Comments
Description
Transcript
Resistenza al Cadmio
Sistemi per l’efflusso di metalli transenvelope transport-exporters. Resistenza al Cadmio • Si trova in molti tipi di batteri, sia ambientali sia patogeni • Non ci sono ossidazioni/riduzioni o altri tipi di trasformazioni come nei sistemi di detossificazione per Hg o As • 3 diversi sistemi di pompe per l’efflusso: CzcD, CzcCBA e CadA. • CzcD fa parte della famiglia delle Cation Diffusion Facilitator (CDF) presente in molti organismi; omodimero con 6 eliche TM • CzcCBA sono presenti solo nei batteri • CadA: P-type ATPase largamente diffuse Resistenza al Cadmio CusA efflux pump, transports Cu(I), Ag(I) F. Long et al. Nature 2010 The changes in conformation of the horizontal helix andTM8 are shown in a superimpositio n of the structures of apo (red) and Cu(I)-bound (green) CusA. The bound Cu(I) is shown Channel in the CusA pump. The channel formed by the front protomer of apo-CusA (red) leading through the transmembrane and periplasmic domains is in gray color. The 11 methionines forming the relay network are in spheres (green, carbon; red, oxygen; blue, nitrogen; orange, sulfur). Two other CusA protomers behind the front protomer are Structure of the CusBA efflux complex. C.-C. Su et al. Nature 2011 Proposed CDF-transporter mechanism. Dimeric CDF-proteins located at the cytoplasmic membrane bind substrate metal cations (S) from the cytoplasm, probably via histidines in a cytoplasm-open confirmation. Protons (H+) from the periplasm bind to negatively charged residues in trans to the substrate and a conformational change towards periplasmopen state is induced. Substrate and proton are subsequently released and the initial cytoplasm-open conformation is restored Structure of lactose permease (LacY) a member of the major facilitator superfamily P-type ATPase • dominio N-term per legare metalli • dominio per legare ATP • 8 eliche TM che formano il canale per il trasferimento Evoluzione delle P1B-type ATPases Meccanismo catalitico generale Resistenza al Cadmio Resistenza allo Zinco • Zinco a basse concentrazioni è un nutriente. Importante regolare la sua omeostasi. Ruoli catalitici e strutturali • Enzimi di membrana differenti per uptake e efflusso • Alcuni batteri codificano metallotioneine; proteine periplamsatiche ricche di gruppi tiolici che sequestrano il metallo. Diverse da quelle eucatiotiche. Resistenza allo Zinco • ZnuABC: uptake. Regolata da Zur. Specifica per Zn(II), Pb(II) e Cd(II) • ZntA: efflusso. Regolata da ZntR. La sua produzione ha effetto sul gene per la produzione di Cys. Resistenza allo Zinco Coordinazione tetragonale (come CadA): Cys 62, Cys 59, Asp 58 e H2O Accessibile al solvente, mentre di solito sono strutturali o nascosti nel core idrofobico. Sequence analysis of the N-terminal domain of cadmium and zinc ATPases Conserved Glu CadA-like ZntA-like b1 a1 b1 a1 Conserved Asp b2 b2 b3 b3 a2 b4 a2 b4 Hypothetical model that illustrates plausible pathways for the transfer of (A) Zn or (B) Cd/Pb from the cytosolic MBD region of AztA to the transmembrane site, and on to the other side of the membrane, consistent with the data presented here. At low cytosolic Zn loads, the metal can interact with the a-MBD, b-MBD, or transmembrane site in a manner dictated by their relative affinities. At high intracellular Zn loads, metal interacts with the low-affinity a-MBD to maximally stimulate the transporter. For Cd/Pb, these ions form a trapped inter-MBD complex. Metal binding sites are indicated by the filled gray circles, within the a-MBD, b-MBD, and the transmembrane sites indicated (49). The contribution of the His-rich domains (yellow rectangles) to Zn(II) transport is not yet known; however, they likely bind Zn(II) (61) and may well influence rates of transport of metal through the membrane. Zn, Co Detoxification in Cyanobacteria Cys 22 Plastocyanin Asp 18 Cys 19 Resistenza al Rame Trasporto di Rame nei cianobatteri ATP ADP ATP ADP CtaA Cu(I) PacS PC thylakoid ScAtx1 cytosol periplasm outer membrane Copper import and distribution in humans A partial view as well Copper distribution in the body Copper is an essential element ATP7B is manly expressed in the liver, whereas ATP7A is expressed in all other tissues with the exception of liver The physiological importance of Cu-ATPases in humans can be illustrated by the deleterious consequences of the Cu-ATPase inactivation on cell metabolism. Indeed Copper is an essential element but its excess or deficiency can be a killer Lutsenko, S. et al. Physiol. Rev. 87: 1011-1046 2007; Pathway of copper in the body Dietary copper 0.6-1.6 mg Brain Tissues/organs Menkes Disease Blood Portal vein Small intestine Bile Feces Caused by mutations in the ATP7A gene. Ceruloplasmin [Cu] Menkes syndrome Cu patients fail to absorb copper from the gastrointestinal tract in quantities adequate for Liver nutritional needs. The clinical features of Menkes can be attributed to a deficiency of several critical cuproenzymes. Menkes disease (No cure, fatal by age of 10) Pathway of copper in the body Dietary copper 0.6-1.6 mg Brain Tissues/organs Blood Portal vein Small intestine [Cu] Ceruloplasmin Cu Liver Wilson Disease Caused by mutations in the ATP7B gene. Copper builds up in the liver and injures liver tissue. Bile Feces Wilson disease (if untreated, fatal by age of 3 Model for the homeostatic regulation of copper in mammals ATP7A: Menkes disease; ATP7B: Wilson disease Copper transporting ATPases are essential for human growth and development We have expressed each isolated domain of N-ter region of WLN and MNK ATPases Copper transfer to a human ATPase post-Golgi MNK/WLN Hah1 Nucleus MNK/WLN Mitochondria Cu(I) Human Copper(I)-transporting ATPases Unstructure loop A-domain N-domain Pdomai n TGE DOM6 CPC DOM1 TGN / extracellular medium Cytosol Cell membran Cu(I)-chaperone + ATPase Superposition of two-dimensional 15N-1H HSQC spectra (700 MHz, 298 K) of uncomplexed Cu(I)-15NAtx1 (blue) and of the Cu(I)-15NAtx1·apo-Ccc2a complex (red) at a ratio of 1:1. The inset shows backbone amide chemical shifts as a function of apo-Ccc2a concentration for some Atx1 residues exhibiting measurable changes. No copper, no interaction + Dd = 0 + copper(I) Dd 0 C15 C13 Ccc2 Atx1 C18 Atx1 C16 Ccc2 Atx1 Ccc2 C15 C13 Atx1 Ccc2 C18 C16 The interaction depends on copper ( metal-mediated ) The identity of Cysteines was defined by mutagenesis The solution structure of the Atx1-Cu(I)-Ccc2a complex Cu(I) Atx1 Ccc2a Intermolecular NOEs Site directed mutagenesis Banci, Bertini, Cantini, Felli, Gonnelli, Hadjiliadis, Pierattelli, Rosato, Voulgaris, Nature Chemical Biology 2006 RESISTENZA BATTERICA AL PIOMBO I geni per la resistenza al Piombo sono stati clonati e sequenziati da un ceppo di R. metallidurans: prbT permeasi che media l’uptake di Pb2+ pbrR induce la trascrizione di pbrABCD (in un singolo mRNA) in presenza di Pb2+ pbrA P-type ATPase contenente il motivo CPC pbrB lipoproteina della membrana esterna, coinvolta nella rimozione di Pb2+, pompato da pbrA nel periplasma prbC signal peptidase, probabilmente rimuove la sequenza di localizzazione periplasmatica di prbB pbrD proteina citoplasmatica legante Pb2+, ricca in cisteine MECCANISMI DI RESISTENZA AD ALTRI IONI METALLICI • Sistemi di efflusso di Ni e Co comprendono ABC ATPasi e pompe chemiosmotiche della famiglia CBA. Esistono batteri, Archea e funghi che necessitano di alte concentrazioni di Ni e Co per il loro metabolismo (NiCoT: sistema di uptake per Ni e Co) • L’uptake del cromo sottoforma del suo ione cromato altamente tossico [CrO42-, Cr(VI)] è mediato dai meccanismi di trasporto del solfato; nella cellula il cromo è ridotto a Cr (III) e precipitato sotto forma di Cr(OH)3 . Viene poi pompato fuori dalla ChrA Copper transport in P. syringae (Gram-) outer membrane periplasm cytosol CopD CopB Toxic copper Essential copper Cu(II) Cu(I) CopC Cu(I)/Cu(II) Fet3-like CopS CopR