...

LNS Clementina Agodi, Cagliari CSN3 15 - settembre

by user

on
Category: Documents
43

views

Report

Comments

Transcript

LNS Clementina Agodi, Cagliari CSN3 15 - settembre
Apertura nuova sigla in CSN3:
NUMEN_CSN3
NUclear Matrix Elements for Neutrinoless
double beta decay
RN : C.Agodi e F.Cappuzzello
LNS, Ct, To, Ge
(2016-2018)
LNS
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
A basic question in modern Physics
Neutrinos play a fundamental role in various areas of modern physics from nuclear and particle physics to cosmology.
 1930: W.Pauli hypothesis of existence of neutrino to explain the energetic spectrum of electrons emitted in  decay
 1935 : Maria Goeppert Mayer described for the first time the 2 decay
 1937: E.Majorana article: ”Teoria simmetrica dell’elettrone e del positrone” Il Nuovo Cimento 14 (1937) 171
 1986: first discovery of 2 decay predicted by Maria Goeppert Mayer in 1935
(today found in ≈12 nuclei)
Described for the first time by
Maria Goeppert-Mayer (1935),

1998: discovery of neutrino oscillations and the non-zero mass of neutrinos, predicted by Pontecorvo in 1957
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Double β-decay
uL
dL
LN
S
uL
dL
The very rare 0νββ decay, mediated by the weak interaction, is potentially the best way to probe the
Majorana or Dirac nature of neutrino and to extract its effective mass.
W
eL
W
eL
νeL
νeL 2 double β-decay
× mL
νeL
νeL
eL
W
19  21
T1  10(a)
2
dL
y
• Does not distinguish between Dirac
andeL Majorana
W
uL
dL
• Respect the conservation low.
T1  10
24
2
• Experimentally observed in several
nuclei
uL
 and anti-
 and anti- can
are the same
be distinguished
y(b)
82Se, 100Mo, 48Ca,76Ge,
…
Fig. 43: Double beta decay diagrams. Diagram (a) shows the standard process when two neutrinos are emitted; digram (b)
shows the neutrinoless decay that has not been observed and is possible only if the neutrino
a massive Majorana
particle.
0 isdouble
β-decay
Q value of the reaction:
• Neutrino has mass
E(e−1 ) + E(e−2 ) Q ≡ M i − M f .
In order to have neutrinoless 2β decays one has two conditions:
• Neutrino is (179)
Majorana particle
• Violates the leptonic number conservation
• Experimentally not observed
[1] The neutrino must be its own anti-particle, that is it must be a Majorana particle.
• Forbidden in the Standard Model
[2] The neutrino mass must be non zero.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Search for 0 decay:
a worldwide race
Experiment
Isotope
Lab
Status
GERDA
76Ge
LNGS
Phase I completed
Migration to Phase II
CUORE0
/CUORE
130Te
LNGS
Data taking /
Construction
Majorana
Demonstrat
or
76Ge
SURF
Construction
SNO+
130Te
SNOLA
B
R&D / Construction
SuperNEM
O
demonstrat
or
82Se
LSM
R&D / Construction
Candles
48Ca
Kamiok
a
R&D / Construction
COBRA
116Cd
LNGS
R&D
Lucifer
82Se
LNGS
R&D
DCBA
many
[Japan]
R&D
AMoRe
100Mo
[Korea]
R&D
MOON
100Mo
[Japan]
R&D
LNS
NLDBD Report April 24, 2014
Notional Timeline of Presented Projects
Based on the information supplied to the Subcommittee by the collaborations, we have
compiled the timeline for these projects in Figure 2.2. One can see that there is at least 1 more
year of construction and assembly before all the projects are in an operational phase taking
data. After an additional period of 1-2 years one can expect to have valuable information based
on real data for these different techniques. At that point, one would expect that an assessment
of the relative merits would be much more reliable than the present time.
(or
others)
Figure 2.2. Approximate timelines for the presented projects. The orange bars represent
nominal construction periods and green illustrates actual or intended running.
LNS
The unconfermed claim on 76Ge
Claim from the re-analysis of the Heidelberg-Moscow data
Klapdor-Kleingrothaus et al.
NIM A 522 (2004)
PLB 586 (2004)
• Unconfirmed (and controversial) claim
• Dominates the field since 2004
• Difficult to scrutinize by experiments not using 76Ge
because of NME uncertainties
A later publication by the same group
(Mod. Phys. Lett. A 21, 1547 (2006))
reports T1/20ν = 2.23 x1025 yr after PSD
analysis. Inconsistencies have been pointed
out (missing efficiency factors!) in the
conversion counts  T1/2
Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586
(2004):
• 71.7 kg yr
• Bgd 0.17 / (kg yr keV)
• 28.75 ± 6.87 events (bgd:~60)
• Claim: 4.2 evidence for 0ββ
• reported T1/20ν = 1.19 x1025 yr
The role of nuclear physics
LNS
In the 0νββ the decay rate can be expressed as a product of independent factors, that also depends
on a function containing physics beyond the Standard Model throught the masses and the mixing
coefficients of the neutrinos species :
0


1 / T12 (0  0 )  G01 M
 0 2
M
 0 2
2
m
i
me
 0
ˆ
 0 f O
0i
m   U ei mi e
2
new physics inside !
2
Thus, if the M0νββ nuclear matrix elements were known with sufficient precision, the
neutrino mass could be established from 0νββ decay rate measurements.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
i i
LNS
State of the art NME calculations
Evaluation of
 0 2
M
 0
ˆ
  f O
i
2
Calculations (still sizeable
uncertainties): QRPA, Large scale shell
model, IBM …..
E. Caurier, et al., PRL 100 (2008) 052503
N. L. Vaquero, et al., PRL 111 (2013) 142501
J. Barea, PRC 87 (2013) 014315
T. R. Rodriguez, PLB 719 (2013) 174
F.Simkovic, PRC 77 (2008) 045503.
F.Iachello et al. NPB 237-238 (2013) 21 - 23
Measurements (still not conclusive for
0):
(+, -)
single charge exchange (3He,t)
electron capture
transfer reactions …
A.Giuliani and A. Poves, Adv. in High Energy Phys.,
A.857016 (2012)
Courtesy of Prof. F.Iachello
N. Auerbach, Ann. Of Phys. 192 (1989) 77
S.J. Freeman and J.P. Schiffer JPG 39 (2012) 124004
D.Frekers, Prog. Part. Nucl. Phys. 64 (2010) 281
J.P. Schiffer, et al., PRL 100 (2008) 112501
D.Frekers et al. NPA 916 (2013)219 - 240
LNS
The idea : HI-DCE as experimental tool towards the 0
Nuclear Matrix Element determination
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Double charge exchange reactions
HI Double charge exchange reactions are characterized by transitions where the nuclear
charge is changed by two units leaving the mass number unchanged
1
2
Induced by strong interaction
Sequential nucleon transfer mechanism
4th order:
Brink’s Kinematical matching conditions
D.M.Brink, et al., Phys. Lett. B 40 (1972) 37
3
34
Meson exchange mechanism
2nd order
Possibility to go in both
directions
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
Previous experimental attempts
2.1.2 Recent at t empt s
LN
S
Theinterest in thestudy of theheavy-ion doublechargeexchangereaction iss
demonstrated by recent activity reports [80–82]. Indeed, Matsubara et al., ha
Few experimental attempts
used heavy-ion
charge
exchange
( 18O,18Ne) reaction as probe to stud
 not conclusive because of the very poor yields in the measured energy
spectradouble
and the
lack
of angular
distributions, due to the very low cross-sections involved.
rich nuclei. The authors have focused their attention on investigations of unb
 not easy to measure, in the same experimental conditions, the different
competitive reaction channels.
12
and Be nuclei populated the stable 9Be and 12C ones. The experiment was
at Research Center for Nuclear Physics (RCNP) of the Osaka University.
40Ca(14C,14O)40Ar
beam of 18O was accelerated at 80 MeV/ u. The ejectiles were detected and a
Benchmark for developing the DCE reaction
the Grand Raiden
spectrometer.
Fig.2.6
preliminary
energy
model,
using DCE
as ashows
powerful
toolexcitation
for
18
nuclei.
for the ( 18O, unstable
Ne) reactions
at 0◦ on 9Be and 12C, respectively. The author
@ 51
MeV
RCNP - Osaka
10° < θlab < 30° Q = 4.8 MeV
24Mg(18O,18Ne)24Ne
@ 124
MeV
θlab = 8°
Q = -14.1 MeV
J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976
D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765
C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743
Figur e 2.6: Excitation energy spectra of 9 He and 12 Be for the ( 18 O, 18 Ne) rea
0◦ on 9 Be and 12 C, respectively.[80]
LN
S
0 vs HI-DCE
1.
Initial and final states: Parent/daughter states of the 0ββ are the same as those of the
target/residual nuclei in the DCE;
2.
Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2
tensor together with higher L components are present in both cases;
Factorization of the
charge exchange cross-section
single
CEX
forfor
single
CEX
::
In the hypothesis of a surface localized process (for direct quasi elastic processes).
In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target
exchange two uncorrelated isovector virtual mesons.
generalization
to DCE:
unit cross-section
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Superconducting Cyclotron and MAGNEX spectrometer @ LNS
Superconducting Cyclotron
LN
S
MAGNEX spectrometer
Achieved resolution
Energy E/E  1/1000
Angle Δθ  0.2°
Mass Δm/m  1/160
• K800 Superconducting Cyclotron in full
operation since 1996.
• It can accelerate from Hydrogen to
Uranium.
• Maximum nominal energy is 80 MeV/u.
Optical characteristics
Measured values
Maximum magnetic rigidity
1.8 T m
Solid angle
50 msr
Momentum acceptance
Momentum dispersion for k= - 0.104 (cm/%)
-14.3%, +10.3%
3.68
F. Cappuzzello et al., MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types,
Uses and Safety (Nova Publisher Inc., NY, 2011) pp. 1–63.
LNS
The pilot experiment:
40Ca(18O,18Ne)40Ar@LNS

18O7+

40Ca
beam from LNS Cyclotron at 270 MeV (10 pnA)
solid target of 300 μg/cm2
 Ejectiles detected by the MAGNEX spectrometer
 Angular setting
qopt = 4°
-2° < qlab <10°
2n-transfer:
270 MeV
40Ca(18O,16O)42Ca @
16O
+
42Ca
x-section (2MeV < Ex < 3MeV)
≈ 0.5 mb/sr
Extracted B(GT) = 0.087
18O
+
40Ca
40Ca(18O,18F)40K
2p-transfer:
40Ca(18O,20Ne)38Ar @ 270 MeV
18F
+
20Ne
40K
+
38Ar
18Ne
+
B(GT) from (3He,t) = 0.083
Y. Fujita
40Ar
Measured
Not measured
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
HI Single CEX @ LNS
40Ca(18O,18F)40K
@ 15 MeV/u
LNS
116Sn(18O,18F)116In
@ 25 MeV/u
3.5° < θlab < 4.5°
x-section (2MeV < Ex < 3MeV)
≈ 0.5 mb/sr
Extracted B(GT) = 0.087
B(GT) from
(3He,t)
Y. Fujita
= 0.083
x-section (within 1 MeV)
≈ 0.17 mb/sr
Extracted upper limit for B(GT) < 0.8
B(GT) from (d,2He) = 0.4
S.Rakers, et al., PRC 71 (2005) 054313
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
DCE: preliminary results
Measured energy spectrum of 40Ar at very forward
angles with an energy resolution of FWHM ~ 0.5 MeV .
LNS
Differential cross-section of the transition
40Ca
18
18
40
g.s.( O, Ne) Arg.s.
@ 270 Mev
FWHM ~ 0.5 MeV !
40Ca
42Ca
38Ar
40Ar
The 40Ar 0+ ground state is well separated from both the
first excited state 40Ar 2+ at 1.46 MeV and the 18Ne excited
state at 1.887 MeV
The position of the minima is well described by a Bessel function : such
an oscillation pattern is not expectd in complex multistep transfer
reactions.
dσDCE /dΩ=11μb/sr
at θcm=00
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
To speculate: a comparison between
48Ca and 40Ca very preliminary NME
Pure GT
Pure F
M
0

GT 
M
DCE
40 Ca  40 Ar
M
DCE
40 Ca  40 Ar
40
Ca

2
LNS
F 
2
2
 0.24  0.12
 0.28  0.14
 0.27  0.14
Pauli blocking about 0.14
Pauli blocking
corrected result 1.9
to speculate on 48Ca
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Experimental limits
LNS
Determination of nuclear matrix elements seems to be at our reach… BUT :
1. one order of magnitude more yield is necessary,for most favorable cases ;
2. (18O,18Ne) is of β+β+ kind while most of the research on 0νββ is on the opposite
side;
3. Some reactions of β-β- kind have a smaller B(GT): a reduction of the yield is
foreseen ;
4. Gas target will be necessary;
5. Sometimes energy resolution of ≈ half MeV is not enough to separate the g. s.
form excited states in the final nucleus: coincident detection of -rays is
necessary;
6. A strong fragmentation of the double GT strength is known in the nuclei of
interest .
Upgraded set-up to work with two orders of magnitude more current than the present
Substantial change in the technologies used in CS and in the MAGNEX detector
MAGNEX Upgrade
1
substitution of the present Focal Plane Detector
(FPD) gas tracker with a GEM tracker system;
2
substitution of the wall of silicon pad stopping
detectors with a wall of telescopes based on SiC-CsI
detectors;
3
introduction of an array of detectors for measuring
the coincident -rays;
4
enhancement of the maximum magnetic rigidity.
LNS
LNS
From the pilot experiment towards the “hot cases”:
The four phases of NUMEN project
Phase1: the experiment feasibility
40Ca(18O,18Ne)40Ar
@ 270 MeV already done: the results demostrate the technique feasibility.
Luglio 2014
Phase2: toward “few hot” cases optimizing experimental conditions and getting first result
The
Evaluation
Committee,
Upgrading of CS and MAGNEX, preserving the
access
to the present
facility. Tests will be crucial.
composed of Francesco Iachello,
Yale University,(Chair), Muhsin
 Phase3: the facility upgrade
Harakeh,
University
Groningen,
Disassembling of the old set-up and re-assembling
of the
new onesofwill
start: about 18-24 months
Dieter Frekers, University of
 Phase4: the experimental campaign
Münster:
High beam intensities (some pA) and long experimental runs to reach integrated charge of hundreds of mC up to C, for
supports
the of
the
experiments
in
coincidences,
for Strongly
all
the
variety
isotopes
for
0ββ
decay
150Nd,154Sm,
160Gd,198
exploratory
phases
1-2
of the
(48Ca,82Se,96Zr,100Mo,110Pd,124Sn,128Te,136Xe,148Nd,
Pt).
project.
year
Phase1
Phase2
Phase3
Phase4
2013 2014
Presidenza INFN 22 July 2014
PRELIMINARY TIME TABLE
The Committee therefore
2015
2016
2017 1-22018
recommends
that Phases
with
the upgrade of the detector system
be approved with highest priority
…
2019
2020
202…
LNS
The NUMEN goals
1
The NUMEN Holy Graal: the unit cross section
Studying if the σDCE is a smooth function of Ep and A
is the most ambitious goal of our project
This requires that a systematic set of appropriate data is built, facing the relative experimental challanges
connected with the low cross sections and resolution requests and development of calculations.
2
A new generation of DCE constrained 0 NME theoretical calculations
The measured DCE cross sections provide a powerful tool for tuning nuclear structure theory,
probing
the same 0νββ initial and final wave functions, in order to give very stringent constraints in the NME
estimation
Providing relative NME information on hot cases of 0: the ratio of measured cross sections can give a
model independent way to compare the sensitivity of different half-life experiments.
This could impact in future development of the field.
3
NUMEN @ International Conferences
LNS
 Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 7-14,
2014
 37th Brazilian Meeting on Nuclear Physics, RTFNB 2014; Maresias Beach HotelMaresias, Sao
Paulo; Brazil; 8 September 2014
 Neutrinos and Dark Matter in Nuclear Physics 2015 J une 1-5, 2015, Jyväskylä, Finland
 10th M E D E X '15 meeting Matrix Elements for the Double-beta-decay Experiments Prague,
June 09th - 12th, 2015
 4th INTERNATIONAL CONFERENCE ON NUCLEAR REACTION MECHANISMS Varenna (Italy),
Villa Monastero June 15 - 19 , 2015
 XXI International School on Nuclear Physics and Applications, & International Symposium on
Exotic Nuclei ( ISEN-2015 )September 6 - 12, 2015 Varna, Bulgaria
 Mazurian Lakes Conference on Physics september 2015
 ….
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Attività 2016 prevista
 Esperimenti per misure di sezioni d’urto di reazioni di doppio scambio di
carica al CS (LNS) con MAGNEX, con richiesta di tempo macchina per le
prime reazioni :
116Sn (18O,18Ne) 116Cd
116Cd (20Ne,20O) 116Sn
a 15 e 30 MeV/u ed a 15 e 25 MeV/u, rispettivamente.
 Esperimento (3He,t) all’RCNP di Osaka.Tale esperimento fa parte delle
campagne sperimentali, basate su misure (3He,t), di singolo scambio di
carica, volte ad identificare il ruolo degli stati 2-, nel canale intermedio
del doppio decadimento beta senza neutrini.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
Attività 2016 prevista:
R&D
LNS
 Studio e test di prototipi per il nuovo tracciatore a gas, basato su
moltiplicatori di elettroni tipo GEM, MICROMEGA o THGEM. Lo sviluppo dei
prototipi è previsto in collaborazione con i colleghi dei LNF e con Rui de
Oliveira, responsabile del laboratorio TS-DEM-PMT del CERN.
From Multiwire gas tracker  to GEM gas tracker
From 7 X 5 cm2 silicon Wall  to 1x1 cm2 telescopes wall
From 1 kHz to 100 kHz
Radiation hardness
1014 ions/cm2 in ten years of activity
Si detector dead @ 109 implanted ions/cm2
Esperienza nel settore
limitata all’uso per minimum ionizing particles (MIP) e
a pressioni dell’ordine dell’atmosfera e oltre.
L’effetto dell’ion backflow a bassa pressione va pertanto studiato e potrebbe
portare a soluzioni ibride.
TS-DEM-PMT del CERN
eventuali sviluppi custom per NUMEN.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Attività 2016 prevista:
R&D
LNS
 Studio e test di prototipi degli anodi segmentati.
Constraint derivanti dalle condizioni di rate e risoluzione previste per NUMEN, per
lavorare a rate fino a 100 KHz/cm sul tracciatore, mantenendo le risoluzioni di
tracciatura attuali:
limite massimo di circa 2-3 mm nell’estensione
orizzontale delle PAD e di circa 5 mm in profondità .
Studio sperimentale della geometria per valutare se la configurazione ottimale è
quella retta ( PAD rettangolari) oppure quella obliqua ( PAD parallelogrammi).
I requisiti in termini di efficienza, risoluzione spaziale e temporale sono gli stessi
dell’attuale rivelatore ( efficienza 95%, risoluzione spaziale circa 0.5 mm in x e y,
risoluzione angolare circa 3 – 5 mrad).
L’ Upgrade sostanziale proposto è sul rate sostenibile da
ioni/ cms .
103 ioni/cms a 105
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Attività 2016 prevista:
R&D
 Studio della meccanica dell’odoscopio per l’identificazione degli ioni
Tale studio sarà in sinergia con le attività previste nella CALL SICILIA di GR5
(qualora approvata) e sarà finalizzato all’integrazione del telescopio SiC-SiC.
Contestualmente saranno studiate anche altre configurazioni possibili
per tale scopo.
 Studio Integrazione
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
Attività 2016 prevista:
R&D
LNS
 Studio e realizzazione di prototipi dimostratori di diverse tipologie di schede di
elettronica di front end e read-out per l’upgrade del rivelatore di piano focale.
1. acquisizione e studio dei chip di front end selezionati e progettazione delle schede
di supporto e di interfaccia.
2. progettazione, realizzazione e test delle schede di read-out e pre- analisi dati.
3. test di interfacciamento schede di front-end e schede di read-out.
4. test di un sistema completo modulare connesso ai primi prototipi di tracciatore in
laboratorio.
In collaborazione con il ProF.G.De Geronimo (Brokhaven National Laboratory USA).
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Attività 2016 prevista
LNS
 Studio e sviluppo di modelli teorici.
Sviluppo nell’ambito della teoria DWBA:
1. Meccanismo di reazione: migliorare a livello analitico la descrizione teorica
delle reazioni di DCE, per approfondire il meccanismo di reazione e gli
ingredienti che regolano il processo.
2. Modello per DCE , impiegando diversi approcci (QRPA, shell model, IBM) per
inputs connessi alle quantità di struttura nucleare.
3. Confronto previsioni teoriche – dati sperimentali NUMEN.
Step fondamentale per testare le approssimazioni adottate nei differenti
approcci e identificare le condizioni sperimentali più adatte ad estrarre NME.
4. Studio delle analogie tra la descrizione teorica del neutrino-less double beta
decay e delle double charge exchange reactions.
Programma in collaborazione con il Prof. Horst Lenske (Giessen University).
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Attività prevista
LNS
Informal Workshop on
"Challenges in the investigation of double charge-exchange nuclear reactions:
towards neutrino-less double beta decay", Laboratori Nazionali del Sud December
1-2, 2015.
DCE reactions are the object of a worldwide renewed interest, also for the information that one could extract on the nuclear
matrix elements entering the expression of the life time of the double beta decay.
This possibility is essentially based on the coincidence of the initial and final state wave-functions in the two classes of processes
and the similarity of the transition operators, which in both cases present a given superposition of Fermi, Gamow-Teller and ranktwo tensor components with a relevant implicit momentum available.
An intense experimental activity on double charge exchange (DCE) reactions is planned at the LNS-Catania, according to the
NUMEN project.
The aim of the workshop is to critically discuss the status of the art and possible future developments of the theoretical models
of DCE reactions, as well as the crucial aspects of the experimental techniques and analyses. A central point would be the
identification of the the experimental conditions more suitable to extract, by comparison with the model predictions, the nuclear
matrix elements of the DCE process.
We also aim at dedicating critical discussions to the analogy between the theoretical description of the neutrino-less double beta
decay, and of double charge exchange reactions, to point out differences and similarities between the two processes.
The first circular, including the registration form and further information and details about the organization, will be sent shortly.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
DREAMS
completamento esperimenti approvati per il 2015
A. Charge exchange
- Esperimento DRIP-LINE@LNS
sottomesso e approvato all’ultimo PAC (priorità A – tutte e 30 BTU assegnate!). Reazioni da studiare Studio
degli stati eccitati del 11Li:
DCE: 11B(18O,18Ne)11Li @ 200 MeV Ee 4n transfer 7Li(18O,14O)11Li @ 200 MeV
-
Esperimento approvato a RCNP Osaka – Beam time da assegnare.
(7Li,7Be) @ 70 MeV/u at 0° Grand Raiden spectrometer.
B. Collaborazione TRIUMF
- TRIUMF Seconda parte esperimento 2015 (fascio da recuperare riassegnato) d(9Li,p)10Li @ 11.13AMeV.
- Esperimento Ab-Initio @ LNS
Sottomesso e approvato all’ultimo PAC 4He(4He, 4He)4He’ a 55 MeV (Gas target)
Studio del a risonanza di monopolo nel 4He.
C. Breathing Mode in Exotic Nuclei
- Esperimento GREEN @ LNS (FRIBS+MAGNEX)
sottomesso e approvato all’ultimo PAC (priorità A – tutte e 52 BTU assegnate ! ) 40Ar @ 35 AMEV per la
misura dell’ ISGMR nel nucleo esotico 38S
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
Milestones 2016
LNS
1. 30-06-2016 - Acquisizione e studio dei chip di front end selezionati e progettazione delle
schede di supporto e di interfaccia. Progettazione, realizzazione e test delle schede di
read - out e pre - analisi dati.
1. 31-10-2016 - Test di interfacciamento schede di front - end e schede di read - out . Test di
un sistema completo modulare connesso ai primi prototipi di tracciatore in laboratorio.
1. 31-12-2016 - Preparazione test sotto fascio di un sottoinsieme completo di ciascuna
tipologia di sistema front - end e read – out.
2. 1-12-2016 - Assemblaggio di prototipi per il nuovo tracciatore a gas.
3. 30-06-2016 - Simulazioni e disegni di prototipi degli anodi segmentati.
4. 31-12-2016 - Preparazione esperimenti (18O,18Ne).
5. 31-12-2016 - Test dei prototipi degli anodi segmentati.
6. 31-12-2016 - Sviluppo del formalismo microscopico delle reazioni di doppio scambio di
carica.
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
Estimated costs 2016
A carico dell'I.N.F.N.
Struttura
missioni
CT
GE.DTZ
11.00
2.00
consumo
altri_cons
trasporti
35.00
manutenzione
2.00
inventario
licenze-SW
10.00
3.50
apparati
spservizi
TOTALI
61.50
2.00
7.50
7.50
LNS
44.00 20.00
TO
21.50
Totali
LNS
125.00
20.00
6.00
18.00
1.00
84.00 28.00
178.00
1.00
22.00
74.00
84.00
3.50
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
263.00
20.00
40.50
6.00
372.50
28.00
NUMEN_GR3 Manpower @ INFN
SEDE
Ricercatore
%
LNS
C.Agodi
RN
100
L.Calabretta
40
LNS
LNS
LNS
LNS
LNS
A.Calanna
CT
100
F.Cappuzzello
RN
100
D.Carbone
100
M.Cavallaro
SEDE
100
LNS
M.Colonna
20
LNS
P.Finocchiaro
40
CT
E.Greco
20
LNS
A.Muoio
30
LNS
L.Pandola
20
LNS
D.Rifuggiato
25
LNS
S.Tudisco
30
LNS
N.Desmuk
100
LNS
V.Zagatto
100
LNS
Assegno
Senior
100
TOT
14 + 1
8.2 + 1
FTE
D.Lo Presti
RL
D.Bonanno
%
SEDE
Ricercatore
%
%
GE
E.Santopinto
30
D.Calvo
RL
50
50
TO
F.Iazzi
100
GE
PHD
50
R.Introzzi
100
Ge
Bijker Roelof
Roelof
30
Tot.
F.Longhitano
70
CT
D.Bongiovanni
50
TO
A.Lavagno
40
CT
A.Foti
100
TO
S.Ferrero
40
CT
V. Branchina
20
TO
L.Scaltrito
40
Totale
Ricercatore
TO
CT
6
SEDE
50
TO
TOT
LNS
Ricercatore
LNS
3.4
FTE
TO
F.Balestra
100
TO
L.Busso
-
TO
G.Giraudo
10
Tot.
9
4.8
FTE
Ricercatori
32
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
3
FTE
17,45
1.1
Collaborazioni Internazionali
Altre Collaborazioni
Clementina Agodi, Cagliari CSN3 15 - settembre - 2015
LNS
SPARES
SlideModel.com
34
R&D Phase2: Total estimated costs
LNS
2016
K€
2017
K€
2018
K€
CSN5
l gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota che verranno
effettuati ai LNS con l'attuale apparato di misura MAGNEX.
Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del progetto dei
piani di anodo per i rivelatori a gas che verranno sviluppati per sostenere un rate dell'ordine di 500
kHz, e che hanno la peculiarita' di dover lavorare con isobutano a circa 10 mbar assoluti. Risulta
interessante valutare le prestazioni di gem e micromegas con isobutano a bassa pressione, per
questo si intende verificare la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e
procedere ad effettuare dei test.
Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per capirne il suo
comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade del ciclotrone.
Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende iniziare a studiare
e disegnare la geometria dell'odoscopio, in particolare il posizionamento sulla PCB di supporto. Si
intende inoltre studiare come questo sistema si affianchi al rivelatore a gas che si trova
immediatamente prima, lungo la traiettoria degli ioni.
Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che si occupano
dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale da contribuire
attivamente alle scelte che verranno effettuate gia' tenendo conto dell'integrazione.
R&D Phase2:
2016 estimated costs LNS
LNS
Exp.activity
FPD Tracker
Computing
Resources
Consumo k€
3 gas bottles
6,3
Manutenz. MAGNEX
20,0
40 Si
100,0
Missioni
Esperime
nto
Viagg
io €
Diaria
o
hotel
€
n.giorni
n.perso
ne
n viaggi
k€
Vancouver
d(9Li,p)1
0Li @
11.13AM
eV
1500
120
7
3
1
6,9
Osaka
(7Li,7Be)
1300
120
7
4
1
8,4
Osaka
CEX
(3He,t)
1300
120
7
3
1
6,3
Osaka
(18O,16
O)
1300
120
7
2
1
4,3
300
400
5
2
4
8,0
Invent. K€
Moduli elettr.
15,0
HV FPD
8,0
1 PC DAQ
1,0
1 SWITCH
3,0
Isotopes
14,0
Mylar
4,5
Sviluppo
tracciatore
a gas
GEM (e/o MICROMEGA)
4,3
LNF
Pasti €
300
Gas Vessel
11,0
CERN
GEM
500
120
5
2
2
4,6
Gas flowing system
13,0
Kyoto
Test GEM
1300
120
5
2
1
4,6
1300
120
5
2
1
3,8
n.1 gas bottle
2,0
Minuteria elettr.
0,5
San Paolo
2 servers (main and backup),
the network switch, the fibre
channel controllers, the
ethernet cards etc.
20,0
DAQ
10,0
Totale
151,6
Mobilità
RN
Danimarca
Magneti
Danfysik
500
120
Torino
Ingegneri
zzazione
FPD
300
180
Contatti
teorici
Giessen
500
81,0
Consumo K€
INV.K€
151,6
81,0
GenovaK€
Missioni
Cina
TOTALE
LNS
5,0
Gamma
67,2
array
2
2
1
1,5
3
2
3
4,1
120
5
2
2
4,4
300
200
180
Totale
K€
3
1
2
1,4
1300
120
5
2
1
3,8
200
299,8
67,2
Il gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota
che verranno effettuati ai LNS con l'attuale apparato di misura MAGNEX.
Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del
progetto dei piani di anodo per i rivelatori a gas che verranno sviluppati per
sostenere un rate dell'ordine di 500 kHz, e che hanno la peculiarita' di dover lavorare
con isobutano a circa 10 mbar assoluti. Risulta interessante valutare le prestazioni di
gem e micromegas con isobutano a bassa pressione, per questo si intende verificare
la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e procedere ad
effettuare dei test.
Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per
capirne il suo comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade
del ciclotrone.
Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende
iniziare a studiare e disegnare la geometria dell'odoscopio, in particolare il
posizionamento sulla PCB di supporto. Si intende inoltre studiare come questo
sistema si affianchi al rivelatore a gas che si trova immediatamente prima, lungo la
traiettoria degli ioni.
Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che
si occupano dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale
da contribuire attivamente alle scelte che verranno effettuate gia' tenendo conto
dell'integrazione.
R&D Phase2: Total estimated costs
LNS
2016
K€
2017
K€
2018
K€
CSN5
0 vs HI-DCE
1. Initial and final states: Parent/daughter states of the 0ββ are the same as those of the
target/residual nuclei in the DCE;
2. Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller
and rank-2 tensor together with higher L components are present in both cases;
3. Large momentum transfer: A linear momentum transfer as high as 100 MeV/c or so is
characteristic of both processes;
4. Non-locality: both processes are characterized by two vertices localized in two valence nucleons. In
the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of
neutrons/protons so the non-locality is affected by basic pairing correlation length;
5. In-medium processes: both processes happen in the same nuclear medium, thus quenching
phenomena are expected to be similar;
6. Relevant off-shell propagation in the intermediate channel: both processes proceed via
the same intermediate nuclei off-energy-shell even up to 100 MeV.
LNS
Factorization of the
charge exchange cross-section
LNS
for single CEX:
-decay transition strengths
α= Fermi (F)
or Gamow Teller (GT)
(reduced matrix elements)
C.J Guess,et al, PRC 83 064318 (2011)
unit cross-section
T.N.Taddeucci, et al, Nucl. Phys. A 469 (1987) 125
The factor F(q,) describes the shape of the crosssection distribution as a function of the linear
momentum transfer and the excitation energy.
In the hypothesis of a surface localized process (for direct quasi elastic processes).
In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target
exchange two uncorrelated isovector virtual mesons.
generalization to DCE:
unit cross-section
In analogy to the single charge-exchange, the dependence of the cross-section
from q is represented by a Bessel function.
FPD criticity @ high rate
Multiwire gas tracker and E stage
limited to 1 kHz
+
Wall of 60 stopping 7 X 5 cm2 Silicon detectors surface covered 100 X 21 cm2
Double-hit probability at 100 kHz > 30%
SEGMENTATION !!!
100 kHz
From Multiwire gas tracker  to GEM gas tracker
From 7 X 5 cm2 silicon Wall  to 1x1 cm2 telescopes wall
Radiation hardness
1014 ions/cm2 in ten years of activity
Si detector dead @ 109 implanted ions/cm2
Phase2: Experimental campaign
Few experiments to investigate the best working conditions
The complete net of reactions involving the multi-step transfer processes with the same
initial and final nuclei will be studied
LNS
Preliminary Work Packages
WP
WP_1
Attività prevista
MAGNEX-SPERIMENTAZIONE
Preparazione esperimenti; ottimizzazione
Facility; analisi dati; slow-control; bersagli; alimentatori.
WP_2
TRACCIATORE
Costruzione prototipi e test; disegno rivelatore finale; realizzazione rivelatore finale.
WP_3
SISTEMA DI IDENTIFICAZIONE
Costruzione prototipi e test; disegno rivelatore finale; realizzazione rivelatore finale.
WP_4
WP_5
WP_6
WP_7
WP_8
ELETTRONICA
Realizzazione di prototipi dimostratori di diverse tipologie di schede di elettronica; acquisizione dati.
GAMMA
Test cristalli; disegno rivelatore finale.
TEORIA
Integrazione tra modelli di struttura e di dinamica; sviluppo teoria DCE.
UPGRADE CS
…………..
LNS
LNS
The unit cross section
H. Ejiri / Physics Reports 338 (2000) 265} 351
291
In the σ(Ep,A) the specificity of the single or double charge exchange is express through the volume
integrals of the potentials: the other factors are general features of the scattering.
Single charge-exchange
JST Volume integral of the VST
potential
288
H. Ejiri / Physics Reports338 (2000) 265} 351
Double charge-exchange
JST Volume integral of the VSTGVST potential, where
G is the intermediate channel propagator:
n n
G
n En  ( Ei  E f ) / 2
En is a complex number whose imaginary
component represents the off-shell
propagation through the virtual
intermediate states
If known σ(Ep,A) would allow to determine the NME from DCE cross section measurement, whatever is the strenght
fragmentation
(d,2He)
Fig. 17. The(t, He) reaction cross-sections at 03asa function of theB(G¹ ) strengthsdeduced from -decay data. His
de"ned as (d )/(d )/K/N" with K" ( / ) (k /k ) [77].
%2
This is what happens in single charge exchange reactions
(7Li,7Be) S. Nakayama PRC 60 (1999) 047303
Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549
F. Osterfeld Rev. Mod. Phys. 64 (1992) 491
H. Ejiri Phys. Rep. 338 (2000) 256
T.N. Taddeucci Nucl. Phys. A 469 (1997) 125
Fig.12. Themeasured cm cross-sectionsof the(d, He) reactionsat 03asafunction of theG¹ strengthsdeduced from
-decay or (p,n) reaction studies. Thesolid lineisa linear "t to thedata [244].
Fig. 18. Cross-sections /( N") for G¹ transitions in the( Li, Be) reactions at 03and B(G¹ ) values. and N" arethe
reduced mass and the distortion factor, respectively [197].
B(GT;CEX)/B(GT;-decay)  1 within a few % especially for the strongest transitions
Fig. 13. A plane view of RCNP Grand RAIDEN spectrometer and -ray detector arrays, which are used for
NUMEN @ INFN
 A WHAT NEXT project
 Controlled and supported by the INFN board
 R&D supported by CSNs
 Physics case in sinergy with CSNII
 CSNIII will follow the experimental side and R&D on MAGNEX detectors, excluding
the SiC
 CSNIV will follow the development of suitable theories
 CSNV will follow the R&D on SiC
120Sn(p,t)118Sn
35 MeV
CS @ LNS
LNS
La GPV è una delle manifestazioni più evidenti delle correlazioni
particella-particella, fino ad oggi non ci sono forti evidenze sperimentali a
differenza di quanto esiste sulle GDR.
Le reazioni di trasferimento di 2 neutroni sono ottime
sonde per popolare la GPV
I dati acquisiti per vari settaggi del campo
dello spettrometro sono mostrati in diversi
colori.
120Sn(p,t)118Sn
LNS CS @ 35 MeV
La presenza di una risonanza larga è stata chiaramente
osservata nella regione di energia della GPV.
Per estrarne i parametri lo spettro dell’energia di eccitazione è stato fittato
nella regione
10 MeV<E*<16 MeV con una funzione Lorenziana + un fondo lineare.
La Sezione d’urto della GPV candidata nella regione angolare
8°≤θlab≤12° è σ =1.1 ± 0.1 μb
B. Mouginot, et al., PRC 83 (2011) 037302
R&D: a new gas tracker
LNS
FPD gas vs. GEM tracker
Fro
m tracker
Multiwire gas
limited to about 1 kHz
To
GEM gas tracker
to go to 100 kHz
 R&D key issue : GEM-based tracker at low pressure and wide dynamic
range
 Collaboration with LNF and CERN
…for heavier projectiles
H. Ejiri / Physics Reports 338 (2000) 265} 351
291
(7Li,7Be)
S. Nakayama PRC 60 (1999) 047303
LNS
B(GT)[( Li, Be);q = 0]
=1± 0.2
B(GT)(bdecay )
7
7
 Confirmed on different nuclei: 11Be, 12B, 15C, 19O (v.
F.Cappuzzello et al Nucl.Phys.A 739(2004) 30-56)
 Microscopic and unified theory of reaction and structure
is mandatory for quantitative analyses
Fig. 17. The (t, He) reaction cross-sections at 03as a function of the B(G¹ ) strengths deduced from -decay data. His
de" ned as (d )/(d )/K /N" with K " ( / ) (k /k ) [ 77] .
%2
 Best results for transitions among isospin multiplets in
the projectiles as (7Ligs(3/2-),7Begs(3/2-))
 (18Ogs(0+),18Fgs(1+)) should be better than (7Li,7Be) even if
not really explored to now
Fig. 18. Cross-sections /( N" ) for G¹ transitions in the ( Li, Be) reactions at 03and B(G¹ ) values. and N" are the
reduced mass and the distortion factor, respectively [ 197] .
Connection between -decay and Single Charge
Exchange
LNS
Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 F. Osterfeld Rev. Mod. Phys. 64 (1992) 491
H. Ejiri Phys. Rep. 338 (2000) 256
T.N. Taddeucci Nucl. Phys. A 469 (1997) 125

 (3He,t): In general for B(GT)>0.05
(3He,t): in general for B(GT)
2Jπ
3+
2.98
3+
2.88
5+
2.74
5+
2.65
7+
2.21
7+
2.17
3+
1.01
3+
0.98
2Jπ
(3He,t)
5+
27
3
B(GT)[(
He,t);q = 0]
> 0.05
=1± 0.05  Similar results for the
288
H. Ejiri / Physics Reports338
(2000) 265} 351
B(GT)[bdecay ]
(d,2He)
g.s.
13Al14
Tz=1/2
 decay
5+
27
g.s.
14Si13
Tz=-1/2
Fig.12. Themeasured cm cross-sectionsof the(d, He) reactionsat 03asafunction of theG¹ strengthsdeduced from
-decay or (p,n) reaction studies. Thesolid lineisa linear "t to thedata [244].
NME: 2 vs 0
NME 0 - decay
NME 2 - decay
2


1 / T12 (0  0 )  G2 M
 2 2
0
Can be determined via charge-exchange reactions in the (n,p) and (p,n)
direction ( e.g. (d,2He) or (3He,t) )


1 / T12 (0  0 )  G0 M
q-transfer like ordinary β-decay
(q ~ 0.01 fm-1 ~ 2 MeV/c)
only allowed decays possible
ΔJ = 0 or 1
Single state
LN
S
 0 2
neutrino enters as virtual particle,
q~0.5fm-1 (~ 100 MeV/c)
degree of forbiddeness weakened
m
2
me
NOT (easily) accessible via charge-exchange
reactions
n n
G
dominance n En  ( Ei  E f ) / 2
Closure approximation
LNS
Particle identification
Z identification
A identification
1600
20
p
Br =
q
18
1400
16
1200
X
2
foc
m
µ 2 Eresid
q
0
30
14
-0.05
1000
22Ne
12
Na
21Ne
20Ne
25
19Ne
18Ne
-0.1
10
800
20
600
8
F
6
4
400
Xfoc(m)
Ne
-0.15
-0.2
15
-0.25
10
2
200
1900
2000
2100
2200
2300
2400
2500
2600
2700
-0.3
Eresid (ch)
5
-0.35
A. Cunsolo, et al., NIMA484 (2002) 56
A. Cunsolo, et al., NIMA481 (2002) 48
F. Cappuzzello et al., NIMA621 (2010) 419
F. Cappuzzello, et al. NIMA638 (2011) 74
-0.4
1900
2000
2100
2200
2300
2400
2500
2600
Eresid (ch)
52
FPD criticity @ high rates
1
2
TRACKER : Space charge limits to few hundreds Hz /
cm
Silicon detector damaging : 10 detetectors
broken/12days beam in 3.6 mC total integrated charge
LNS
R&D: Ion identification
LNS
High rates : standard technologies ( Si) vs. new ones ( SiC crystals)
Silicon detectors
 double hits (high segmentation-high costs)
 radiation hardness at 00 rate limit 109 ions/cm2 Si death in
few days
 Rate limit
SiC crystals
 Preserves good Si properties
 Much harder to radiations
 double hits (high segmentation-high cos
Irradiations tests: around 1013 ions 12C @ 62 AMeV at LNS in collaboration with CNR
 Rate limit
R&D: to built a realiable number of epitaxial SiC, in order to built a telescopes wall
of epitaxial SiC (100 μm and surface of 1cm2 ) for energy loss + CsI (1 cm) for residual
energy ;
decupling tracking from ion identification.
R&D : exclusive measurements
LNS
SCINTILLATORS ARRAY
Detecting γ-rays in coincidende with MAGNEX to:
 improve energy resolution from the present limit of ≈ 1 MeV for 50 MeV/u
heavy ions (1/1000 of 1 GeV 18Ne), mandatory for DCE reactions.
 Work with an intense flux of γ-rays and neutrons to optimize signal-to-noise ratio
and reduce spurious coincidences.
 Work done on HPGe and LaBr3 by other collaborations that can be used for this
purpose;
CsI or NaI seems more promising for high rates applications.
 Members of the Italian-Brasilian (INFN-IFUSP-IFUFF collaboration MoU)
collaboration are interested to collaborate on this topics with possible in-kind
contribution in the future development of NUMEN.
R&D: increase the magnetic
rigidity
LNS
Present day
magnetic rigidity :
1.8 Tm i.e. 50 MeV/u 18Ne10+ and ≈ 30 MeV/u 20
O8+
To extend the dynamical conditions
magnetic rigidity :
 2.8 Tm requires superconducting magnets with present MAGNEX optical layout
 Power supply upgrade to obtain 2.1-2.2 Tm i.e. 70 MeV/u 18Ne10+ and ≈ 42 MeV/u
20O 8+
Previous experimental attempts
2.1.2 Recent at t empt s
LN
S
Theinterest in thestudy of theheavy-ion doublechargeexchangereaction iss
demonstrated by recent activity reports [80–82]. Indeed, Matsubara et al., ha
Few experimental attempts
used heavy-ion
charge
exchange
( 18O,18Ne) reaction as probe to stud
 not conclusive because of the very poor yields in the measured energy
spectradouble
and the
lack
of angular
distributions, due to the very low cross-sections involved.
rich nuclei. The authors have focused their attention on investigations of unb
 not easy to measure, in the same experimental conditions, the different
competitive reaction channels.
12
and Be nuclei populated the stable 9Be and 12C ones. The experiment was
at Research Center for Nuclear Physics (RCNP) of the Osaka University.
40Ca(14C,14O)40Ar
beam of 18O was accelerated at 80 MeV/ u. The ejectiles were detected and a
Benchmark for developing the DCE reaction
the Grand Raiden
spectrometer.
Fig.2.6
preliminary
energy
model,
using DCE
as ashows
powerful
toolexcitation
for
18
nuclei.
for the ( 18O, unstable
Ne) reactions
at 0◦ on 9Be and 12C, respectively. The author
@ 51
MeV
RCNP - Osaka
10° < θlab < 30° Q = 4.8 MeV
24Mg(18O,18Ne)24Ne
@ 124
MeV
θlab = 8°
Q = -14.1 MeV
J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976
D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765
C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743
Figur e 2.6: Excitation energy spectra of 9 He and 12 Be for the ( 18 O, 18 Ne) rea
0◦ on 9 Be and 12 C, respectively.[80]
More about NME
LNS
 0 2
M
 0
ˆ
O
 g A2   i j i j
 i, j
 2
 gV  i j
 i, j
 0
ˆ
  f O
i
2
For L = 0
decays
Gamow-Teller like
Fermi like
Warning: Normally the coupling constants gA and gV are kept out form the
matrix element and we talk of reduced matrix elements
M
 0 2

2
 M   B
58
NUMEN requirements
 1x1 cm2 E-E telescope
 thickness of E stage 100 m
 thickness of E stage 500-1000 m
 hard to the radiation damage
 good energy resolution (1-2 %)
 High stability (electric and thermal)
RD50 - CERN
Property
Eg [eV]
Ebreakdown [V/cm]
e [cm2/Vs]
h [cm2/Vs]
vsat [cm/s]
Z
r
e-h energy [eV]
Density [g/cm3]
Displacem. [eV]
Diamond
5.5
107
1800
1200
2.2·107
6
5.7
13
3.515
43
GaN
3.39
4·106
1000
30
31/7
9.6
8.9
6.15
15
4H SiC
3.26
2.2·106
800
115
2·107
14/6
9.7
7.6-8.4
3.22
25
Si
1.12
3·105
1450
450
0.8·107
14
11.9
3.6
2.33
13-20
NUMEN
 Wide bandgap (3.3eV)
 lower leakage current
than silicon
 Signal (for MIP !):
Diamond 36 e/m
SiC
51 e/m
Si
89 e/m
 more charge than
diamond Si/SiC≈2
 Higher displacement
threshold than silicon
 radiation harder than silicon
LNS
The unconfermed claim on 76Ge
Claim from the re-analysis of the Heidelberg-Moscow data
Klapdor-Kleingrothaus et al.
NIM A 522 (2004)
PLB 586 (2004)
• Unconfirmed (and controversial) claim
• Dominates the field since 2004
• Difficult to scrutinize by experiments not using 76Ge
because of NME uncertainties
A later publication by the same group
(Mod. Phys. Lett. A 21, 1547 (2006))
reports T1/20ν = 2.23 x1025 yr after PSD
analysis. Inconsistencies have been pointed
out (missing efficiency factors!) in the
conversion counts  T1/2
Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586
(2004):
• 71.7 kg yr
• Bgd 0.17 / (kg yr keV)
• 28.75 ± 6.87 events (bgd:~60)
• Claim: 4.2 evidence for 0ββ
• reported T1/20ν = 1.19 x1025 yr
R&D : front -end and read – out electronics
ELECTRONICS PROTOTYPES
(coll. Sez. Ct)
1) ASIC front – end chip:
for FPD chip VMM2 in collaboration with Prof.G.De Geronimo ( Head of
Microelectronics-Instrumentation Division of Brookhaven National Laboratory
(NY,USA);
for PM and PM-like signal chip DRS3 commercial delivered by PSI.
2) Read – out : new generation of FPGA and System On Module (SOM)
LNS
Methodology for NME 2 decay
Assumption (Fermi
Surface
Quasiparticle
Approximation):
all the signs are
positive in the
coherent sum of the
amplitudes, for
particle-hole, near to
the Fermi surface)
(3He,t)
(β– type)
1 / T122 (0   0  )  G2 M
(d, 2He)
(β+ type)
 2 2
LNS
Preliminary time table for NUMEN R&D
activities
LNS
63
Methodology for NME 0 decay
0
40.0
Decomposition of MGT
30.0
20.0
10.0
0.0 + + + + + + + + - - - - - - - 1 2 3 4 5 6 7 8 01 2 3 4 5 6 7
gpp = 0.89
gpp = 1.00
gpp = 0.96
gpp = 1.05

1 / T12 (0  0 )  G0 M
DCE
-10.0

J. Suhonen, Phys. Lett B607, 87 (2005)
 0 2
m
me
2
LNS
40Ca(18O,18Ne)40Ar
Projectile
18O
18Ne
18F
1+
2.73
g.s.
40K
Super-allowed transition
GT strength not fragmented
1+
4-
Target
GT strength not much fragmented
g.s.
g.s.
40Ar
0+
40Ca
0+
Y. Fujita, private communication
About 40Ca ground state
1f5/2
1f7/2
1d3/2
2s1/2
1d5/2
1p1/2
1p3/2
1s1/2
n
p
n
p
n
p
|40Cag.s.>=0.88|[1d3/21d3/2]0+> +0.06 |[1f7/21f7/2]0+>+0.06 |[1f5/21f5/2]0+>
Pauli blocked
Double Charge Exchange on 40Ca ground state
1f5/2
1f5/2
1f7/2
1f7/2
1d3/2
1d3/2
2s1/2
2s1/2
1d5/2
1d5/2
1p1/2
1p1/2
1p3/2
1p3/2
1s1/2
1s1/2
n
p
40Ca
g.s.
n
p
40K
g.s.
p
n
40Ar
g.s.
The role of the involved nuclei
LNS
 The nucleon transfer reaction cross sections can be deduced from simple dynamic
considerations, according to semi-classical arguments, when the incident energy is
above the Coulomb barrier.
 Assuming a mechanism where a cluster is transferred: the cross section tends to
maximize within a Q-window, which depends on the reaction Qgg, on the target, on the
projectile radii and on the incident energy.
Brink’s matching conditions
D.M. Brink, Phys. Lett. B 40 (1972) 37-40
k  k0  1 / R1   2 / R2  0
L   2  1 
1
k0 ( R1  R2 )  Qeff R / v  0
2
l1  1  even
l 2   2  even
k0  mv / 
Qeff  Q  ( Z 1f Z 2f  Z 1i Z 2i )
 The survival of a preformed pair in a transfer process is favoured when the initial and
final orbitals are the same
Fly UP