characterization Summary
Report
RPT124 (v1.0) November 3, 2010
www.BDTIC.com/XILINX
Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.
THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.
© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.
Revision History
The following table shows the revision history for this document.
Date
Version
11/03/10
1.0
Revision
Initial Xilinx release.
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
www.xilinx.com
RPT124 (v1.0) November 3, 2010
Table of Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Virtex-6 FPGA GTX Transceiver XAUI Protocol Characterization
Summary Report
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characterization Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
6
6
7
Transmitter Near-End Output Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Transmitter Output Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Transmitter Output Differential Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Transmitter Output Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Transmitter Differential and Common Mode Output Return Loss . . . . . . . . . . . . . . . 12
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Receiver Input Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Receiver Differential and Common Mode Input Return Loss . . . . . . . . . . . . . . . . . . . 17
Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
3
4
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Virtex-6 FPGA GTX Transceiver XAUI
Protocol Characterization Summary
Report
Introduction
This protocol characterization summary report compares the electrical performance of the
Virtex®-6 FPGA GTX transceiver against the 10 Gb Attachment Unit Interface (XAUI)
specifications. Unless otherwise noted, the data presented in this report is extracted from
the volume generic transceiver characterization across process, voltage, and temperature.
The transmitter and receiver electrical characteristics are measured using a combination of
lab bench setups and a high volume characterization (HVC) system. The methods used to
characterize the transceiver are based on the standard specifications and also follow the
best-practice methods for some parameters.
These test results are included in this report:
•
Transmitter Near-End Output Eye, page 7
•
Transmitter Output Jitter, page 8
•
Transmitter Output Differential Amplitude, page 10
•
Transmitter Output Rise and Fall Times, page 11
•
Transmitter Differential and Common Mode Output Return Loss, page 12
•
Receiver Input Jitter Tolerance, page 14
•
Receiver Differential and Common Mode Input Return Loss, page 17
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
5
Test Conditions
Test Conditions
Table 1 and Table 2 indicate the supply voltage and temperature conditions, respectively.
Table 1:
Supply Voltage Test Conditions
Condition
MGTAVTT (V)
MGTAVCC (V)
VMIN
Note(1)
1.14
VMAX
Note(1)
1.26
Notes:
1. Depends on speed grade and PLL frequency. Refer to DS152, Virtex-6 FPGA Data Sheet: DC and
Switching Characteristics, for the MGTAVCC values.
Table 2:
Temperature Test Conditions
Condition
Temperature (°C)
T–40
–40
T100
100
Summary of Results
Table 3 indicates the tested Virtex-6 FPGA GTX transceiver performance results against the
IEEE Standard for Information technology—Telecommunications and information
exchange between systems—Local and metropolitan area networks—Specific
requirements (IEEE Std 802.3-2008), clause 47 specifications. The data reported in this table
represents the values obtained under the worst-case voltage, temperature, and
performance corner conditions.
Table 3:
Characterization Summary of Results
Parameter
Specification
Worst-Case
Test Result
Units
Compatible
Transmitter Deterministic Jitter
DJ
0.17
0.15
UI
Yes
Transmitter Total Jitter
TJ
0.35
0.26
UI
Yes
Min
800
Programmable(2)
mV
Yes
(2)
mV
Yes
Test
Transmitter Output
Differential Amplitude(1)
Transmitter Output
Rise Time(1)
Transmitter Output
Fall Time(1)
Max
1600
Programmable
Min
60
115.1
Max
130
131.3
Min
60
122.5
Max
130
137.3
ps
ps
Yes
Note(3)
Yes
Note(3)
Transmitter Differential Output
Return Loss
Frequency Profile
See Figure 4, page 13
dB
Yes
Transmitter Common Mode
Output Return Loss
Frequency Profile
See Figure 5, page 14
dB
Yes
Receiver Deterministic Jitter
DJ
0.37
0.464
UI
Yes
Receiver Sinusoidal Jitter
SJ
0.1
0.219
UI
Yes
6
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
Table 3:
Characterization Summary of Results (Cont’d)
Test
Parameter
Specification
Worst-Case
Test Result
Units
Compatible
TJ
0.65
0.864
UI
Yes
Receiver Total Input Jitter
Tolerance
Receiver Differential Input Return
Loss
Frequency Profile
See Figure 8, page 18
dB
Yes
Receiver Common Mode Input
Loss
Frequency Profile
See Figure 9, page 18
dB
Yes
Notes:
1. These tests are performed at 2.5 Gb/s with a clock pattern of five 1s and five 0s (...11000001111100…) generated internally in the
FPGA logic.
2. The programmable transmitter output amplitude settings can be found in the “Configurable TX Driver” section of UG366, Virtex-6
FPGA GTX Transceivers User Guide.
3. Measurement is taken with approximately 4.5 inches of channel between the TXP/TXN FPGA device pins and the SMA connectors
on the ML623 Virtex-6 FPGA GTX Transceiver Characterization Board. De-embedding the channel effect shows approximately 20
to 30 ps improvement in the rise time and fall time measurements.
Electrical Characterization Details
This section describes the test methodology and test results for each test summarized in
Table 3. The GTX transceiver is configured using the Virtex-6 FPGA GTX Transceiver
Wizard, v1.6. GTX transceiver attribute settings that differ from the Wizard default settings
are identified in the “Test Setup and Conditions” table for each test. Table 4 indicates the
PLL settings used in the characterization.
Table 4:
3.125 Gb/s Line Rate PLL Settings
Data Rate PLL Frequency
(Gb/s)
(GHz)
3.125
REFCLK
Frequency
(MHz)
1.5625
TXPLL_DIVSEL45_FB/
TXPLL_DIVSEL_REF/ RXPLL_DIVSEL45_FB* PLL_TXDIVSEL_OUT/
RXPLL_DIVSEL_REF TXPLL_DIVSEL_FB/ PLL_RXDIVSEL_OUT
RXPLL_DIVSEL_FB
156.25
1
5 x 2 = 10
1
Transmitter Near-End Output Eye
Test Methodology
The device is configured to transmit a PRBS7 pattern on each of the TX data pins, and the
resulting eye is captured using an Agilent 86100C Infiniium DCA-J wideband oscilloscope
for 1000 samples at nominal voltage and room temperature conditions. The test setup and
conditions are defined in Table 5.
Table 5:
Transmitter Near-End Output Eye Test Setup and Conditions
Parameter
Value
Measurement Instrument
Agilent 86100C DCA-J wideband oscilloscope with an Agilent
86108A precision waveform analyzer plug-in module
TX Coupling
AC coupled using DC blocks
Voltage
Nominal
Temperature
Room temperature
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
7
Electrical Characterization Details
Table 5:
Transmitter Near-End Output Eye Test Setup and Conditions (Cont’d)
Parameter
Value
Pattern
PRBS7
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)(1)
TX Amplitude
Maximum amplitude, TXDIFFCTRL = 4'b1111
REFCLK
156.25 MHz sourced from an Agilent 81133A pulse generator
Notes:
1. Refer to UG724, ML623 Virtex-6 FPGA GTX Transceiver Characterization Board User Guide, for additional
information on the ML623 board.
Test Results
Figure 1 shows the transmitter near-end output eye at 3.125 Gb/s. Figure 1 is provided as
a representative diagram, and does not quantify device performance.
X-Ref Target - Figure 1
RPT124_01_061510
Figure 1:
Transmitter Near-End Output Eye (3.125 Gb/s with a 156.25 MHz REFCLK)
Transmitter Output Jitter
Test Methodology
TX jitter data is collected using the HVC system. Data for 12 serial transceiver channels is
collected simultaneously. The primary instrument used to collect the data is an Agilent
Parallel BERT (ParBERT) analyzer. This instrument determines the BER at various sample
points across the TX eye. The data is analyzed in the ParBERT analyzer, and the resulting
TJ, DJ, and RJ are reported back to the controlling test program. The test setup and
conditions are defined in Table 6.
8
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
Table 6:
Transmitter Output Jitter Test Setup and Conditions
Parameter
Value
Measurement Instrument
HVC ParBERT Analyzer
TX Coupling
AC coupled using DC blocks
Voltage
VMIN, VMAX
Temperature
T–40, T100
Pattern
PRBS7
BER
10–12
Load Board
Custom HVC Test Fixture (FF1156)
TX Amplitude/Post
Emphasis
GTX transceiver attributes:
REFCLK
160 MHz sourced from an Agilent ParBERT E4862B module
•
•
•
•
TXDIFFCTRL = 4'b1111
TXBUFDIFFCTRL = 3'b100
TXPREEMPHASIS = 4'b0000
TXPOSTEMPHASIS = 5'b00000
Test Results
Figure 2 shows the output jitter test results with a PRBS7 pattern (BER of 10–12) at
3.2 Gb/s. A PRBS7 data pattern is used for the output jitter measurements instead of the
required CJPAT test patterns. The transmitter behavior is similar for PRBS7 and CJPAT. The
measured output jitter was not filtered, and represents a pessimistic broadband jitter.
X-Ref Target - Figure 2
300
Number of Data Points
250
TJ
200
150
100
50
0
0
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45 0.48 0.51 0.54 0.57
RPT124_02_072710
Figure 2:
Transmitter Output Jitter Test Results Targeted for 3.125 Gb/s
Table 7 indicates the maximum transmitter output jitter test result at a 3.2 Gb/s line rate
with a 160 MHz reference clock, a PRBS7 pattern, and a BER of 10–12.
Table 7:
Transmitter Output Jitter Test Results Targeted for 3.125 Gb/s
Parameter
Maximum Transmitter
Output Jitter
Pattern
BER
TJ (UI)
DJ (UI)
RJ (UI)
PRBS7
10–12
0.26
0.15
0.23
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
9
Electrical Characterization Details
Transmitter Output Differential Amplitude
Test Methodology
The IEEE Std 802.3-2008 (clause 47) specification defines the transmitter differential
amplitude as:
Output amplitude = 800 to 1600 mV
The transmitter output differential amplitudes are measured using the transmitter
characterization bench setup as specified in RPT120, Virtex-6 FPGA GTX Transceiver
Characterization Report. Data is measured at a TX data rate of 2.5 Gb/s with a clock pattern
of five 1s and five 0s. This is a typical representation of GTX transceiver behavior at
3.125 Gb/s. The test setup and conditions are defined in Table 8.
Transmitter Output Differential Amplitude Test Setup and Conditions
Table 8:
Parameter
Value
Measurement Instrument
Agilent 86100C DCA-J wideband oscilloscope
TX Coupling
AC coupled using DC blocks
Voltage
VMIN, VMAX
Temperature
T–40, T100
Pattern
A clock pattern of five 1s and five 0s (...11000001111100…)
generated internally in the FPGA logic
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)
TX Amplitude/Post
Emphasis
GTX transceiver attributes:
REFCLK
125 MHz sourced from Agilent 8133A pulse generator
•
•
•
•
TXDIFFCTRL = 4'b1111
TXBUFDIFFCTRL = 3'b100
TXPREEMPHASIS = 4'b0000
TXPOSTEMPHASIS = 5'b00000
Test Results
The transmitter output differential amplitude test results are indicated in Table 9.
Table 9:
Transmitter Output Differential Amplitude Test Results
Parameter
Output differential amplitude
(TXDIFFCTRL = 4'b1111)
10
Min
Max
Units
1003
1250
mV
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
Transmitter Output Rise and Fall Times
Test Methodology
The IEEE Std 802.3-2008 (clause 47) specification defines the transmitter rise and fall times
as:
Output rise and fall time = 60 to 130 ps
The transmitter output rise and fall times are measured using the transmitter
characterization bench setup as specified in RPT120, Virtex-6 FPGA GTX Transceiver
Characterization Report. Because of board limitations, the measurement is taken with
approximately 4.5 inches of channel length between the TXP/TXN FPGA pins and the
SMA connectors on the ML623 board.
De-embedding the channel effect shows approximately 20 to 30 ps improvement in the rise
time and fall time measurements. Data is measured at a TX data rate of 2.5 Gb/s with a
clock pattern of five 1s and five 0s. This is a typical representation of GTX transceiver
behavior at 3.125 Gb/s. The test setup and conditions are defined in Table 10.
Table 10:
Transmitter Output Rise and Fall Times Test Setup and Conditions
Parameter
Value
Measurement Instrument
Agilent 86100C DCA-J wideband oscilloscope
TX Coupling
AC coupled using DC blocks
Voltage
VMIN, VMAX
Temperature
T–40, T100
Pattern
A clock pattern of five 1s and five 0s (...11000001111100…)
generated internally in the FPGA logic
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)
TX Amplitude/Post
Emphasis
GTX transceiver attributes:
REFCLK
125 MHz sourced from Agilent 8133A pulse generator
•
•
•
•
TXDIFFCTRL = 4'b1111
TXBUFDIFFCTRL = 3'b100
TXPREEMPHASIS = 4'b0000
TXPOSTEMPHASIS = 5'b00000
Test Results
The transmitter output rise and fall time test results are indicated in Table 11 and Table 12,
respectively.
Table 11:
Transmitter Output Rise Time Test Results
Parameter
Output Rise Time
(TXDIFFCTRL = 4'b1111)
Table 12:
Min
Max
Units
115.1
131.3
ps
Min
Max
Units
122.5
137.3
ps
Transmitter Output Fall Time Test Results
Parameter
Output Fall Time
(TXDIFFCTRL = 4'b1111)
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
11
Electrical Characterization Details
Transmitter Differential and Common Mode Output Return Loss
Test Methodology
The setup for the return loss measurement is shown in Figure 3. For frequencies from
312.5 MHz to 3.125 GHz, the differential return loss of the driver must exceed the limits
shown in Figure 4. Differential return loss includes contributions from on-chip circuitry,
chip packaging, and any off-chip components related to the driver. This output impedance
requirement applies to all valid output levels. The reference impedance for differential
return loss measurements is 100Ω.
The Vector Network Analyzer (VNA) interfaces to the host PC through the general
purpose interface bus (GPIB). After the measurement parameters are set, calibration
begins. Four cables are included in the calibration process. VNA measurements are
independent of voltage and are accurate up to 11 GHz. A digital voltmeter (DVM)
confirms that the differential resistance is 100Ω before the measurement. The test setup and
conditions are defined in Table 13.
X-Ref Target - Figure 3
E1
Vector
Network
Analyzer
PC
ChipScope
Tool
GPIB
GPIB
port 1
port 3
port 2
port 4
USB Serial
RX - Pair
2 Ft. Green Cable
TX - Pair
34401A
E2
OFF 5V ON
5VDC switch
50MHz
Plug
TX1 118 RX1
+
RX1
116
TX1
RX0
118
TX0
DVM
I
com
V+
GPIB
20 GHz
PC4
ACE
126
RX0
116 TX0
X0Y0
122
+ 1V
VCCINT
122
RX0
TX0
122
+ 2.5V
VCCO
+ 2.5V
VCCAUX
TX1 RX1
X0Y1
120
RX0
RX1
114
TX1
TX1 RX1
114 TX0
RX1
112
TX1
118
RX0
112
TX0
X0Y2
120
RX0
TX0
114
X0Y3
126
RX0
TX0
GND
126
RX1
124
Socket
112
TX1 RX1
FF1156
TX1
X0Y4
PROG DONE
INIT
+ 1V
AVCCPLL
116
124
X0Y5
TX0 RX0
120
X0Y6
DIFF
DIFF
+ 1V
AVCC
124
ML623
X0Y7
+ 1.2V
AVTTTX
+ 1.2V
AVTTRX
GND
RPT124_03_061710
Figure 3:
Return Loss Test Setup Diagram
Table 13: Transmitter Differential and Common Mode Output Return Loss Test
Setup and Conditions
Parameter
12
Value
Measurement Instrument
HP8720ES Vector Network Analyzer
TX Coupling
AC coupled using DC blocks
Voltage
Typical voltage
Temperature
Room temperature
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
Table 13: Transmitter Differential and Common Mode Output Return Loss Test
Setup and Conditions (Cont’d)
Parameter
Value
Frequency Sweep
50 MHz to 11 GHz (10 MHz steps)
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)
REFCLK
Not available
Source Power
0 dBm
Averaging Calibration
1
Intermediate Frequency
100 Hz
Test Results
Figure 4 shows the transmitter differential output return loss measurement.
X-Ref Target - Figure 4
0.0
-5.0
Power (dB)
-10.0
-15.0
-20.0
-25.0
TX_SDD11
XAUI
-30.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Frequency (GHz)
RPT124_04_072110
Figure 4:
Transmitter Differential Output Return Loss Measurement
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
13
Electrical Characterization Details
Figure 5 shows the transmitter common mode output return loss measurement.
X-Ref Target - Figure 5
0.0
-5.0
Power (dB)
-10.0
-15.0
-20.0
-25.0
TX_SCC11
-30.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Frequency (GHz)
RPT124_05_072110
Figure 5:
Transmitter Common Mode Output Return Loss Measurement
(Informative)
Receiver Input Jitter Tolerance
Test Methodology
The setup for the receiver jitter tolerance measurement is shown in Figure 6. Medium and
worst performance transceivers are used for the measurements. The Agilent N4903B
J-BERT generates a CJPAT pattern with random jitter (RJ) and deterministic jitter (DJ)
designated by the IEEE Std 802.3-2008 (clause 47) specification. DJ in the form of
intersymbol interference (ISI) and bounded uncorrelated jitter (BUJ) are added with the
Agilent built-in features. ISI is added by using the Agilent J-BERT interference channel
feature (option J20) by selecting the 24 inches of board trace (Nelco 4000-6). Sinusoidal
jitter (SJ) is swept from 1 KHz to 80 MHz. The GTX transceiver under test recovers the data
and transmits the pattern back to the Error Detector input of the J-BERT, where bit errors
are measured. The test is performed with a +200 and –200 ppm offset between the J-BERT
data generator and the reference clock provided to the GTX transceiver under test. The test
setup and conditions are defined in Table 14.
14
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
X-Ref Target - Figure 6
Agilent J-BERT N4903B – 12.5 Gb/s
Keyboard and
Miscellaneous Buttons
Auto
Align
SMA Matched Pair Cables for
GTX Receiver
Pattern Generator
AUX ERROR Trigger
IN
ADD OUT OUT
Pattern
Setup
Display
Legend
PG ED
Setup
Clk
CLK
IN
OUT OUT
Sub Clk
SMA Matched Pair Cables for
GTX Transmitter
OUT OUT
SMA Matched Pair Cables for
GTX Clocks
Data
DELAY
OUT OUT CTRL IN
Cable for 10 MHz Reference Clock
Jitter
J20 - Interference Channel
P1
Analysis/
Results
P1
P2
Cable for Clock between
J-BERT Pattern Generator and
Error Detector
P2
DC Blocks
Error Detector
ERR TRIG
OUT OUT
Miscellaneous Buttons for
Pattern Generator and
Error Detector
Data
AUX
OUT
50Ω Termination
CLK
IN
IN
IN
GATE
IN
10 MHz Ref Out
ML623 Virtex-6 FPGA LX240T Rev C Board
Channel 1
81133A 3.35 GHz Pulse/Pattern Generator
Display
Keyboard and
Miscellaneous
Buttons
Start
Input
Clock
Input
TXP
Trigger
Out
Channel 1_0
TXN
CLKN
(TX PLL)
RXP RXN
CLKP
Channel 1
Output
Output
Onboard
Power
Module
(PMP4186
Rev B)
Virtex-6
LX240T
FPGA
FF1156
Channel 1_1
CLKN
CLKP
(RX PLL)
RPT124_06_061710
Figure 6:
Receiver Jitter Tolerance Setup Diagram
Table 14: Transmitter Differential and Common Mode Output Return Loss Test
Setup and Conditions
Parameter
Value
Measurement Instrument
Agilent N4903B J-BERT
RX Coupling
AC coupled using DC blocks
Voltage
VMIN, VMAX
Temperature
T–40, T100
Pattern
CJPAT
Injected Jitter
Sum of:
•
•
•
•
RJ = 0.1806 UIP-P
DJ = 0.2740 UIP-P (24 inches of interference channel)
BUJ = 0.1900 UIP-P
SJ = Tested to failure; Frequency sweep = {1 KHz — 80 MHz}
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
15
Electrical Characterization Details
Table 14: Transmitter Differential and Common Mode Output Return Loss Test
Setup and Conditions (Cont’d)
Parameter
Value
BER
10–12 (measured
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)
Attributes
GTX transceiver attributes:
at
10–9,
extrapolated to 10–12)
• PMA_RX_CFG = 25'h05ce049
• RXEQMIX = 3'b110
• DFE Disabled
• DFETAP1[4:0] = 5'b00000
• DFETAP2[4:0] = 5'b00000
• DFETAP3[4:0] = 5'b00000
• DFETAP4[4:0] = 5'b00000
REFCLK
• 156.25 MHz sourced from the J-BERT
• 156.25 MHz ± 200 ppm offset from the Agilent 81133A pulse
generator
Test Results
Figure 7 shows the receiver jitter tolerance SJ sweep for the receiver jitter tolerance test. SJ
is applied in addition to RJ, BUJ, and DJ, as defined in Table 14. The minimum total
receiver jitter tolerance performance is indicated in Table 14.
X-Ref Target - Figure 7
1000
Amplitude (UI)
100
10
1
0.1
0.01
1000
10000
100000
1000000
10000000
100000000
Frequency (Hz)
RPT124_07_061510
Figure 7:
Table 15:
16
Receiver Jitter Tolerance SJ Sweep Test Results (CJPAT, BER = 10–12)
Receiver Jitter Tolerance Test Results
Jitter Tolerance Parameter
BER
Minimum Tolerance
Units
SJ at 10.3 MHz
10–12
0.219
UI
TJ
10–12
0.864
UI
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Electrical Characterization Details
Receiver Differential and Common Mode Input Return Loss
Test Methodology
The receiver input should have a differential return loss better than 10 dB, and a common
mode return loss better than 6 dB from 100 MHz to 2.5 GHz. This includes contributions
from on-chip circuitry, the chip package, and any off-chip components related to the
receiver. AC coupling components are included in this requirement. The reference
impedance for return loss measurements is 100Ω for differential return loss and 25Ω for
common mode return loss. The test setup and conditions are defined in Table 16.
Table 16: Receiver Differential and Common Mode Input Return Loss Test Setup
and Conditions
Parameter
Value
Measurement Instrument
HP8720ES Vector Network Analyzer
RX Configuration/
Amplitude
RX is configured for 100Ω differential termination (center tap
to GND), and AC coupled using both internal and external
capacitors:
• RCV_TERM_VTTRX = FALSE
• RCV_TERM_GND = TRUE
• AC_CAP_DIS = FALSE
Voltage
Typical voltage
Temperature
Room temperature
Frequency Sweep
50 MHz to 11 GHz (10 MHz steps)
Load Board
ML623 Virtex-6 FPGA GTX Transceiver Characterization
Board, Revision C (FF1156)
REFCLK
Not available
Source Power
0 dBm
Averaging Calibration
1
Intermediate Frequency
100 Hz
www.BDTIC.com/XILINX
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
www.xilinx.com
17
Electrical Characterization Details
Test Results
Figure 8 shows the receiver differential input return loss measurement.
X-Ref Target - Figure 8
0.0
-5.0
Power (dB)
-10.0
-15.0
-20.0
-25.0
RX_SDD11
XAUI
-30.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Frequency (GHz)
RPT124_08_072110
Figure 8:
Receiver Differential Input Return Loss Measurements
Figure 9 shows the receiver common mode input return loss measurement.
X-Ref Target - Figure 9
0.0
-5.0
Power (dB)
-10.0
-15.0
-20.0
-25.0
RX_SCC11
XAUI
-30.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
Frequency (GHz)
RPT124_09_072110
Figure 9:
18
Receiver Common Mode Input Return Loss Measurements
www.BDTIC.com/XILINX
www.xilinx.com
XAUI Protocol Characterization Summary Report
RPT124 (v1.0) November 3, 2010
Fly UP