Comments
Transcript
LNS Clementina Agodi, Cagliari CSN3 15 - settembre
Apertura nuova sigla in CSN3: NUMEN_CSN3 NUclear Matrix Elements for Neutrinoless double beta decay RN : C.Agodi e F.Cappuzzello LNS, Ct, To, Ge (2016-2018) LNS Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS A basic question in modern Physics Neutrinos play a fundamental role in various areas of modern physics from nuclear and particle physics to cosmology. 1930: W.Pauli hypothesis of existence of neutrino to explain the energetic spectrum of electrons emitted in decay 1935 : Maria Goeppert Mayer described for the first time the 2 decay 1937: E.Majorana article: ”Teoria simmetrica dell’elettrone e del positrone” Il Nuovo Cimento 14 (1937) 171 1986: first discovery of 2 decay predicted by Maria Goeppert Mayer in 1935 (today found in ≈12 nuclei) Described for the first time by Maria Goeppert-Mayer (1935), 1998: discovery of neutrino oscillations and the non-zero mass of neutrinos, predicted by Pontecorvo in 1957 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Double β-decay uL dL LN S uL dL The very rare 0νββ decay, mediated by the weak interaction, is potentially the best way to probe the Majorana or Dirac nature of neutrino and to extract its effective mass. W eL W eL νeL νeL 2 double β-decay × mL νeL νeL eL W 19 21 T1 10(a) 2 dL y • Does not distinguish between Dirac andeL Majorana W uL dL • Respect the conservation low. T1 10 24 2 • Experimentally observed in several nuclei uL and anti- and anti- can are the same be distinguished y(b) 82Se, 100Mo, 48Ca,76Ge, … Fig. 43: Double beta decay diagrams. Diagram (a) shows the standard process when two neutrinos are emitted; digram (b) shows the neutrinoless decay that has not been observed and is possible only if the neutrino a massive Majorana particle. 0 isdouble β-decay Q value of the reaction: • Neutrino has mass E(e−1 ) + E(e−2 ) Q ≡ M i − M f . In order to have neutrinoless 2β decays one has two conditions: • Neutrino is (179) Majorana particle • Violates the leptonic number conservation • Experimentally not observed [1] The neutrino must be its own anti-particle, that is it must be a Majorana particle. • Forbidden in the Standard Model [2] The neutrino mass must be non zero. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Search for 0 decay: a worldwide race Experiment Isotope Lab Status GERDA 76Ge LNGS Phase I completed Migration to Phase II CUORE0 /CUORE 130Te LNGS Data taking / Construction Majorana Demonstrat or 76Ge SURF Construction SNO+ 130Te SNOLA B R&D / Construction SuperNEM O demonstrat or 82Se LSM R&D / Construction Candles 48Ca Kamiok a R&D / Construction COBRA 116Cd LNGS R&D Lucifer 82Se LNGS R&D DCBA many [Japan] R&D AMoRe 100Mo [Korea] R&D MOON 100Mo [Japan] R&D LNS NLDBD Report April 24, 2014 Notional Timeline of Presented Projects Based on the information supplied to the Subcommittee by the collaborations, we have compiled the timeline for these projects in Figure 2.2. One can see that there is at least 1 more year of construction and assembly before all the projects are in an operational phase taking data. After an additional period of 1-2 years one can expect to have valuable information based on real data for these different techniques. At that point, one would expect that an assessment of the relative merits would be much more reliable than the present time. (or others) Figure 2.2. Approximate timelines for the presented projects. The orange bars represent nominal construction periods and green illustrates actual or intended running. LNS The unconfermed claim on 76Ge Claim from the re-analysis of the Heidelberg-Moscow data Klapdor-Kleingrothaus et al. NIM A 522 (2004) PLB 586 (2004) • Unconfirmed (and controversial) claim • Dominates the field since 2004 • Difficult to scrutinize by experiments not using 76Ge because of NME uncertainties A later publication by the same group (Mod. Phys. Lett. A 21, 1547 (2006)) reports T1/20ν = 2.23 x1025 yr after PSD analysis. Inconsistencies have been pointed out (missing efficiency factors!) in the conversion counts T1/2 Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004): • 71.7 kg yr • Bgd 0.17 / (kg yr keV) • 28.75 ± 6.87 events (bgd:~60) • Claim: 4.2 evidence for 0ββ • reported T1/20ν = 1.19 x1025 yr The role of nuclear physics LNS In the 0νββ the decay rate can be expressed as a product of independent factors, that also depends on a function containing physics beyond the Standard Model throught the masses and the mixing coefficients of the neutrinos species : 0 1 / T12 (0 0 ) G01 M 0 2 M 0 2 2 m i me 0 ˆ 0 f O 0i m U ei mi e 2 new physics inside ! 2 Thus, if the M0νββ nuclear matrix elements were known with sufficient precision, the neutrino mass could be established from 0νββ decay rate measurements. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 i i LNS State of the art NME calculations Evaluation of 0 2 M 0 ˆ f O i 2 Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM ….. E. Caurier, et al., PRL 100 (2008) 052503 N. L. Vaquero, et al., PRL 111 (2013) 142501 J. Barea, PRC 87 (2013) 014315 T. R. Rodriguez, PLB 719 (2013) 174 F.Simkovic, PRC 77 (2008) 045503. F.Iachello et al. NPB 237-238 (2013) 21 - 23 Measurements (still not conclusive for 0): (+, -) single charge exchange (3He,t) electron capture transfer reactions … A.Giuliani and A. Poves, Adv. in High Energy Phys., A.857016 (2012) Courtesy of Prof. F.Iachello N. Auerbach, Ann. Of Phys. 192 (1989) 77 S.J. Freeman and J.P. Schiffer JPG 39 (2012) 124004 D.Frekers, Prog. Part. Nucl. Phys. 64 (2010) 281 J.P. Schiffer, et al., PRL 100 (2008) 112501 D.Frekers et al. NPA 916 (2013)219 - 240 LNS The idea : HI-DCE as experimental tool towards the 0 Nuclear Matrix Element determination Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Double charge exchange reactions HI Double charge exchange reactions are characterized by transitions where the nuclear charge is changed by two units leaving the mass number unchanged 1 2 Induced by strong interaction Sequential nucleon transfer mechanism 4th order: Brink’s Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37 3 34 Meson exchange mechanism 2nd order Possibility to go in both directions Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS Previous experimental attempts 2.1.2 Recent at t empt s LN S Theinterest in thestudy of theheavy-ion doublechargeexchangereaction iss demonstrated by recent activity reports [80–82]. Indeed, Matsubara et al., ha Few experimental attempts used heavy-ion charge exchange ( 18O,18Ne) reaction as probe to stud not conclusive because of the very poor yields in the measured energy spectradouble and the lack of angular distributions, due to the very low cross-sections involved. rich nuclei. The authors have focused their attention on investigations of unb not easy to measure, in the same experimental conditions, the different competitive reaction channels. 12 and Be nuclei populated the stable 9Be and 12C ones. The experiment was at Research Center for Nuclear Physics (RCNP) of the Osaka University. 40Ca(14C,14O)40Ar beam of 18O was accelerated at 80 MeV/ u. The ejectiles were detected and a Benchmark for developing the DCE reaction the Grand Raiden spectrometer. Fig.2.6 preliminary energy model, using DCE as ashows powerful toolexcitation for 18 nuclei. for the ( 18O, unstable Ne) reactions at 0◦ on 9Be and 12C, respectively. The author @ 51 MeV RCNP - Osaka 10° < θlab < 30° Q = 4.8 MeV 24Mg(18O,18Ne)24Ne @ 124 MeV θlab = 8° Q = -14.1 MeV J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976 D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765 C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743 Figur e 2.6: Excitation energy spectra of 9 He and 12 Be for the ( 18 O, 18 Ne) rea 0◦ on 9 Be and 12 C, respectively.[80] LN S 0 vs HI-DCE 1. Initial and final states: Parent/daughter states of the 0ββ are the same as those of the target/residual nuclei in the DCE; 2. Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases; Factorization of the charge exchange cross-section single CEX forfor single CEX :: In the hypothesis of a surface localized process (for direct quasi elastic processes). In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons. generalization to DCE: unit cross-section Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Superconducting Cyclotron and MAGNEX spectrometer @ LNS Superconducting Cyclotron LN S MAGNEX spectrometer Achieved resolution Energy E/E 1/1000 Angle Δθ 0.2° Mass Δm/m 1/160 • K800 Superconducting Cyclotron in full operation since 1996. • It can accelerate from Hydrogen to Uranium. • Maximum nominal energy is 80 MeV/u. Optical characteristics Measured values Maximum magnetic rigidity 1.8 T m Solid angle 50 msr Momentum acceptance Momentum dispersion for k= - 0.104 (cm/%) -14.3%, +10.3% 3.68 F. Cappuzzello et al., MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types, Uses and Safety (Nova Publisher Inc., NY, 2011) pp. 1–63. LNS The pilot experiment: 40Ca(18O,18Ne)40Ar@LNS 18O7+ 40Ca beam from LNS Cyclotron at 270 MeV (10 pnA) solid target of 300 μg/cm2 Ejectiles detected by the MAGNEX spectrometer Angular setting qopt = 4° -2° < qlab <10° 2n-transfer: 270 MeV 40Ca(18O,16O)42Ca @ 16O + 42Ca x-section (2MeV < Ex < 3MeV) ≈ 0.5 mb/sr Extracted B(GT) = 0.087 18O + 40Ca 40Ca(18O,18F)40K 2p-transfer: 40Ca(18O,20Ne)38Ar @ 270 MeV 18F + 20Ne 40K + 38Ar 18Ne + B(GT) from (3He,t) = 0.083 Y. Fujita 40Ar Measured Not measured Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 HI Single CEX @ LNS 40Ca(18O,18F)40K @ 15 MeV/u LNS 116Sn(18O,18F)116In @ 25 MeV/u 3.5° < θlab < 4.5° x-section (2MeV < Ex < 3MeV) ≈ 0.5 mb/sr Extracted B(GT) = 0.087 B(GT) from (3He,t) Y. Fujita = 0.083 x-section (within 1 MeV) ≈ 0.17 mb/sr Extracted upper limit for B(GT) < 0.8 B(GT) from (d,2He) = 0.4 S.Rakers, et al., PRC 71 (2005) 054313 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 DCE: preliminary results Measured energy spectrum of 40Ar at very forward angles with an energy resolution of FWHM ~ 0.5 MeV . LNS Differential cross-section of the transition 40Ca 18 18 40 g.s.( O, Ne) Arg.s. @ 270 Mev FWHM ~ 0.5 MeV ! 40Ca 42Ca 38Ar 40Ar The 40Ar 0+ ground state is well separated from both the first excited state 40Ar 2+ at 1.46 MeV and the 18Ne excited state at 1.887 MeV The position of the minima is well described by a Bessel function : such an oscillation pattern is not expectd in complex multistep transfer reactions. dσDCE /dΩ=11μb/sr at θcm=00 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 To speculate: a comparison between 48Ca and 40Ca very preliminary NME Pure GT Pure F M 0 GT M DCE 40 Ca 40 Ar M DCE 40 Ca 40 Ar 40 Ca 2 LNS F 2 2 0.24 0.12 0.28 0.14 0.27 0.14 Pauli blocking about 0.14 Pauli blocking corrected result 1.9 to speculate on 48Ca Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Experimental limits LNS Determination of nuclear matrix elements seems to be at our reach… BUT : 1. one order of magnitude more yield is necessary,for most favorable cases ; 2. (18O,18Ne) is of β+β+ kind while most of the research on 0νββ is on the opposite side; 3. Some reactions of β-β- kind have a smaller B(GT): a reduction of the yield is foreseen ; 4. Gas target will be necessary; 5. Sometimes energy resolution of ≈ half MeV is not enough to separate the g. s. form excited states in the final nucleus: coincident detection of -rays is necessary; 6. A strong fragmentation of the double GT strength is known in the nuclei of interest . Upgraded set-up to work with two orders of magnitude more current than the present Substantial change in the technologies used in CS and in the MAGNEX detector MAGNEX Upgrade 1 substitution of the present Focal Plane Detector (FPD) gas tracker with a GEM tracker system; 2 substitution of the wall of silicon pad stopping detectors with a wall of telescopes based on SiC-CsI detectors; 3 introduction of an array of detectors for measuring the coincident -rays; 4 enhancement of the maximum magnetic rigidity. LNS LNS From the pilot experiment towards the “hot cases”: The four phases of NUMEN project Phase1: the experiment feasibility 40Ca(18O,18Ne)40Ar @ 270 MeV already done: the results demostrate the technique feasibility. Luglio 2014 Phase2: toward “few hot” cases optimizing experimental conditions and getting first result The Evaluation Committee, Upgrading of CS and MAGNEX, preserving the access to the present facility. Tests will be crucial. composed of Francesco Iachello, Yale University,(Chair), Muhsin Phase3: the facility upgrade Harakeh, University Groningen, Disassembling of the old set-up and re-assembling of the new onesofwill start: about 18-24 months Dieter Frekers, University of Phase4: the experimental campaign Münster: High beam intensities (some pA) and long experimental runs to reach integrated charge of hundreds of mC up to C, for supports the of the experiments in coincidences, for Strongly all the variety isotopes for 0ββ decay 150Nd,154Sm, 160Gd,198 exploratory phases 1-2 of the (48Ca,82Se,96Zr,100Mo,110Pd,124Sn,128Te,136Xe,148Nd, Pt). project. year Phase1 Phase2 Phase3 Phase4 2013 2014 Presidenza INFN 22 July 2014 PRELIMINARY TIME TABLE The Committee therefore 2015 2016 2017 1-22018 recommends that Phases with the upgrade of the detector system be approved with highest priority … 2019 2020 202… LNS The NUMEN goals 1 The NUMEN Holy Graal: the unit cross section Studying if the σDCE is a smooth function of Ep and A is the most ambitious goal of our project This requires that a systematic set of appropriate data is built, facing the relative experimental challanges connected with the low cross sections and resolution requests and development of calculations. 2 A new generation of DCE constrained 0 NME theoretical calculations The measured DCE cross sections provide a powerful tool for tuning nuclear structure theory, probing the same 0νββ initial and final wave functions, in order to give very stringent constraints in the NME estimation Providing relative NME information on hot cases of 0: the ratio of measured cross sections can give a model independent way to compare the sensitivity of different half-life experiments. This could impact in future development of the field. 3 NUMEN @ International Conferences LNS Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 7-14, 2014 37th Brazilian Meeting on Nuclear Physics, RTFNB 2014; Maresias Beach HotelMaresias, Sao Paulo; Brazil; 8 September 2014 Neutrinos and Dark Matter in Nuclear Physics 2015 J une 1-5, 2015, Jyväskylä, Finland 10th M E D E X '15 meeting Matrix Elements for the Double-beta-decay Experiments Prague, June 09th - 12th, 2015 4th INTERNATIONAL CONFERENCE ON NUCLEAR REACTION MECHANISMS Varenna (Italy), Villa Monastero June 15 - 19 , 2015 XXI International School on Nuclear Physics and Applications, & International Symposium on Exotic Nuclei ( ISEN-2015 )September 6 - 12, 2015 Varna, Bulgaria Mazurian Lakes Conference on Physics september 2015 …. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Attività 2016 prevista Esperimenti per misure di sezioni d’urto di reazioni di doppio scambio di carica al CS (LNS) con MAGNEX, con richiesta di tempo macchina per le prime reazioni : 116Sn (18O,18Ne) 116Cd 116Cd (20Ne,20O) 116Sn a 15 e 30 MeV/u ed a 15 e 25 MeV/u, rispettivamente. Esperimento (3He,t) all’RCNP di Osaka.Tale esperimento fa parte delle campagne sperimentali, basate su misure (3He,t), di singolo scambio di carica, volte ad identificare il ruolo degli stati 2-, nel canale intermedio del doppio decadimento beta senza neutrini. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS Attività 2016 prevista: R&D LNS Studio e test di prototipi per il nuovo tracciatore a gas, basato su moltiplicatori di elettroni tipo GEM, MICROMEGA o THGEM. Lo sviluppo dei prototipi è previsto in collaborazione con i colleghi dei LNF e con Rui de Oliveira, responsabile del laboratorio TS-DEM-PMT del CERN. From Multiwire gas tracker to GEM gas tracker From 7 X 5 cm2 silicon Wall to 1x1 cm2 telescopes wall From 1 kHz to 100 kHz Radiation hardness 1014 ions/cm2 in ten years of activity Si detector dead @ 109 implanted ions/cm2 Esperienza nel settore limitata all’uso per minimum ionizing particles (MIP) e a pressioni dell’ordine dell’atmosfera e oltre. L’effetto dell’ion backflow a bassa pressione va pertanto studiato e potrebbe portare a soluzioni ibride. TS-DEM-PMT del CERN eventuali sviluppi custom per NUMEN. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Attività 2016 prevista: R&D LNS Studio e test di prototipi degli anodi segmentati. Constraint derivanti dalle condizioni di rate e risoluzione previste per NUMEN, per lavorare a rate fino a 100 KHz/cm sul tracciatore, mantenendo le risoluzioni di tracciatura attuali: limite massimo di circa 2-3 mm nell’estensione orizzontale delle PAD e di circa 5 mm in profondità . Studio sperimentale della geometria per valutare se la configurazione ottimale è quella retta ( PAD rettangolari) oppure quella obliqua ( PAD parallelogrammi). I requisiti in termini di efficienza, risoluzione spaziale e temporale sono gli stessi dell’attuale rivelatore ( efficienza 95%, risoluzione spaziale circa 0.5 mm in x e y, risoluzione angolare circa 3 – 5 mrad). L’ Upgrade sostanziale proposto è sul rate sostenibile da ioni/ cms . 103 ioni/cms a 105 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Attività 2016 prevista: R&D Studio della meccanica dell’odoscopio per l’identificazione degli ioni Tale studio sarà in sinergia con le attività previste nella CALL SICILIA di GR5 (qualora approvata) e sarà finalizzato all’integrazione del telescopio SiC-SiC. Contestualmente saranno studiate anche altre configurazioni possibili per tale scopo. Studio Integrazione Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS Attività 2016 prevista: R&D LNS Studio e realizzazione di prototipi dimostratori di diverse tipologie di schede di elettronica di front end e read-out per l’upgrade del rivelatore di piano focale. 1. acquisizione e studio dei chip di front end selezionati e progettazione delle schede di supporto e di interfaccia. 2. progettazione, realizzazione e test delle schede di read-out e pre- analisi dati. 3. test di interfacciamento schede di front-end e schede di read-out. 4. test di un sistema completo modulare connesso ai primi prototipi di tracciatore in laboratorio. In collaborazione con il ProF.G.De Geronimo (Brokhaven National Laboratory USA). Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Attività 2016 prevista LNS Studio e sviluppo di modelli teorici. Sviluppo nell’ambito della teoria DWBA: 1. Meccanismo di reazione: migliorare a livello analitico la descrizione teorica delle reazioni di DCE, per approfondire il meccanismo di reazione e gli ingredienti che regolano il processo. 2. Modello per DCE , impiegando diversi approcci (QRPA, shell model, IBM) per inputs connessi alle quantità di struttura nucleare. 3. Confronto previsioni teoriche – dati sperimentali NUMEN. Step fondamentale per testare le approssimazioni adottate nei differenti approcci e identificare le condizioni sperimentali più adatte ad estrarre NME. 4. Studio delle analogie tra la descrizione teorica del neutrino-less double beta decay e delle double charge exchange reactions. Programma in collaborazione con il Prof. Horst Lenske (Giessen University). Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Attività prevista LNS Informal Workshop on "Challenges in the investigation of double charge-exchange nuclear reactions: towards neutrino-less double beta decay", Laboratori Nazionali del Sud December 1-2, 2015. DCE reactions are the object of a worldwide renewed interest, also for the information that one could extract on the nuclear matrix elements entering the expression of the life time of the double beta decay. This possibility is essentially based on the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators, which in both cases present a given superposition of Fermi, Gamow-Teller and ranktwo tensor components with a relevant implicit momentum available. An intense experimental activity on double charge exchange (DCE) reactions is planned at the LNS-Catania, according to the NUMEN project. The aim of the workshop is to critically discuss the status of the art and possible future developments of the theoretical models of DCE reactions, as well as the crucial aspects of the experimental techniques and analyses. A central point would be the identification of the the experimental conditions more suitable to extract, by comparison with the model predictions, the nuclear matrix elements of the DCE process. We also aim at dedicating critical discussions to the analogy between the theoretical description of the neutrino-less double beta decay, and of double charge exchange reactions, to point out differences and similarities between the two processes. The first circular, including the registration form and further information and details about the organization, will be sent shortly. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 DREAMS completamento esperimenti approvati per il 2015 A. Charge exchange - Esperimento DRIP-LINE@LNS sottomesso e approvato all’ultimo PAC (priorità A – tutte e 30 BTU assegnate!). Reazioni da studiare Studio degli stati eccitati del 11Li: DCE: 11B(18O,18Ne)11Li @ 200 MeV Ee 4n transfer 7Li(18O,14O)11Li @ 200 MeV - Esperimento approvato a RCNP Osaka – Beam time da assegnare. (7Li,7Be) @ 70 MeV/u at 0° Grand Raiden spectrometer. B. Collaborazione TRIUMF - TRIUMF Seconda parte esperimento 2015 (fascio da recuperare riassegnato) d(9Li,p)10Li @ 11.13AMeV. - Esperimento Ab-Initio @ LNS Sottomesso e approvato all’ultimo PAC 4He(4He, 4He)4He’ a 55 MeV (Gas target) Studio del a risonanza di monopolo nel 4He. C. Breathing Mode in Exotic Nuclei - Esperimento GREEN @ LNS (FRIBS+MAGNEX) sottomesso e approvato all’ultimo PAC (priorità A – tutte e 52 BTU assegnate ! ) 40Ar @ 35 AMEV per la misura dell’ ISGMR nel nucleo esotico 38S Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS Milestones 2016 LNS 1. 30-06-2016 - Acquisizione e studio dei chip di front end selezionati e progettazione delle schede di supporto e di interfaccia. Progettazione, realizzazione e test delle schede di read - out e pre - analisi dati. 1. 31-10-2016 - Test di interfacciamento schede di front - end e schede di read - out . Test di un sistema completo modulare connesso ai primi prototipi di tracciatore in laboratorio. 1. 31-12-2016 - Preparazione test sotto fascio di un sottoinsieme completo di ciascuna tipologia di sistema front - end e read – out. 2. 1-12-2016 - Assemblaggio di prototipi per il nuovo tracciatore a gas. 3. 30-06-2016 - Simulazioni e disegni di prototipi degli anodi segmentati. 4. 31-12-2016 - Preparazione esperimenti (18O,18Ne). 5. 31-12-2016 - Test dei prototipi degli anodi segmentati. 6. 31-12-2016 - Sviluppo del formalismo microscopico delle reazioni di doppio scambio di carica. Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 Estimated costs 2016 A carico dell'I.N.F.N. Struttura missioni CT GE.DTZ 11.00 2.00 consumo altri_cons trasporti 35.00 manutenzione 2.00 inventario licenze-SW 10.00 3.50 apparati spservizi TOTALI 61.50 2.00 7.50 7.50 LNS 44.00 20.00 TO 21.50 Totali LNS 125.00 20.00 6.00 18.00 1.00 84.00 28.00 178.00 1.00 22.00 74.00 84.00 3.50 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 263.00 20.00 40.50 6.00 372.50 28.00 NUMEN_GR3 Manpower @ INFN SEDE Ricercatore % LNS C.Agodi RN 100 L.Calabretta 40 LNS LNS LNS LNS LNS A.Calanna CT 100 F.Cappuzzello RN 100 D.Carbone 100 M.Cavallaro SEDE 100 LNS M.Colonna 20 LNS P.Finocchiaro 40 CT E.Greco 20 LNS A.Muoio 30 LNS L.Pandola 20 LNS D.Rifuggiato 25 LNS S.Tudisco 30 LNS N.Desmuk 100 LNS V.Zagatto 100 LNS Assegno Senior 100 TOT 14 + 1 8.2 + 1 FTE D.Lo Presti RL D.Bonanno % SEDE Ricercatore % % GE E.Santopinto 30 D.Calvo RL 50 50 TO F.Iazzi 100 GE PHD 50 R.Introzzi 100 Ge Bijker Roelof Roelof 30 Tot. F.Longhitano 70 CT D.Bongiovanni 50 TO A.Lavagno 40 CT A.Foti 100 TO S.Ferrero 40 CT V. Branchina 20 TO L.Scaltrito 40 Totale Ricercatore TO CT 6 SEDE 50 TO TOT LNS Ricercatore LNS 3.4 FTE TO F.Balestra 100 TO L.Busso - TO G.Giraudo 10 Tot. 9 4.8 FTE Ricercatori 32 Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 3 FTE 17,45 1.1 Collaborazioni Internazionali Altre Collaborazioni Clementina Agodi, Cagliari CSN3 15 - settembre - 2015 LNS SPARES SlideModel.com 34 R&D Phase2: Total estimated costs LNS 2016 K€ 2017 K€ 2018 K€ CSN5 l gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota che verranno effettuati ai LNS con l'attuale apparato di misura MAGNEX. Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del progetto dei piani di anodo per i rivelatori a gas che verranno sviluppati per sostenere un rate dell'ordine di 500 kHz, e che hanno la peculiarita' di dover lavorare con isobutano a circa 10 mbar assoluti. Risulta interessante valutare le prestazioni di gem e micromegas con isobutano a bassa pressione, per questo si intende verificare la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e procedere ad effettuare dei test. Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per capirne il suo comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade del ciclotrone. Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende iniziare a studiare e disegnare la geometria dell'odoscopio, in particolare il posizionamento sulla PCB di supporto. Si intende inoltre studiare come questo sistema si affianchi al rivelatore a gas che si trova immediatamente prima, lungo la traiettoria degli ioni. Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che si occupano dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale da contribuire attivamente alle scelte che verranno effettuate gia' tenendo conto dell'integrazione. R&D Phase2: 2016 estimated costs LNS LNS Exp.activity FPD Tracker Computing Resources Consumo k€ 3 gas bottles 6,3 Manutenz. MAGNEX 20,0 40 Si 100,0 Missioni Esperime nto Viagg io € Diaria o hotel € n.giorni n.perso ne n viaggi k€ Vancouver d(9Li,p)1 0Li @ 11.13AM eV 1500 120 7 3 1 6,9 Osaka (7Li,7Be) 1300 120 7 4 1 8,4 Osaka CEX (3He,t) 1300 120 7 3 1 6,3 Osaka (18O,16 O) 1300 120 7 2 1 4,3 300 400 5 2 4 8,0 Invent. K€ Moduli elettr. 15,0 HV FPD 8,0 1 PC DAQ 1,0 1 SWITCH 3,0 Isotopes 14,0 Mylar 4,5 Sviluppo tracciatore a gas GEM (e/o MICROMEGA) 4,3 LNF Pasti € 300 Gas Vessel 11,0 CERN GEM 500 120 5 2 2 4,6 Gas flowing system 13,0 Kyoto Test GEM 1300 120 5 2 1 4,6 1300 120 5 2 1 3,8 n.1 gas bottle 2,0 Minuteria elettr. 0,5 San Paolo 2 servers (main and backup), the network switch, the fibre channel controllers, the ethernet cards etc. 20,0 DAQ 10,0 Totale 151,6 Mobilità RN Danimarca Magneti Danfysik 500 120 Torino Ingegneri zzazione FPD 300 180 Contatti teorici Giessen 500 81,0 Consumo K€ INV.K€ 151,6 81,0 GenovaK€ Missioni Cina TOTALE LNS 5,0 Gamma 67,2 array 2 2 1 1,5 3 2 3 4,1 120 5 2 2 4,4 300 200 180 Totale K€ 3 1 2 1,4 1300 120 5 2 1 3,8 200 299,8 67,2 Il gruppo di Torino intende collaborare al progetto NUMEN partecipando ai run pilota che verranno effettuati ai LNS con l'attuale apparato di misura MAGNEX. Inoltre, all'interno dell'R&D per nuovi rivelatori, intende occuparsi dello studio e del progetto dei piani di anodo per i rivelatori a gas che verranno sviluppati per sostenere un rate dell'ordine di 500 kHz, e che hanno la peculiarita' di dover lavorare con isobutano a circa 10 mbar assoluti. Risulta interessante valutare le prestazioni di gem e micromegas con isobutano a bassa pressione, per questo si intende verificare la disponibilita' di prototipi di piccole dimensioni presso altri gruppi e procedere ad effettuare dei test. Si e' pianificato di effettuare anche alcune simulazioni che riguarda la targhetta, per capirne il suo comportamento con il futuro fascio di ioni, disponibile dopo l'upgrade del ciclotrone. Inoltre, grazie alla assegnazione del tempo di un tecnologo meccanico si intende iniziare a studiare e disegnare la geometria dell'odoscopio, in particolare il posizionamento sulla PCB di supporto. Si intende inoltre studiare come questo sistema si affianchi al rivelatore a gas che si trova immediatamente prima, lungo la traiettoria degli ioni. Il disegno delle varie parti deve essere studiato in stretto contatto con le persone che si occupano dell'R&D dei vari rivelatori e dello sviluppo delle simulazioni in modo tale da contribuire attivamente alle scelte che verranno effettuate gia' tenendo conto dell'integrazione. R&D Phase2: Total estimated costs LNS 2016 K€ 2017 K€ 2018 K€ CSN5 0 vs HI-DCE 1. Initial and final states: Parent/daughter states of the 0ββ are the same as those of the target/residual nuclei in the DCE; 2. Spin-Isospin mathematical structure of the transition operator: Fermi, Gamow-Teller and rank-2 tensor together with higher L components are present in both cases; 3. Large momentum transfer: A linear momentum transfer as high as 100 MeV/c or so is characteristic of both processes; 4. Non-locality: both processes are characterized by two vertices localized in two valence nucleons. In the ground to ground state transitions in particular a pair of protons/neutrons is converted in a pair of neutrons/protons so the non-locality is affected by basic pairing correlation length; 5. In-medium processes: both processes happen in the same nuclear medium, thus quenching phenomena are expected to be similar; 6. Relevant off-shell propagation in the intermediate channel: both processes proceed via the same intermediate nuclei off-energy-shell even up to 100 MeV. LNS Factorization of the charge exchange cross-section LNS for single CEX: -decay transition strengths α= Fermi (F) or Gamow Teller (GT) (reduced matrix elements) C.J Guess,et al, PRC 83 064318 (2011) unit cross-section T.N.Taddeucci, et al, Nucl. Phys. A 469 (1987) 125 The factor F(q,) describes the shape of the crosssection distribution as a function of the linear momentum transfer and the excitation energy. In the hypothesis of a surface localized process (for direct quasi elastic processes). In a simple model one can assume that the DCE process is just a second order charge exchange, where projectile and target exchange two uncorrelated isovector virtual mesons. generalization to DCE: unit cross-section In analogy to the single charge-exchange, the dependence of the cross-section from q is represented by a Bessel function. FPD criticity @ high rate Multiwire gas tracker and E stage limited to 1 kHz + Wall of 60 stopping 7 X 5 cm2 Silicon detectors surface covered 100 X 21 cm2 Double-hit probability at 100 kHz > 30% SEGMENTATION !!! 100 kHz From Multiwire gas tracker to GEM gas tracker From 7 X 5 cm2 silicon Wall to 1x1 cm2 telescopes wall Radiation hardness 1014 ions/cm2 in ten years of activity Si detector dead @ 109 implanted ions/cm2 Phase2: Experimental campaign Few experiments to investigate the best working conditions The complete net of reactions involving the multi-step transfer processes with the same initial and final nuclei will be studied LNS Preliminary Work Packages WP WP_1 Attività prevista MAGNEX-SPERIMENTAZIONE Preparazione esperimenti; ottimizzazione Facility; analisi dati; slow-control; bersagli; alimentatori. WP_2 TRACCIATORE Costruzione prototipi e test; disegno rivelatore finale; realizzazione rivelatore finale. WP_3 SISTEMA DI IDENTIFICAZIONE Costruzione prototipi e test; disegno rivelatore finale; realizzazione rivelatore finale. WP_4 WP_5 WP_6 WP_7 WP_8 ELETTRONICA Realizzazione di prototipi dimostratori di diverse tipologie di schede di elettronica; acquisizione dati. GAMMA Test cristalli; disegno rivelatore finale. TEORIA Integrazione tra modelli di struttura e di dinamica; sviluppo teoria DCE. UPGRADE CS ………….. LNS LNS The unit cross section H. Ejiri / Physics Reports 338 (2000) 265} 351 291 In the σ(Ep,A) the specificity of the single or double charge exchange is express through the volume integrals of the potentials: the other factors are general features of the scattering. Single charge-exchange JST Volume integral of the VST potential 288 H. Ejiri / Physics Reports338 (2000) 265} 351 Double charge-exchange JST Volume integral of the VSTGVST potential, where G is the intermediate channel propagator: n n G n En ( Ei E f ) / 2 En is a complex number whose imaginary component represents the off-shell propagation through the virtual intermediate states If known σ(Ep,A) would allow to determine the NME from DCE cross section measurement, whatever is the strenght fragmentation (d,2He) Fig. 17. The(t, He) reaction cross-sections at 03asa function of theB(G¹ ) strengthsdeduced from -decay data. His de"ned as (d )/(d )/K/N" with K" ( / ) (k /k ) [77]. %2 This is what happens in single charge exchange reactions (7Li,7Be) S. Nakayama PRC 60 (1999) 047303 Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 F. Osterfeld Rev. Mod. Phys. 64 (1992) 491 H. Ejiri Phys. Rep. 338 (2000) 256 T.N. Taddeucci Nucl. Phys. A 469 (1997) 125 Fig.12. Themeasured cm cross-sectionsof the(d, He) reactionsat 03asafunction of theG¹ strengthsdeduced from -decay or (p,n) reaction studies. Thesolid lineisa linear "t to thedata [244]. Fig. 18. Cross-sections /( N") for G¹ transitions in the( Li, Be) reactions at 03and B(G¹ ) values. and N" arethe reduced mass and the distortion factor, respectively [197]. B(GT;CEX)/B(GT;-decay) 1 within a few % especially for the strongest transitions Fig. 13. A plane view of RCNP Grand RAIDEN spectrometer and -ray detector arrays, which are used for NUMEN @ INFN A WHAT NEXT project Controlled and supported by the INFN board R&D supported by CSNs Physics case in sinergy with CSNII CSNIII will follow the experimental side and R&D on MAGNEX detectors, excluding the SiC CSNIV will follow the development of suitable theories CSNV will follow the R&D on SiC 120Sn(p,t)118Sn 35 MeV CS @ LNS LNS La GPV è una delle manifestazioni più evidenti delle correlazioni particella-particella, fino ad oggi non ci sono forti evidenze sperimentali a differenza di quanto esiste sulle GDR. Le reazioni di trasferimento di 2 neutroni sono ottime sonde per popolare la GPV I dati acquisiti per vari settaggi del campo dello spettrometro sono mostrati in diversi colori. 120Sn(p,t)118Sn LNS CS @ 35 MeV La presenza di una risonanza larga è stata chiaramente osservata nella regione di energia della GPV. Per estrarne i parametri lo spettro dell’energia di eccitazione è stato fittato nella regione 10 MeV<E*<16 MeV con una funzione Lorenziana + un fondo lineare. La Sezione d’urto della GPV candidata nella regione angolare 8°≤θlab≤12° è σ =1.1 ± 0.1 μb B. Mouginot, et al., PRC 83 (2011) 037302 R&D: a new gas tracker LNS FPD gas vs. GEM tracker Fro m tracker Multiwire gas limited to about 1 kHz To GEM gas tracker to go to 100 kHz R&D key issue : GEM-based tracker at low pressure and wide dynamic range Collaboration with LNF and CERN …for heavier projectiles H. Ejiri / Physics Reports 338 (2000) 265} 351 291 (7Li,7Be) S. Nakayama PRC 60 (1999) 047303 LNS B(GT)[( Li, Be);q = 0] =1± 0.2 B(GT)(bdecay ) 7 7 Confirmed on different nuclei: 11Be, 12B, 15C, 19O (v. F.Cappuzzello et al Nucl.Phys.A 739(2004) 30-56) Microscopic and unified theory of reaction and structure is mandatory for quantitative analyses Fig. 17. The (t, He) reaction cross-sections at 03as a function of the B(G¹ ) strengths deduced from -decay data. His de" ned as (d )/(d )/K /N" with K " ( / ) (k /k ) [ 77] . %2 Best results for transitions among isospin multiplets in the projectiles as (7Ligs(3/2-),7Begs(3/2-)) (18Ogs(0+),18Fgs(1+)) should be better than (7Li,7Be) even if not really explored to now Fig. 18. Cross-sections /( N" ) for G¹ transitions in the ( Li, Be) reactions at 03and B(G¹ ) values. and N" are the reduced mass and the distortion factor, respectively [ 197] . Connection between -decay and Single Charge Exchange LNS Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 F. Osterfeld Rev. Mod. Phys. 64 (1992) 491 H. Ejiri Phys. Rep. 338 (2000) 256 T.N. Taddeucci Nucl. Phys. A 469 (1997) 125 (3He,t): In general for B(GT)>0.05 (3He,t): in general for B(GT) 2Jπ 3+ 2.98 3+ 2.88 5+ 2.74 5+ 2.65 7+ 2.21 7+ 2.17 3+ 1.01 3+ 0.98 2Jπ (3He,t) 5+ 27 3 B(GT)[( He,t);q = 0] > 0.05 =1± 0.05 Similar results for the 288 H. Ejiri / Physics Reports338 (2000) 265} 351 B(GT)[bdecay ] (d,2He) g.s. 13Al14 Tz=1/2 decay 5+ 27 g.s. 14Si13 Tz=-1/2 Fig.12. Themeasured cm cross-sectionsof the(d, He) reactionsat 03asafunction of theG¹ strengthsdeduced from -decay or (p,n) reaction studies. Thesolid lineisa linear "t to thedata [244]. NME: 2 vs 0 NME 0 - decay NME 2 - decay 2 1 / T12 (0 0 ) G2 M 2 2 0 Can be determined via charge-exchange reactions in the (n,p) and (p,n) direction ( e.g. (d,2He) or (3He,t) ) 1 / T12 (0 0 ) G0 M q-transfer like ordinary β-decay (q ~ 0.01 fm-1 ~ 2 MeV/c) only allowed decays possible ΔJ = 0 or 1 Single state LN S 0 2 neutrino enters as virtual particle, q~0.5fm-1 (~ 100 MeV/c) degree of forbiddeness weakened m 2 me NOT (easily) accessible via charge-exchange reactions n n G dominance n En ( Ei E f ) / 2 Closure approximation LNS Particle identification Z identification A identification 1600 20 p Br = q 18 1400 16 1200 X 2 foc m µ 2 Eresid q 0 30 14 -0.05 1000 22Ne 12 Na 21Ne 20Ne 25 19Ne 18Ne -0.1 10 800 20 600 8 F 6 4 400 Xfoc(m) Ne -0.15 -0.2 15 -0.25 10 2 200 1900 2000 2100 2200 2300 2400 2500 2600 2700 -0.3 Eresid (ch) 5 -0.35 A. Cunsolo, et al., NIMA484 (2002) 56 A. Cunsolo, et al., NIMA481 (2002) 48 F. Cappuzzello et al., NIMA621 (2010) 419 F. Cappuzzello, et al. NIMA638 (2011) 74 -0.4 1900 2000 2100 2200 2300 2400 2500 2600 Eresid (ch) 52 FPD criticity @ high rates 1 2 TRACKER : Space charge limits to few hundreds Hz / cm Silicon detector damaging : 10 detetectors broken/12days beam in 3.6 mC total integrated charge LNS R&D: Ion identification LNS High rates : standard technologies ( Si) vs. new ones ( SiC crystals) Silicon detectors double hits (high segmentation-high costs) radiation hardness at 00 rate limit 109 ions/cm2 Si death in few days Rate limit SiC crystals Preserves good Si properties Much harder to radiations double hits (high segmentation-high cos Irradiations tests: around 1013 ions 12C @ 62 AMeV at LNS in collaboration with CNR Rate limit R&D: to built a realiable number of epitaxial SiC, in order to built a telescopes wall of epitaxial SiC (100 μm and surface of 1cm2 ) for energy loss + CsI (1 cm) for residual energy ; decupling tracking from ion identification. R&D : exclusive measurements LNS SCINTILLATORS ARRAY Detecting γ-rays in coincidende with MAGNEX to: improve energy resolution from the present limit of ≈ 1 MeV for 50 MeV/u heavy ions (1/1000 of 1 GeV 18Ne), mandatory for DCE reactions. Work with an intense flux of γ-rays and neutrons to optimize signal-to-noise ratio and reduce spurious coincidences. Work done on HPGe and LaBr3 by other collaborations that can be used for this purpose; CsI or NaI seems more promising for high rates applications. Members of the Italian-Brasilian (INFN-IFUSP-IFUFF collaboration MoU) collaboration are interested to collaborate on this topics with possible in-kind contribution in the future development of NUMEN. R&D: increase the magnetic rigidity LNS Present day magnetic rigidity : 1.8 Tm i.e. 50 MeV/u 18Ne10+ and ≈ 30 MeV/u 20 O8+ To extend the dynamical conditions magnetic rigidity : 2.8 Tm requires superconducting magnets with present MAGNEX optical layout Power supply upgrade to obtain 2.1-2.2 Tm i.e. 70 MeV/u 18Ne10+ and ≈ 42 MeV/u 20O 8+ Previous experimental attempts 2.1.2 Recent at t empt s LN S Theinterest in thestudy of theheavy-ion doublechargeexchangereaction iss demonstrated by recent activity reports [80–82]. Indeed, Matsubara et al., ha Few experimental attempts used heavy-ion charge exchange ( 18O,18Ne) reaction as probe to stud not conclusive because of the very poor yields in the measured energy spectradouble and the lack of angular distributions, due to the very low cross-sections involved. rich nuclei. The authors have focused their attention on investigations of unb not easy to measure, in the same experimental conditions, the different competitive reaction channels. 12 and Be nuclei populated the stable 9Be and 12C ones. The experiment was at Research Center for Nuclear Physics (RCNP) of the Osaka University. 40Ca(14C,14O)40Ar beam of 18O was accelerated at 80 MeV/ u. The ejectiles were detected and a Benchmark for developing the DCE reaction the Grand Raiden spectrometer. Fig.2.6 preliminary energy model, using DCE as ashows powerful toolexcitation for 18 nuclei. for the ( 18O, unstable Ne) reactions at 0◦ on 9Be and 12C, respectively. The author @ 51 MeV RCNP - Osaka 10° < θlab < 30° Q = 4.8 MeV 24Mg(18O,18Ne)24Ne @ 124 MeV θlab = 8° Q = -14.1 MeV J. Cerny, et al., Proc. 3° Int. Conf. on Nuclei Far from Stability, Cargese, 1976 D.M.Drake, et al., Phys. Rev. Lett. 45 (1980) 1765 C.H.Dasso, et al., Phys. Rev. C 34 (1986) 743 Figur e 2.6: Excitation energy spectra of 9 He and 12 Be for the ( 18 O, 18 Ne) rea 0◦ on 9 Be and 12 C, respectively.[80] More about NME LNS 0 2 M 0 ˆ O g A2 i j i j i, j 2 gV i j i, j 0 ˆ f O i 2 For L = 0 decays Gamow-Teller like Fermi like Warning: Normally the coupling constants gA and gV are kept out form the matrix element and we talk of reduced matrix elements M 0 2 2 M B 58 NUMEN requirements 1x1 cm2 E-E telescope thickness of E stage 100 m thickness of E stage 500-1000 m hard to the radiation damage good energy resolution (1-2 %) High stability (electric and thermal) RD50 - CERN Property Eg [eV] Ebreakdown [V/cm] e [cm2/Vs] h [cm2/Vs] vsat [cm/s] Z r e-h energy [eV] Density [g/cm3] Displacem. [eV] Diamond 5.5 107 1800 1200 2.2·107 6 5.7 13 3.515 43 GaN 3.39 4·106 1000 30 31/7 9.6 8.9 6.15 15 4H SiC 3.26 2.2·106 800 115 2·107 14/6 9.7 7.6-8.4 3.22 25 Si 1.12 3·105 1450 450 0.8·107 14 11.9 3.6 2.33 13-20 NUMEN Wide bandgap (3.3eV) lower leakage current than silicon Signal (for MIP !): Diamond 36 e/m SiC 51 e/m Si 89 e/m more charge than diamond Si/SiC≈2 Higher displacement threshold than silicon radiation harder than silicon LNS The unconfermed claim on 76Ge Claim from the re-analysis of the Heidelberg-Moscow data Klapdor-Kleingrothaus et al. NIM A 522 (2004) PLB 586 (2004) • Unconfirmed (and controversial) claim • Dominates the field since 2004 • Difficult to scrutinize by experiments not using 76Ge because of NME uncertainties A later publication by the same group (Mod. Phys. Lett. A 21, 1547 (2006)) reports T1/20ν = 2.23 x1025 yr after PSD analysis. Inconsistencies have been pointed out (missing efficiency factors!) in the conversion counts T1/2 Klapdor-Kleingrothaus et al., NIM A 522 (2004), PLB 586 (2004): • 71.7 kg yr • Bgd 0.17 / (kg yr keV) • 28.75 ± 6.87 events (bgd:~60) • Claim: 4.2 evidence for 0ββ • reported T1/20ν = 1.19 x1025 yr R&D : front -end and read – out electronics ELECTRONICS PROTOTYPES (coll. Sez. Ct) 1) ASIC front – end chip: for FPD chip VMM2 in collaboration with Prof.G.De Geronimo ( Head of Microelectronics-Instrumentation Division of Brookhaven National Laboratory (NY,USA); for PM and PM-like signal chip DRS3 commercial delivered by PSI. 2) Read – out : new generation of FPGA and System On Module (SOM) LNS Methodology for NME 2 decay Assumption (Fermi Surface Quasiparticle Approximation): all the signs are positive in the coherent sum of the amplitudes, for particle-hole, near to the Fermi surface) (3He,t) (β– type) 1 / T122 (0 0 ) G2 M (d, 2He) (β+ type) 2 2 LNS Preliminary time table for NUMEN R&D activities LNS 63 Methodology for NME 0 decay 0 40.0 Decomposition of MGT 30.0 20.0 10.0 0.0 + + + + + + + + - - - - - - - 1 2 3 4 5 6 7 8 01 2 3 4 5 6 7 gpp = 0.89 gpp = 1.00 gpp = 0.96 gpp = 1.05 1 / T12 (0 0 ) G0 M DCE -10.0 J. Suhonen, Phys. Lett B607, 87 (2005) 0 2 m me 2 LNS 40Ca(18O,18Ne)40Ar Projectile 18O 18Ne 18F 1+ 2.73 g.s. 40K Super-allowed transition GT strength not fragmented 1+ 4- Target GT strength not much fragmented g.s. g.s. 40Ar 0+ 40Ca 0+ Y. Fujita, private communication About 40Ca ground state 1f5/2 1f7/2 1d3/2 2s1/2 1d5/2 1p1/2 1p3/2 1s1/2 n p n p n p |40Cag.s.>=0.88|[1d3/21d3/2]0+> +0.06 |[1f7/21f7/2]0+>+0.06 |[1f5/21f5/2]0+> Pauli blocked Double Charge Exchange on 40Ca ground state 1f5/2 1f5/2 1f7/2 1f7/2 1d3/2 1d3/2 2s1/2 2s1/2 1d5/2 1d5/2 1p1/2 1p1/2 1p3/2 1p3/2 1s1/2 1s1/2 n p 40Ca g.s. n p 40K g.s. p n 40Ar g.s. The role of the involved nuclei LNS The nucleon transfer reaction cross sections can be deduced from simple dynamic considerations, according to semi-classical arguments, when the incident energy is above the Coulomb barrier. Assuming a mechanism where a cluster is transferred: the cross section tends to maximize within a Q-window, which depends on the reaction Qgg, on the target, on the projectile radii and on the incident energy. Brink’s matching conditions D.M. Brink, Phys. Lett. B 40 (1972) 37-40 k k0 1 / R1 2 / R2 0 L 2 1 1 k0 ( R1 R2 ) Qeff R / v 0 2 l1 1 even l 2 2 even k0 mv / Qeff Q ( Z 1f Z 2f Z 1i Z 2i ) The survival of a preformed pair in a transfer process is favoured when the initial and final orbitals are the same