Comments
Description
Transcript
WG I Summary
Accelerator Physics and Design Working Group Summary 2/2 O. Napoly Frascati, 28 Maggio 2003 CEBAF Energy Recovery Experiment Michael Tiefenback • GeV scale Energy Recovery demonstration. – Testing the potential of ERLs – Demonstration of high final-to-injection energy ratios 20:1 and 50:1 – Optimized beam transport in large scale recirculating linacs (320 SC cavities) - RF steering and skew field compensation for accelerated/decelerated beams 56MeV injection 56MeV 556MeV 1L21 1056MeV deceleration 56MeV l/2 phase delay chicane 1056MeV acceleration 556MeV 2L21 56MeV Frascati, 28 Maggio 2003 556MeV deceleration 556MeV CEBAF Energy Recovery Experiment Michael Tiefenback rf power measurement - selected cavity at the end of South Linac Gradient Modulator Drive Signals (SL20 Cavity 8) 0.15 Volts (mV) 0.10 0.05 0.00 -0.05 with ER without ER -0.10 Graph Courtesy C. Tennant 0 100 200 300 Time (s) Standard arc BPMs go dead with ER beam: - BPM signal at RF fundamental - Decelerated beam is λ/2 delayed from primary beam signals destructively interfere in BPM antennae Frascati, 28 Maggio 2003 400 CEBAF Energy Recovery Experiment Michael Tiefenback current Wire scan at 2L22: X, X-Y, Y synchrotron light monitor 1056 MeV Beam 500 accelerated/decelerated beams at 556 MeV 400 56 MeV Beam 300 200 100 0 0 5 10 15 20 25 30 35 Emittance measurements and Halo measurement Beam quality is essentially preserved (80 µA) Frascati, 28 Maggio 2003 mm CW Energy Recovery Linac for Next Generation of XFELs General Thoughts based on TESLA XFEL-TDR TJNAF: INFN: DESY: BNL: LANL: UCLA: A. Bogacz M. Ferrario, L. Serafini D. Proch, J. Sekutowicz, S. Simrock I. Ben-Zvi P. Colestock J. B. Rosenzweig TESLA_TTF Meeting Frascati, May 26-28, 2003 Possible layout can be very similar to the present pulsed linac 1.8 km ~3 km En = 10÷20 GeV BC III : 2.50 GeV BC II : 0.50 GeV BC I : 0.14 GeV RF-Gun ? Frascati, 28 Maggio 2003 R~150 m 3xSASE 2xUndulators Dump (0.5 MW) • energy recovery 95% Any combination of the bunch charge and the spacing of bunches giving nominal current is OK Example: 1 mA= 1 nC @ spacing 1 µs # of 1nC bunches/s 20 1.00 15 0.75 10 0.50 5 0.25 0 0.00 10 12 14 16 18 20 En [GeV] Frascati, 28 Maggio 2003 # bunches/s [ 1E6 ] Beam Peak Power [MW] Beam peak power Conclusion Needed R&D : • cw RF gun • suppression of microphonics • more experience with the energy recovery Total cost without experiments should be < 400 MEuros Total AC power for Cryoplant + RF < 10 MW But we will have : 6 x more bunches /s very flexible time structure of the beam. Frascati, 28 Maggio 2003 Towards a Superconducting High Brightness RF Photoinjector M. Ferrario, J. B. Rosenzweig, J. Sekutowicz, L. Serafini INFN, UCLA, DESY * TESLA Meeting - Frascati - 27 May 2003 * Frascati, 28 Maggio 2003 Main Questions/Concerns • RF Focusing vs Magnetic focusing ? • High Peak Field on Cathode ? • Cathode Materials and QE ? • Q degradation due to Magnetic Field ? Frascati, 28 Maggio 2003 Measurements at room T on a dedicated DC system Extrapolation to Higher Field BNL_SCRF_CAT 0.00018 0.00016 QE 0.00014 QE 0.00012 0.0001 8 10 -5 6 10 -5 SCRF GUN 4 10 -5 2 10 -5 0 10 Measured 20 30 40 G [MV/m] 50 60 Limited by the available voltage Frascati, 28 Maggio 2003 70 Splitting Acceleration and Focusing Ez_[MV/m] Bz_[T] 60 0.2 50 0.15 50 cm 30 0.1 20 0.05 10 25 cm 10 cm 0 Bz_[T] Ez_[MV/m] 40 0 -10 • The Solenoid can be placed downstream the cavity -0.05 -20 on the solenoid when the cavity is cold prevent any • Switching 0 0.2 0.4 0.6 0.8 1 trapped magnetic field z_[m] Frascati, 28 Maggio 2003 HBUNCH.OUT HOMDYN Simulation 6 Q =1 nC R =1.5 mm L =20 ps eth = 0.45 mm-mrad Epeak = 60 MV/m (Gun) Eacc = 13 MV/m (Cryo1) B = 1.9 kG (Solenoid) sigma_x_[mm] 5 en [mm-mrad] 4 3 sigma_x_[mm] enx_[um] I = 50 A E = 120 MeV en = 0.6 mm-mrad 2 1 6 MeV 0 0 5 3.5 m 10 Z [m] z_[m] scaling laws for Q and Epeak available Frascati, 28 Maggio 2003 15 Progress on Helical Undulator for Polarised Positron Production Duncan Scott ASTeC Daresbury Laboratory SC Magnet Undulator Prototype Prototype Magnet Design for 14mm period: Beam Stay Clear 4mm Helix Diameter 6mm Frascati, 28 Maggio 2003 Permanent Magnet Undulator Design • 14mm Period, 4mm Bore “Halbach” undulator • (Klaus Halbach NIM Vol. 187, No1) • PPM blocks create Dipole Field Frascati, 28 Maggio 2003 • Rotate many rings to create Helical Field Progress on Helical Undulator for Polarised Positron Production • Vacuum Problems • TESLA requirements of ~10-8 mbar vacuum CO equivalent • For the SC magnet : – this can be achieved, as long as the number of photons above 3eV hitting the vessel wall is not greater than 1017 s-1 m-1 • For the Permanent magnet : – theoretical maximum for a 5 m long 4mm bore vacuum pipe is 107mBar – A NEG coated vessel is needed, thought to be feasible although no-one has ever NEG coated a 4mm diameter tube • Hope to build two ~20 period prototypes (one of each design) to measure the magnetic field this year Frascati, 28 Maggio 2003 TESLA Damping Ring: Injection/Extraction Schemes with RF Deflectors D. Alesini, F. Marcellini CTF3-LIKE INJECTION/EXTRACTION SCHEME (simple scheme) 1st train 2nd train TL LINAC TRAIN NB/F VRF Injection Extracted bunches Extraction MAIN LINAC Train 1 RF Defl. Extr. RF Defl. inj. DR Train 2 (deflection angle) SEPTUM TL 1) 2) If the filling time (F) of the deflectors is less than TDR it is possible to inject or extract the bunches without any gap in the DR filling pattern. should be * depending on the ring optics and septum position. Considering a single RF frequency Frascati, 28 Maggio 2003 /MAX=1-cos(2/F) MAX * TDR =TL/F Rec. factor Extr./Inj. bunch 3 Frequencies maximization of MAX in the range [430*1/ TL 450*1/ TL] =1.276 1.335 GHz 3 distant freq. case 3 close freq. case no bunch length MAX = 69 % DEFLECTOR PARAMETERS (/2) 6 Deflectors (3 inj. + 3 extr.) Defl 1 fRF1 = 433*1/ TL = 1284.87 [MHz] Defl 2 fRF2 = 438*1/ TL = 1299.70 [MHz] Defl 3 fRF3 = 443*1/ TL = 1314.54 [MHz] Total beam deflection = 0.87 [mrad] Deflection defl.1 = 0.29 [mrad] Deflection defl.2 = 0.29 [mrad] Deflection defl.3 = 0.29 [mrad] P = 9 [MW] L = 0.64 [m] F = 48 [nsec] n. Cells/defl = 11 Frascati, 28 Maggio 2003 P = 5.00 [MW] L = 0.86 [m] F = 64 [nsec] n. Cells/defl = 15 FINITE BUNCH LENGTH z=6 mm, the same 2 freq. optimized in the previous case give: Extracted bunch 1 = 9 % New optimization procedure: - to increase 1 - (if possible) to reduce the RF slope over the bunch length How to avoid the effect of the RF curvature on the extr. bunches Frascati, 28 Maggio 2003 3 Frequencies maximization of 1 in the range [430*1/ TL 450*1/ TL] =1.276 1.335 GHz bunch length z=6 mm 1 = 57 % 3 distant freq. case 3 close freq. case DEFLECTOR PARAMETERS (/2) 6 Deflectors (3 inj. + 3 extr.) Defl 1 fRF1 = 444*1/ TL = 1317.51 [MHz] Defl 2 fRF2 = 437*1/ TL = 1296.74 [MHz] Defl 3 fRF3 = 435*1/ TL = 1290.80 [MHz] Total beam deflection = 1.05 [mrad] Deflection defl.1 = 0.35 [mrad] Deflection defl.2 = 0.35 [mrad] Deflection defl.3 = 0.35 [mrad] P = 9 [MW] L = 0.78 [m] F = 58 [nsec] n. Cells/defl = 13 Frascati, 28 Maggio 2003 P = 5.00 [MW] L = 1.04 [m] F = 77 [nsec] n. Cells/defl = 18 F=100 LDR2.85 Km maximization of 1 3 distant freq. in the range [430*1/ TL 450*1/ TL] =1.276 1.335 GHz bunch length z=2 mm DEFLECTOR PARAMETERS (/2) 6 Deflectors (3 inj. + 3 extr.) Defl 1 fRF1 = 447*1/ TL = 1326.41 [MHz] Defl 2 fRF2 = 440*1/ TL = 1305.64 [MHz] Defl 3 fRF3 = 436*1/ TL = 1293.77 [MHz] Total beam deflection = 2.16 [mrad] Deflection defl.1 = 0.72 [mrad] Deflection defl.2 = 0.72 [mrad] Frascati, 28=Maggio 2003 Deflection defl.3 0.72 [mrad] 1 = 28 % P = 9 [MW] L = 1.6 [m] F = 119 [nsec] n. Cells/defl = 28 P = 5.00 [MW] L = 2.15 [m] F = 160 [nsec] n. Cells/defl = 37 OUR EXPERIENCE WITH RF DEFLECTOR FOR CTF3 1. STUDY AND NUMERICAL SIMULATIONS 2. MECHANICAL DRAWING 1st turn - 1st bunch train from linac 2nd turn 3rd turn 4th turn 3. CONSTRUCTION Frascati, 28 Maggio 2003 4. MEASUREMENTS MODE /2; DEFLECTION=0.5 mrad; fRF=1.3 GHz; DISK THICKNESS=11.53 mm; CELL LENGTH=57.65 mm 3.5 300 Filling time (f) [nsec] deflector length (L) [m] 3 2.5 2 1.5 1 200 150 100 0.5 0 20 250 30 40 50 60 50 20 70 30 40 60 70 50 60 70 P=5 MW P=9 MW 15 1 0.8 /2 MODE kick3MHz/kicknom Dissipated power per unit length (dP/dz) [kW/m] @ 5 Hz, 1 ms RF pulse 50 a [mm] a [mm] 10 0.6 0.4 Deflection = 0.5 mrad 0.2 fRF = 01.3 GHz 5 Disk thickness = 11.53 mm -0.2 0 20 30 Frascati, 28 Maggio 2003 40 50 a [mm] 60 70 Cell-0.4length = 57.65 mm 20 30 40 a [mm] Beam Position Measurements in TTF Cavities G. Devanz, O. Napoly, CEA, Gif-sur-Yvette A. using Gössel,Dipole S. Schreiber, M. Wendt, DESY, Hamburg Higher Order Modes Module II Module III ON Beam OFF HOM 2 q = 3.5 nC fb = 2.25 MHz Tp = 780 s Spectrum analyser • used as aparametric bandpass filter: – central frequency – resolution bandwidth • signals in time domain Frascati, 28 Maggio 2003 HOM 1 Agilent E8563E spectrum analyser GPIB Att 10 dB zero span Dipole mode measurements 2 positions computed using 2 modes with the same beam 10 8 6 beam position (mm) High gradient in cavities (~ 20 MV/m) orbit is expected to cross ACC1 module axis if entering at an offset 4 2 0 -2 0 1 2 3 4 5 6 -4 -6 -8 -10 cavity index Frascati, 28 Maggio 2003 7 8 9 10 Scattering Parameter Calculation for the 2x7 Superstructure TESLA Collaboration Meeting INFN Frascati May 26-28, 2003 Karsten Rothemund, Dirk Hecht, Ulla van Rienen 2x7-Superstructure 7 Cell TESLA Cavity Input-Coupler e- HOM-Coupler Radius Adapter Images: I.Ibendorf Frascati, 28 Maggio 2003 HOM-Coupler (HOM 2 + HOM 3) 27.4 mm HOM 3 27.4 mm shift planes HOM 2 rotate Input HOM 3 Frascati, 28 Maggio 2003 HOM 2 HOM 1 7 Cell TESLA Cavity |S..|/dB TE11 Plot: MWS, simulation: MAFIA, 2D, time domain |S..|/dB |S..|/dB TM01 f=1.5-3.0 GHz Frascati, 28 Maggio 2003 f/GHz TE21 f/GHz CSC-Computation Calculation of overall S-matrix open ports: beam pipe, 3x HOM-, 1x Input-coupler 1500 values computed in 1.5-3 GHz frequency range shown here: 2.46-2.58 GHz (3rd dipole passband) 481 frequency-points + interpolation |S..|/dB S-values of 7-cell cavity f/GHz Frascati, 28 Maggio 2003 Results Coupling between HOM1 and HOM2 to beam pipe modes |S..|/dB upstream beam pipe |S..|/dB HOM1 HOM2 f/GHz downstream beam pipe Frascati, 28 Maggio 2003 f/GHz Summary • S-parameter of 2x7 TESLA-Superstructure have been calculated (an open structure) with CSC • 5 modes have been considered in the structure • S-parameter of subsections were computed with • CST-MicrowaveStudioTM (coupler sections, 3D) • MAFIA (TESLA cavity, 2D-rz-geometry) • analytically (shifting planes, rotation) • some exemplary coupling parameters have been presented • computation times for S-parameters of subsections in order of days • additional computation times whole structure then in the order of minutes • parameter tuning (e.g. rotation angles, distances) possible Frascati, 28 Maggio 2003 Start-to-End Simulations for the TESLA LC A Status Report Nick Walker DESY TESLA collaboration Meeting, Frascati, 26-28th May 2003 Ballistic Alignment angle = i quads effectively aligned to ballistic reference bi q i ref. line Lb Frascati, 28 Maggio 2003 with BPM noise 62 New Simulations using PLACET and MERLIN • • • 14 quads per bin (7 cells, = 7/3) RMS Errors: – quad offsets: 300 m – cavity offsets: 300 m – cavity tilts: 300 rad – BPM offsets: 200 m – BPM resolution: 10 m – CM offsets: 200 m – initial beam jitter: 1y (~10 m) New transverse wakefield included (~30% reduction from TDR) [Zagorodnov and Weiland, PAC2003] Frascati, 28 Maggio 2003 wrt CM axis Ballistic Alignment Less sensitive to • model errors • beam jitter average over 100 seeds Frascati, 28 Maggio 2003 Ballistic Alignment We can tune out linear <yd> and <y’d> correlation using bumps or dispersion correction in BDS average over 100 seeds Frascati, 28 Maggio 2003 Beam-Beam Issues 4 3.8 off Lang approx. 3.6 L [1034cm-2s-1] optimise beambeam offset and angle L1 3.4 3.2 OK for ‘static’ effect 3 2.8 2.6 2.4 2.2 2 20 22 24 26 ey [nm] 28 PAC03, Maggio 2003 D. Frascati, Schulte. RPAB004 28 30 Simulating the Dynamic Effect LINAC BDS IR IR BDS IP FFBK Realistic simulated ‘bunches’ at IP – – – – linac (PLACET, D.Schulte) BDS (MERLIN, N. Walker) IP (GUINEAPIG, D. Schulte) FFBK (SIMULINK, G. White) bunch trains simulated with realistic errors, including ground motion and vibration Frascati, 28 Maggio 2003 All ‘bolted’ together within a MATLAB framework by Glen White (QMC) Simulating the Dynamic Effect IP beam angle Frascati, 28 Maggio 2003 IP beam offset Simulating the Dynamic Effect 21034 cm-2s-1 Only 1 seed: need to run many seeds to gain statistics! Frascati, 28 Maggio 2003 NEW DESIGN OF THE TESLA INTERACTION REGION WITH l* = 5 m O. Napoly, J. Payet CEA/DSM/DAPNIA/SACM Advantages from the detector point-of-view – Larger forward acceptance at low angles – Final doublet moved out of the calorimeter less e.m. showers in the detector – Lighter Tungsten-mask and simpler support NLC-like Optics 300 b 1/2 (m 1/2 hx (m) ) 200 0,15 0,10 Beamstrahlung Dump SF SF hx b z1/2 100 0,05 SD 2 b x1/2 SF1, SD1 s (m) 0 0 Frascati, 28 Maggio 2003 100 200 300 400 0,00 500 h'x (mrad) L/L0 @ 0,4% ex (m.rad) FFS l* (m) TDR 3 0.0 0.73 6.6 10-14 NLC-like 5 10.0 0.86 5.6 10-14 Simulating the Extraction Line Part of the extraction line included in BRAHMS: Shadow: • Distance from IP: 45m • 2m long • 5mm thick • 7mm vertical distance from nominal beam (~156 µrad) • Copper Septum Blade: • Distance from IP: 47m • 16m long • 5mm thick • ~7mm vertical distance from nominal beam • Copper Frascati, 28 Maggio 2003 Realistic Beam • Shadow: Average deposited power: ~15 kW • Septum blade: Average deposited power: ~80 W Frascati, 28 Maggio 2003