...

colture cellulari - adriano angelucci

by user

on
Category: Documents
36

views

Report

Comments

Transcript

colture cellulari - adriano angelucci
COLTURA DI CELLULE
ANIMALI
Conoscenze teoriche di base e
tecniche operative (1a parte)
Dott. Adriano Angelucci
[email protected]
LTCMA – Aprile 2015
Obiettivi
• Attraverso l’applicazione di specifiche procedure e tecnologie si
occupa:
• Mantenimento
in vitro delle migliori
sopravvivenza di cellule eucariotiche
condizioni
di
• Permettere la proliferazione delle cellule
• Preservare
da modifiche
contaminazione l’operatore
biologiche
le
cellule
e
da
• Realizzazione di banche per il mantenimento di campioni
cellulari
Alcune tappe della storia
• 1885 Wihelm Roux: prima coltura di tessuto da embrione
•
•
•
•
•
•
di pollo
1907 Ross Granville Harrison & Paul Alfred Weiss:
sperimentazione su cellule «in vitro»
1912 Alexis Carrel: metodologie asettiche
1920 Prima banca di cellule (ECACC, european collection
of cell cultures)
1965 Leonard Hayflick: limite nel numero di divisioni
cellulari
1975 Georges Kohler & Cesar Milstein: primo ibridoma
per produrre anticorpi
1998 James Thomson & John Gearhart isolano cellule
staminali embrionali umane
Ross Granville Harrison
• Espianti di tubo neurale di embrioni di rana
• Coltura in una goccia di linfa di rana contenuta in un
vetrino in ambiente sterile
• Osservazione «in vitro» dello sviluppo nel tempo di fibre
nervose
Maggiori conquiste nelle colture cellulari
• Uso di antibiotici che inibiscono la crescita dei batteri
soluzione di streptomicina (10’000ug/ml) e penicillina
(10’000U/ml)
• Uso della tripsina per staccare le cellule dalla piastra di
coltura senza danneggiarla
tripsina (0,25% )+ EDTA (0,2 mg/ml)
• Uso di terreni di coltura sintetici
Principali aree di studio
• Biologia cellulare: sistemi modello per studiare il
funzionamento delle cellule
• Test di tossicità: valutazione preclinica dei farmaci
• Oncologia sperimentale: carcinogenesi, modelli di
progressione tumorale
• Virologia: ciclo di infezione, produzione di vaccini
• Terapia cellulare/genetica: modificazione delle cellule a
scopo terapeutico
Colture cellulari: pro e contro
• PRO
• Riduzione dell’uso di animali da sperimentazione
• In una linea cellulare le cellule sono omogenee
• Possibilità di controllare l’ambiente extracellulare
• Saggiare le cellule senza l’interferenza di altre
•
•
•
•
componenti presenti in vivo
CONTRO
Le cellule vivono in un ambiente artificiale
Comportamento «anomalo» delle cellule rispetto alla
situazione in vivo
Modello ancora scarsamente predittivo
Colture cellulari: conoscenze di base
• Caratterizzazione cellulare
• Requisiti di laboratorio e strumentazione
• Terreni di coltura
• Valutazione del rischio e procedure asettiche
• Banca cellulare e crioconservazione
Caratterizzazione cellulare
• Coltura primaria: coltura di cellule prelevate da tessuto
(pura o mista)
• Linea cellulare: unico tipo cellulare adattato alla vita in
coltura (monoclonale)
• Linea cellulare continua (stabile): coltura in grado di
sopravvivere oltre il limite di Hayflick
• Trasformata (immortalizzate)
• Tumorale
• Ibridoma: fusione di due tipi cellulari
caratterizzazione
Preparazione di una coltura primaria
caratterizzazione
Morfologia
• Le cellule in coltura possono crescere adese o in
sospensione
• La morfologia è caratteristica del tessuto di origine
caratterizzazione
Morfologia
• La morfologia è indicatore dello stato della cellula
• Presenza di contaminazioni
caratterizzazione
Mantenimento dei caratteri biologici originari
• Lo sperimentatore per offrire significato scientifico ai
propri risultati deve assicurare che:
• Il tipo cellulare usato corrisponda agli standard
depositati nelle banche cellulari
• Non sia in alcun modo contaminato
• Non abbia subito modificazioni biologiche a seguito
delle condizioni di coltura
caratterizzazione
Colture di cellule adese
• la densità cellulare deve essere mantenuta all’interno di
valori limite per:
• Mantenere costante il tasso di crescita
• Evitare la selezione di nuovi cloni
• La crescita viene valutata come grado di confluenza
caratterizzazione
Inibizione da contatto
• Cellule normali quando vengono a contatto interrompono
la loro proliferazione ed entrano in fase G0
• Le cellule trasformate e tumorali non risentono
dell’inibizione da contatto
caratterizzazione
Grado di confluenza
• Quanta superficie di crescita è occupata dalle cellule
• Quando le cellule coprono l’80% della superficie vanno
spostate (passate) in un nuovo contenitore
• Se lasciate ad un alto grado di confluenza per troppo
tempo le cellule cambiano fenotipo e possono diventare
più difficili da staccare
•
• Solitamente la crescita esponenziale si ha con valori di
densità compresi tra 104 e 105 cellule per cm2
caratterizzazione
Colture di cellule adese
Numero di cellule
• La linea deve essere mantenuta a crescita esponenziale
2
3
4
5
6
7
Densità cellulare (10x)
• Conoscenza della superficie di semina
• Cellule seminate ad una confluenza troppo bassa entrano
in uno stato di quiescenza e non proliferano
caratterizzazione
Numero di passaggi
• Il numero di volte che la coltura è stata passata («split»)
in un nuovo recipiente
• Va sempre indicato sul contenitore
• Si consiglia di usare le cellule non oltre un certo numero
di passaggi per evitare le modificazioni fenotipiche indotte
dalla coltura prolungata
caratterizzazione
Valutazione del rischio
• Prevenire danni ad individui ed ambiente
• Direttive e legislazione europee
• Il rischio dipende dal tipo di coltura:
• Basso rischio=linee continue non umane e linee umane diploidi
ben caratterizzate
• Medio rischio=linee poco caratterizzate
• Alto rischio=colture primarie, linee con patogeni endogeni, linee
infettate
• adeguato contenimento e procedure sempre rispettate
procedure
Regole base: cosa fare
• Usare sempre camice e guanti. Protezioni particolari sono
necessarie quando si maneggia l’azoto liquido
• Pulire tutte le superfici prima di ogni operazione e tra operazioni
diverse (o diverso operatore)
• Identificare in maniera chiara tutti i contenitori che si usano
• Tenere in ordine e mantenere le superfici di lavoro il più possibile
sgombre da oggetti
• Maneggiare una sola linea cellulare alla volta
• Controllare i terreni giornalmente per la presenza di
contaminazione o di altre alterazioni
• Rispettare le scadenze di pulizia e di controllo di incubatore e
cappa biologica
procedure
Protocollo: sottocoltura di cellule aderenti
• Le cellule smettono di crescere quando raggiungono il
100% di confluenza o in seguito ad esaurimento dei fattori
nutritivi
• Le cellule vanno portate in sospensione
• Si utilizzano proteasi, soluzioni di proteasi e agenti
alchilanti o metodi meccanici
procedure
Sottocoltura di cellule adese (1)
• Accertarsi della confluenza e dello stato delle cellule
• Rimuovere il terreno
• Lavare lo strato cellulare con PBS senza Ca2+ e Mg2+
con un volume equivalente a metà volume del terreno
usato. Ripetere se le cellule hanno alta capacità adesiva
• Aggiungere 1ml di tripsina/EDTA ogni 25cm2 di superficie.
Fare in modo che il liquido bagni tutta la superficie
• Mettere il contenitore in incubatore per 2-10 minuti
procedure
Tripsina EDTA
• La tripsina è un enzima proteolitico che permette il
distacco delle cellule dalla piastra di coltura
• La tripsina taglia i legami peptidici
• EDTA chela gli ioni calcio nel terreno che inibiscono
l’azione della tripsina
• La tripsina si autodigerisce a 37°C dopo 20 minuti
• Lasciare le cellule in incubazione con la tripsina ne riduce
la vitalità
procedure
Sottocoltura di cellule adese (2)
• Osservare le cellule al microscopio per accertarsi che
•
•
•
•
•
•
siano in sospensione
Agevolare il distacco meccanicamente
Diluire le cellule in terreno contenente siero
Centrifugare
Scartare il surnatante e risospendere le cellule in un
appropriato volume di terreno completo
Contare le cellule
Prelevare il volume contenente il numero di cellule
necessario
procedure
Punti cruciali
• Diversi tipi cellulari hanno capacità adesive molto diverse
• La presenza di EDTA aiuta il distacco delle cellule
• L’eliminazione di siero è fondamentale per aumentare
l’efficacia della tripsina
• L’esposizione prolungata a tripsina può danneggiare
irreversibilmente le cellule
• La fase di centrifugazione può essere omessa se si usano
elevate quantità di siero
• La tripsina danneggia le proteine di superficie
procedure
Procedura di conta
• Centrifugare
• Risospendere in un piccolo volume di terreno completo
• Prelevare 100 ml di sospensione
• Aggiungere un ugual volume di Trypan Blue (0,4%)
• Riempire le camere del vetrino (5-10 ml)
• Osservare al microscopio ad ingrandimento 20x
• Calcolare il numero di cellule secondo le specifiche del
vetrino di conta (dimensioni del reticolo)
procedure
Trypan Blue
• Colorazione per esclusione
• Le cellule vive non assorbono il colorante
• Le cellule morte con membrana rotta assorbono il
colorante e si colorano di blu
procedure
Camere di conta (emocitometri)
• Vetrini speciali che presentano una griglia microscopica
che serve per contare le cellule
procedure
Calcolo del numero di cellule
• A= media delle cellule vive
• B= media delle cellule morte
• C= fattore di diluizione
• D= fattore di conversione in ml
• Concentrazione cellule vive= A*C*D
• Concentrazione cellule morte=B*C*D
Volume della conta= 0,1x 1
mm2=0,1
mm3
Fattore di conversione= 104
(0,1 mm3=0,1ul= 10-4ml)
procedure
Punti cruciali
• Un’adeguata accuratezza della misura si ottiene contando
•
•
•
•
•
almeno 100 cellule
Il Trypan blue è tossico ed è un potenziale carcinogeno
Le cellule devono essere ben distinte e uniformemente
distribuite
Evitare la presenza di bolle e detriti
Non riempire eccessivamente la camera
Se le cellule sono poche, operare una nuova
centrifugazione e risospendere in meno terrreno
procedure
Calcolo della vitalità cellulare
• Colorazione con Trypan Blue
• Le cellule vive sono impermeabili al Trypan Blue mentre
le cellule morte assorbono il colorante
• Mescolare trypan blue con un’aliquota delle cellule da
valutare
• Conta alla camera di conta per stabile il numero di cellule
vive (Nv) e il numero di cellule morte (Nm)
• % di vitalità = (Nv X 100)/(Nv+Nm)
procedure
Adesione cellulare
ancoraggio
migrazione – “homing”
comunicazione - anoikis
caratterizzazione
Tipologie di migrazione
• Chemotassi: movimento guidato da un fattore
solubile
• Aptotassi: movimento guidato da sostanze
presenti nella matrice extracellulare non diffusibili
• Chemotropismo: crescita (senza movimento) dei
tessuti verso una sostanza attraente
caratterizzazione
Test di adesione
• Valutazione della capacità delle cellule di aderire su un
substrato fisiologico (collagene, fibronectina, laminina…)
• Cerca di riprodurre le condizioni in vivo
• La crescita su matrici biologiche modifica la morfologia e la
capacità di crescita delle cellule
• La presenza di proteine di matrice può stimolare la migrazione
• L’adesione può essere un bersaglio farmacologico per impedire
la diffusione del tumore
Esperienza di laboratorio
• Finalità:
• Valutare l’azione di un inibitore di tirosin-chinasi nella capacità
adesiva di una linea cellulare su collagene
• Materiale di partenza:
• Piastre rivestite con collagene (6 pozzetti di piastra multipozzetto)
• Piastra di cellule umane adese (vario tipo) trattate e non
• Tripsina/EDTA
• Tampone fosfato
• Albumina bovina sierica
• Soluzione di trypan blue
• Crystal violetto
• Formaldeide
Fly UP