Comments
Description
Transcript
Giunti, innesti e freni
ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 1 GIUNTI, INNESTI, FRIZIONI, FRENI GENERALITÀ Il collegamento e quindi la trasmissione del moto tra due alberi può essere realizzato in modo permanente con i GIUNTI o in modo disattivabile rapidamente con INNESTI e FRIZIONI. Con i FRENI, invece, mediante il collegamento tra l’organo rotante e un organo fisso, si riduce o si annulla la velocità. GIUNTI Secondo le caratteristiche costruttive si hanno tre tipi di giunti: GIUNTI RIGIDI, GIUNTI FLESSIBILI o ELASTICI e GIUNTI ARTICOLATI. GIUNTI RIGIDI Adatti al collegamento di alberi perfettamente allineati e che ruotino in modo regolare con urti e vibrazioni limitati. Tra i tipi più comuni il GIUNTO A GUSCI (Fig. 1) costituito da due semigiunti in ghisa che vengono stretti contro le estremità dei due alberi mediante bulloni. L’attrito provocato con il serraggio garantisce la trasmissione della coppia. Per alberi di diametro superiore a 60 mm si fa Fig. 1 – Giunto a gusci ricorso anche all’impiego di linguette. Per la scelta si ricorre ai cataloghi delle case costruttrici in cui, come nella seguente Tab. 1, sono riportate dimensioni e caratteristiche in Tab. 1 – Giunto a gusci (G. Tagliabue) funzione del diametro dell’albero. Si può verificare la resistenza dei bulloni in base allo sforzo normale devono sopportare seguito al che in serraggio necessario a garantire la ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 2 forza d’attrito per la trasmissione della coppia. Il GIUNTO A DISCHI (Fig. 2) costituito da due dischi (semigiunti) dotati di mozzo ed uniti da una corona di bulloni. Il tipo a), in fig. 2, affida il centraggio ad un risalto su uno dei due dischi, che, pertanto, sono diversi. Il tipo b) è costituito, invece, da due dischi perfettamente Fig. 2 – Giunto a dischi vengono identici centrati che tramite l’interposizione di un anello. La trasmissione della coppia è garantita dall’attrito che si manifesta tra le corone di contatto dei due dischi a causa del serraggio dei bulloni. Sono adatti alla trasmissione di momenti elevati anche in presenza di vibrazioni. Per la scelta si ricorre ai cataloghi delle case costruttrici in cui, come nella seguente Tab. 2, sono riportate dimensioni e caratteristiche in funzione del diametro dell’albero. Si possono poi verificare gli n bulloni Tab. 2 – Giunto a dischi (G. Tagliabue) impiegati in due modi possibili: 1) Se sono bulloni calibrati la verifica è a taglio e, in tal caso, la sezione resistente del bullone deve essere Sr = 2 ⋅ Mt Dv ⋅ n ⋅ τ am dove M t è il momento torcente da trasmettere, Dv ( Dv ≈ 2,2 ⋅ d + 50 ) è il diametro della circonferenza su cui sono montati i bulloni e τ am la tensione ammissibile in base alla classe di resistenza dei bulloni usati; 2) nel caso i bulloni non siano calibrati la verifica va eseguita a trazione e, in tal caso, la sezione resistente del bullone deve essere Sr = 2 ⋅ Mt f ⋅ n ⋅ Dm ⋅ σ am ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 3 dove M t è il momento torcente da trasmettere, Dm è il diametro della circonferenza media dell’area d’attrito, f è il coefficiente d’attrito tra i dischi e σ am la tensione ammissibile in base alla classe di resistenza dei bulloni usati; GIUNTI FLESSIBILI o ELASTICI Adatti al collegamento di alberi anche non perfettamente allineati, con lievi disassamenti, inclinazioni, giochi e in presenza di urti e vibrazioni. Ne esistono di vari tipi e realizzano la flessibilità mediante l’uso di mezzi elastici interposti quali molle, lamelle e tasselli o elementi in gomma. Tra i tipi più comuni il GIUNTO A PIOLI (Fig. 3) costituito da due dischi da ciascuno dei quali sporge una corona di pioli filettati ad una estremità mentre l’altra è inserita in una boccola in gomma che si impegna in un apposito foro. Fig. 3 – Giunto a pioli Nella Tab. 3 abbiamo le dimensioni di massima per questo tipo di giunti. Tab. 3 – Giunto a pioli (G. Tagliabue) Il GIUNTO A TASSELLI DI GOMMA (Fig. 4) costituito da due dischi con mozzo, in uno dei quali è fissata una serie di tasselli in gomma. Dal disco coniugato sporgono mensolette che impegnano i tasselli a flessione. Presenta elevata deformabilità angolare e viene impiegato nelle trasmissioni per autovetture. Nella Tab. 4 abbiamo le dimensioni di Fig. 4 – Giunto a tasselli di gomma massima per questo tipo di giunti. ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 4 Tab. 4 – Giunto a tasselli di gomma (UNIO) Il GIUNTO “PERIFLEX” A COLLARE ELASTICO (Fig. 5) presenta un collare in gomma con anima tessile, appositamente sagomato, i cui bordi sono fissati ai due mozzi d’accoppiamento mediante dischi serrati da viti. Per la scelta vedasi la Tab. 5. Tab. 5 – Giunto elastico a collare PERIFLEX (STROMAG) Fig. 5 – Giunto Periflex GIUNTI ARTICOLATI Adatti al collegamento di alberi anche che presentano notevole disassamento e angoli di incidenza superiori a 2°. Tra questi giunti il più comune è il GIUNTO DI CARDANO (Fig. 6) che serve a trasmettere il moto tra due alberi i cui assi possono formare un angolo β abbastanza grande (normalmente 10° ÷ 15°). Il tipo più comune è costituito da una crociera le cui estremità, ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 5 foggiate a perno, si impegnano nei cuscinetti portati dalle forcelle fissate alle estremità dei due alberi da accoppiare. Con questo tipo di giunti il problema è l’irregolarità del moto dell’albero condotto che è tanto più grande quanto maggiore è l’angolo β . Se ω1 è la velocità angolare uniforme dell’albero motore e ω2 quella dell’albero condotto che oscillerà tra ω2 min e ω2 max si può calcolare l’irregolarità percentuale δ % con δ % = 100 ⋅ ω2 max − ω2 min ω1 e dipenderà da β secondo la seguente tabella Fig. 6 – Giunto Cardanico β δ% 5° 10° 20° 30° 40° 0,8 3,1 12,5 20 54 Per avere uguali velocità angolari dei due alberi occorre collegarli, mediante albero intermedio, per mezzo di una coppia di giunti cardanici (Fig. 7) formanti uguali angoli. Nella Tab. 6 un esempio di caratteristiche dimensionali per questo tipo di giunti. Tab. 6 – Giunto Cardanico (ELBE E SOHN) Fig. 7 – Doppio Giunto Cardanico con braccio telescopico ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 6 INNESTI E FRIZIONI Anche gli innesti servono a trasmettere il moto tra due alberi ma la loro caratteristica e quella di consentire l’impegno e il disimpegno del collegamento a piacimento con azionamenti comandati dall’esterno o automatici. Esistono vari tipi di innesti: INNESTO A DENTI FRONTALI (Fig. 8), l’INNESTO CENTRIFUGO A SFERE I.C.S. (Fig. 9). Vi sono poi gli innesti a frizione che affidano Fig. 8 – Innesto a denti frontali la trasmissione del moto all’attrito sviluppato Fig. 9 – Innesto centrifugo a sfere I.C.S. Fig. 10 – Innesto a lamelle tra le facce di un certo numero di lamelle, come nel caso dell’INNESTO A LAMELLE (Fig. 10), o di un certo numero di dischi in ferodo come nel caso delle FRIZIONI A DISCO di tipo automobilistico (Fig. 11). In questo caso il momento trasmissibile è dato da: M t = n ⋅ f ⋅η ⋅ P ⋅ De + Di 4 in cui: n = numero delle coppie di superfici di frizione (2 per frizioni monodisco); f = coefficiente d’attrito, variabile con la temperatura Fig. 11 – Frizione a disco di tipo automobilistico e la pressione specifica ( f =0,2÷0,5 per ps = 0,1÷0,2 N mm 2 ); η = rendimento complessivo degli accoppiamenti dei dischi (η = 0,8 per monodisco); P = carico assiale esercitato dalle molle sui dischi; ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 7 De , Di = Diametro esterno ed interno delle superfici d’attrito. Nel caso di INNESTI A FRIZIONE CONICA (Fig. 12), si ha che la forza normale alle superfici Pn = F f di contatto è mentre la forza assiale sarà P = Pn ⋅ sen α . Avremo perciò il seguente momento trasmissibile: Mt = f ⋅ P ⋅ Rm sen α Si deve poi verificare che la pressione specifica risulti: Fig. 12 – Frizione conica ps = Pn ≤ pam 2 ⋅ π ⋅ Rm ⋅ b Nella Tab. 7 si trova il valore della pressione ammissibile pam che, inserito nella precedente formula permette di calcolare il valore della larghezza b della generatrice di contatto. Tab. 7 – Coefficiente di attrito e pressione ammissibile per diversi materiali in contatto ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 8 FRENI Esistono essenzialmente tre tipi di freni: A TAMBURO o A CEPPI, A DISCO e A NASTRO. I fattori più importanti da considerare per un corretto dimensionamento dei freni sono la coppia frenante massima e la quantità di calore da smaltire per evitare eccessivi surriscaldamenti. Pertanto, per ogni coppia di materiali a contatto, nel freno, esiste un limite di pressione di contatto e una temperatura massima da non superare. Si rende perciò necessaria la seguente verifica: p⋅v ≤ k Ad ⋅ f Af Dove: p = valore medio della pressione di contatto (normalmente 0,1÷0,6 N mm 2 ); v = valore medio della velocità durante l’azione frenante; Ad = superficie disperdente; A f = superficie frenante; f = coefficiente d’attrito (normalmente 0,15÷0,3); k = coefficiente di dissipazione del freno (per ferodo su acciaio k ≈ 85000 W m 2 ); FRENO A CEPPI I ceppi, che nel caso dei freni di tipo automobilistico si chiamano ganasce, sono gli organi, provvisti di guarnizioni d’attrito, che vengono premuti contro la superficie periferica del tamburo. I ceppi possono essere interni o esterni al tamburo, inoltre, se il senso di rotazione del tamburo va verso la cerniera del ceppo, il ceppo si dice avvolgente altrimenti si dice svolgente. A parità di spinta si hanno Fig. 13 – Freno a ceppi automobilistico comportamente frenanti diversi, se il ceppo è esterno è più efficace se svolgente mentre, se il ceppo è interno è più efficace se avvolgente. Per equilibrare l’efficacia della frenatura ed avere ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 9 lo stesso consumo dei ferodi, in alcuni casi, si fa in modo che i due ceppi siano entrambi svolgenti o avvolgenti montadone le cerniere in posizione diametralmente opposta. Nella Fig. 14 abbiamo la rappresentazione di due freni a ceppi esterni in cui, nel caso a), l’accostamento è rigido mentre, nel caso b), il ceppo, essendo incernierato alla leva ed Fig. 14 – Freni a ceppi esterni: a) ad accostamento rigido, b) ad accostamento libero avendo quindi la possibilità di adattarsi liberamente alla superficie del tamburo, l’accostamento si dice libero. Con riferimento alla Fig. 14 a), ipotizzando che la risultante delle forze scambiate passi per il punto medio della zona di contatto, si ha, tra componente tangenziale e radiale, la relazione: Ft = f ⋅ Fr mentre dall’equilibrio intorno ad O si ottiene: F ⋅ a − Fr ⋅ b − f ⋅ Fr ⋅ c = 0 ⇒ Fr = F ⋅a b + f ⋅c quindi Ft = f ⋅F ⋅a b + f ⋅c Pertanto il momento frenante sarà: M f = Ft ⋅ D f ⋅F ⋅a⋅D = 2 2 ⋅ (b + f ⋅ c) E con ciò si può dimensionare il freno. Nel caso dell’accostamento libero, la risultante delle forze scambiate la si considera passante per la cerniera del ceppo e, per il seguito del calcolo, si procede in modo analogo. ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 10 FRENO A DISCO Nei freni a disco un pattino con guarnizione d’attrito, che nei freni di tipo automobilistico denominato viene pastiglia, comunemente viene premuto contro un disco solidale al sistema rotante che si vuole frenare. Rispetto al freno a ceppi, questo ha lo svantaggio di richiedere pressioni maggiori ma ha indubbi vantaggi, sia per la maggiore semplicità costruttiva, sia per l’azione Fig. 15 – Freno a disco automobilistico frenante più uniforme e, soprattutto, per la maggiore facilità di smaltire il calore prodotto durante la frenatura che li rende insostituibili nell’equipaggiamento di mezzi molto veloci. Con le notazioni della Fig. 16, detti Re ed Ri i raggi esterno ed interno del pattino ed ipotizzando che la forza d’attrito Ft = f ⋅ F agisca sul raggio Fig. 16 – Schema di freno a disco medio Rm = Re + Ri si ha il momento 2 frenante M f = f ⋅ F ⋅ Rm Con la quale si può dimensionare il pattino tenendo conto delle limitazioni per la pressione e la temperatura. ITIS “G. Marconi” – Bari Corso di Meccanica Applic. e Macchine a Fluido prof. Ing. Nazzareno Corigliano Giunti-Innesti-Fizioni-Freni 5a serale PAG. 11 FRENO A NASTRO In questo tipo di freni si tende un nastro, guarnito in ferodo, lungo un certo arco di contatto del tamburo per mezzo di una leva. Possono adottarsi entrambi le soluzioni a) e b) della Fig. 17. In entrambi i casi, T = e fα t e, se D è il diametro del tamburo, il momento frenante sarà: M f = (T − t ) ⋅ ma, nel caso a) t = F ⋅ D D = t ⋅ (e fα − 1) ⋅ 2 2 l e quindi a l D M f = F ⋅ ⋅ ⋅ (e fα − 1) a 2 se si inverte il moto T si scambia con t quindi diventa T =F⋅ Fig. 17 – Schemi di freno a nastro l l 1 mentre t = F ⋅ ⋅ fα pertanto a a e l D (e fα − 1) Mf =F⋅ ⋅ ⋅ a 2 e fα Nel caso b), invece, dalla rapporto tra T e t, detto sopra, si ricava la relazione t = F ⋅ T ⋅ a + t ⋅ a = F ⋅ l e dal l 1 ⋅ fα e quindi il momento a e +1 frenante l D (e fα − 1) M f = F ⋅ ⋅ ⋅ fα a 2 (e + 1) In questo caso, se si inverte il moto, la formula per il calcolo del momento frenante non cambia poiché T e t hanno lo stesso braccio e quindi pur scambiandosi, il loro momento non cambia.