...

La gestione del tempo nella prevenzione dei rischi naturali

by user

on
72

views

Report

Comments

Transcript

La gestione del tempo nella prevenzione dei rischi naturali
Paolo Gasparini
Dipartimento di Scienze Fisiche
Università di Napoli “Federico II”
CRdC – AMRA
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
“Le tecnologie dell’allarme precoce e la
gestione dei rischi naturali”
“La gestione del tempo nella prevenzione dei rischi naturali”
Venerdì 28 Novembre 2003
Institut français de Naples “Le Grenoble”
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
EARLY WARNING
All the actions which can be
carried out during the lead time
of a catastrophic event in order
to mitigate its effects.
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
LEAD TIME
The time elapsing from the moment
when the occurrence of a catastrophic
event is reasonably certain till the
moment the event really occurs.
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Event Source
Considered area
Propagation Path
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
TYPICAL LEAD TIMES
MOST SIGNIFICANT ACTIONS
EARTHQUAKES: seconds to tens of seconds
AUTOMATIC
TSUNAMIS: minutes to hours
ALERT + INFORMATION
METEROLOGICAL EVENTS: hours to days
ALERT + INFORMATION
FLOODS AND LANDSLIDES: hours to days
COPING CAPACITY
VOLCANIC ERUPTIONS: hours to weeks
COPING CAPACITY
SEISMIC EARLY WARNING
CHRONOLOGY
1855: Palmieri seismograph
1868: The Concept of an early warning system was proposed by J.D. Cooper for San Francisco.
1880 Milne seismograph
1885 Theory of Rayleigh surface waves
1899 Oldham and Wiechert identify P and S waves as elastic waves
1910 Reid elastic rebound theory for the 1906 San Francisco earthquake
1911 Theory and identification of Love surface waves
1935 Richter Magnnitude scale
1965: Japan national railways installed an instrumental early warning system to
protect the Tohoku Shinkansen line (threshold at PGA = 0.04 g at 5 Hz)
1982: Implementation of the improved UrEDAS system (detection of P-waves) to
protect the Tokado Shinkansen line and since 1992 in California (1994 Northridge earthquake)
1992: Implementation of Seismic Alert System for Mexico City
1994: CUBE and REDI seismic warning systems in Southern and Northern California
1996: Implementation of the Taiwan Rapid Earthquake Information System
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
SYSTEMS IN PROGRESS
-
TRINET Project in Southern California
-
Feasibility study for Istanbul
-
Feasibility study for Bucharest
-
Feasibility study for Armenia
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
TYPICAL LEAD TIMES
Japan Shinkansen lines = 0 to 10 s
Mexico City = 65 - 72 s
Taiwan = tens of s
Istanbul = 0 to 70 s
Bucharest = 25 s
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
PUBLIC WARNING
Schools - Media
Business centres - Hospital
INDUSTRY
TRASPORTATION
Sensitive industries - Life lines
Bridges – metro
Computer facilities - High tech industry
Trains - Aeroplanes
Emergency services
Disaster Management
Relief Organisations
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
SEISMIC EARLY WARNING
INSTRUMENTS
Seismic network to detect the signals;
- Data processing system to identify
location and magnitude of the
earthquake;
- Warning information transmitter;
- Warning information receiver and processor;
- Automatic system.
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Japan:
Protecting Bullet Trains
I. Alarm seismometers
• installed along all rail tracks
• shut off power when horizontal
acceleration exceeds a threshold
Front detection: deployed along coast
 gives ~15 sec warning
II. UrEDAS
• event parameters determined from
the P-arrival
Japan: Protecting Bullet Trains
II. UrEDAS
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
…switching to event parameter determination from the P-arrival
1.
2.
3.
4.
Trigger on P-arrivals
Use predominant period in first 3 seconds to determine magnitude
Knowing the magnitude and amplitude, epicentral distance is estimated
Azimuth of P-arrival and epicentral distance gives event location
 At P-arrival + 3 sec have an estimate of event location and magnitude
5. S minus P time used to improve the epicentral distance estimate
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Seismic Alert System: Mexico City
“Front detection”
•
developed in 1989 in the wake
of the 1985 Michoacan
earthquake
•
12 stations along coast
•
station data transmitted to
central processing in Mexico
City
•
warning issued when two
stations indicate an event
greater than magnitude 5
•
~300 km allows ~60 sec
warning
300 km
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Guerrero earthquake
September 14, 1995
• magnitude 7.3
• event successfully
detected and an alert
issued
• 72 sec warning
• no real damage in
Mexico City
Taiwan:
Earthquake early warning
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Use classical network processing
approach:
• P-arrival used for event
detection and conformation
• S-arrival needed for magnitude
determination
 use sub-nets to reduce
wait time (circles on map)
System processing time:
20-30 seconds
Wu and Teng, 2002
Chi-Chi earthquake:
warning times
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
- September 20, 1999
- magnitude 7.6
- 2,456 casualties
Example of how the system
would have worked for this
event:
Warning issued after 22 sec
Useful for regions more than
75km from epicenter
Triangles represent
population distribution
Wu and Teng, in press
1. Seismic infrastructure
TriNet
135 available
stations with:
• broadband and
strong motion
sensors
• capable of on-site
processing
• parameter transit
times < 1sec
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Earthquake alarm system
ElarmS timeline
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Summary:
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
ElarmS capabilities
We are currently testing ElarmS, it will:
• provide 0 to 2 seconds warning of peak ground motion to
people directly above the earthquake epicenter
• provide approx. 10 seconds warning to people 30 km from
the epicenter
The certainty of the predicted ground motion
increases as the warning time decrease.
• users must decide their uncertainty tolerance
and their sensitivity to warning time
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
ISTANBUL
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Potential Sources for Earthquakes larger than M 5.5 in Italy
Integrated Seismogenic Source dataset and Tectonic Lineaments
CRdC-AMRA
MULTICOMPONENT SEISMIC NETWORK
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Accelerometers and high frequency seism
Accelerometers and broad band seism
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Lion’s Gate Bridge
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Rete Nazionale dei Gasdotti
Le tecnologie
dell’allarme precoce
e la gestione
dei rischi naturali
Ignalina nuclear power plant
(Lithuania)
Fly UP