La gestione del tempo nella prevenzione dei rischi naturali
by user
Comments
Transcript
La gestione del tempo nella prevenzione dei rischi naturali
Paolo Gasparini Dipartimento di Scienze Fisiche Università di Napoli “Federico II” CRdC – AMRA Le tecnologie dell’allarme precoce e la gestione dei rischi naturali “Le tecnologie dell’allarme precoce e la gestione dei rischi naturali” “La gestione del tempo nella prevenzione dei rischi naturali” Venerdì 28 Novembre 2003 Institut français de Naples “Le Grenoble” Le tecnologie dell’allarme precoce e la gestione dei rischi naturali EARLY WARNING All the actions which can be carried out during the lead time of a catastrophic event in order to mitigate its effects. Le tecnologie dell’allarme precoce e la gestione dei rischi naturali LEAD TIME The time elapsing from the moment when the occurrence of a catastrophic event is reasonably certain till the moment the event really occurs. Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Event Source Considered area Propagation Path Le tecnologie dell’allarme precoce e la gestione dei rischi naturali TYPICAL LEAD TIMES MOST SIGNIFICANT ACTIONS EARTHQUAKES: seconds to tens of seconds AUTOMATIC TSUNAMIS: minutes to hours ALERT + INFORMATION METEROLOGICAL EVENTS: hours to days ALERT + INFORMATION FLOODS AND LANDSLIDES: hours to days COPING CAPACITY VOLCANIC ERUPTIONS: hours to weeks COPING CAPACITY SEISMIC EARLY WARNING CHRONOLOGY 1855: Palmieri seismograph 1868: The Concept of an early warning system was proposed by J.D. Cooper for San Francisco. 1880 Milne seismograph 1885 Theory of Rayleigh surface waves 1899 Oldham and Wiechert identify P and S waves as elastic waves 1910 Reid elastic rebound theory for the 1906 San Francisco earthquake 1911 Theory and identification of Love surface waves 1935 Richter Magnnitude scale 1965: Japan national railways installed an instrumental early warning system to protect the Tohoku Shinkansen line (threshold at PGA = 0.04 g at 5 Hz) 1982: Implementation of the improved UrEDAS system (detection of P-waves) to protect the Tokado Shinkansen line and since 1992 in California (1994 Northridge earthquake) 1992: Implementation of Seismic Alert System for Mexico City 1994: CUBE and REDI seismic warning systems in Southern and Northern California 1996: Implementation of the Taiwan Rapid Earthquake Information System Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Le tecnologie dell’allarme precoce e la gestione dei rischi naturali SYSTEMS IN PROGRESS - TRINET Project in Southern California - Feasibility study for Istanbul - Feasibility study for Bucharest - Feasibility study for Armenia Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Le tecnologie dell’allarme precoce e la gestione dei rischi naturali TYPICAL LEAD TIMES Japan Shinkansen lines = 0 to 10 s Mexico City = 65 - 72 s Taiwan = tens of s Istanbul = 0 to 70 s Bucharest = 25 s Le tecnologie dell’allarme precoce e la gestione dei rischi naturali PUBLIC WARNING Schools - Media Business centres - Hospital INDUSTRY TRASPORTATION Sensitive industries - Life lines Bridges – metro Computer facilities - High tech industry Trains - Aeroplanes Emergency services Disaster Management Relief Organisations Le tecnologie dell’allarme precoce e la gestione dei rischi naturali SEISMIC EARLY WARNING INSTRUMENTS Seismic network to detect the signals; - Data processing system to identify location and magnitude of the earthquake; - Warning information transmitter; - Warning information receiver and processor; - Automatic system. Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Japan: Protecting Bullet Trains I. Alarm seismometers • installed along all rail tracks • shut off power when horizontal acceleration exceeds a threshold Front detection: deployed along coast gives ~15 sec warning II. UrEDAS • event parameters determined from the P-arrival Japan: Protecting Bullet Trains II. UrEDAS Le tecnologie dell’allarme precoce e la gestione dei rischi naturali …switching to event parameter determination from the P-arrival 1. 2. 3. 4. Trigger on P-arrivals Use predominant period in first 3 seconds to determine magnitude Knowing the magnitude and amplitude, epicentral distance is estimated Azimuth of P-arrival and epicentral distance gives event location At P-arrival + 3 sec have an estimate of event location and magnitude 5. S minus P time used to improve the epicentral distance estimate Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Seismic Alert System: Mexico City “Front detection” • developed in 1989 in the wake of the 1985 Michoacan earthquake • 12 stations along coast • station data transmitted to central processing in Mexico City • warning issued when two stations indicate an event greater than magnitude 5 • ~300 km allows ~60 sec warning 300 km Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Guerrero earthquake September 14, 1995 • magnitude 7.3 • event successfully detected and an alert issued • 72 sec warning • no real damage in Mexico City Taiwan: Earthquake early warning Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Use classical network processing approach: • P-arrival used for event detection and conformation • S-arrival needed for magnitude determination use sub-nets to reduce wait time (circles on map) System processing time: 20-30 seconds Wu and Teng, 2002 Chi-Chi earthquake: warning times Le tecnologie dell’allarme precoce e la gestione dei rischi naturali - September 20, 1999 - magnitude 7.6 - 2,456 casualties Example of how the system would have worked for this event: Warning issued after 22 sec Useful for regions more than 75km from epicenter Triangles represent population distribution Wu and Teng, in press 1. Seismic infrastructure TriNet 135 available stations with: • broadband and strong motion sensors • capable of on-site processing • parameter transit times < 1sec Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Earthquake alarm system ElarmS timeline Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Summary: Le tecnologie dell’allarme precoce e la gestione dei rischi naturali ElarmS capabilities We are currently testing ElarmS, it will: • provide 0 to 2 seconds warning of peak ground motion to people directly above the earthquake epicenter • provide approx. 10 seconds warning to people 30 km from the epicenter The certainty of the predicted ground motion increases as the warning time decrease. • users must decide their uncertainty tolerance and their sensitivity to warning time Le tecnologie dell’allarme precoce e la gestione dei rischi naturali ISTANBUL Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Potential Sources for Earthquakes larger than M 5.5 in Italy Integrated Seismogenic Source dataset and Tectonic Lineaments CRdC-AMRA MULTICOMPONENT SEISMIC NETWORK Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Accelerometers and high frequency seism Accelerometers and broad band seism Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Lion’s Gate Bridge Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Rete Nazionale dei Gasdotti Le tecnologie dell’allarme precoce e la gestione dei rischi naturali Ignalina nuclear power plant (Lithuania)