2.1 Semiconductor Physics In the problems assume the parameter given in
by user
Comments
Transcript
2.1 Semiconductor Physics In the problems assume the parameter given in
2.1 Semiconductor Physics In the problems assume the parameter given in eV and material B has a bandgap energy of 1.2 eV. following table. Use the temperature T = 300 K unless The ratio of intrinsic concentration of material A to otherwise stated. that of material B is Property Si Ga As Bandgap Energy 1.12 1.42 0.66 Dielectric Constant 11.7 13.1 16.0 Effective density of states in conduction band Nc (cm-3) 2.8 ´ 10 Effective density of states in valence band Nv (cm-3) 1.04 ´ 1019 Intrinsic carrier concertration ni (cm-3) Mobility Electron Hole Ge (A) 2016 (B) 47.5 (C) 58.23 (D) 1048 4. In silicon at T = 300 K the thermal-equilibrium concentration of electron is n0 = 5 ´ 10 4 cm -3. The hole concentration is 19 4.7 ´ 10 17 7.0 ´ 1018 1.04 ´ 10 19 6.0 ´ 1018 (A) 4.5 ´ 1015 cm -3 (B) 4.5 ´ 1015 m -3 (C) 0.3 ´ 10 -6 cm -3 (D) 0.3 ´ 10 -6 m -3 5. In silicon at T = 300 K if the Fermi energy is 0.22 eV above the valence band energy, the value of p0 is 1.5 ´ 10 1.8 ´ 10 2.4 ´ 10 1350 480 8500 400 3900 1900 10 6 18 1. In germanium semiconductor material at T = 400 K the intrinsic concentration is (A) 26.8 ´ 1014 cm -3 (B) 18.4 ´ 1014 cm -3 (C) 8.5 ´ 1014 cm -3 (D) 3.6 ´ 1014 cm -3 (A) 2 ´ 1015 cm -3 (B) 1015 cm -3 (C) 3 ´ 1015 cm -3 (D) 4 ´ 1015 cm -3 6. The thermal-equilibrium concentration of hole p0 in silicon at T = 300 K is 1015 cm -3. The value of n0 is (A) 3.8 ´ 108 cm -3 (B) 4.4 ´ 10 4 cm -3 (C) 2.6 ´ 10 4 cm -3 (D) 4.3 ´ 108 cm -3 7. In germanium semiconductor at T = 300 K, the acceptor concentrations is N a = 1013 cm -3 and donor concentration is N d = 0. The thermal equilibrium concentration p0 is 2. The intrinsic carrier concentration in silicon is to be no greater than ni = 1 ´ 1012 cm -3. The maximum temperature allowed for the silicon is (Assume (A) 2.97 ´ 10 9 cm -3 (B) 2.68 ´ 1012 cm -3 (C) 2.95 ´ 1013 cm -3 (D) 2.4 cm -3 Statement for Q.8-9: In germanium semiconductor at T = 300 K, the E g = 112 . eV) (A) 300 K (B) 360 K (C) 382 K (D) 364 K impurity concentration are N d = 5 ´ 1015 cm -3 and N a = 0 3. Two semiconductor material have exactly the same 8. The thermal equilibrium electron concentration n0 properties except that material A has a bandgap of 1.0 is www.nodia.co.in 108 Semiconductor Physics (A) 5 ´ 1015 cm -3 (C) 115 . ´ 10 cm 9 (B) 115 . ´ 1011 cm -3 -3 (D) 5 ´ 10 cm 6 position of Fermi level with respect to the center of the bandgap is -3 9. The thermal equilibrium hole concentration p0 is (A) 396 . ´ 1013 (B) 195 . ´ 1013 cm -3 (C) 4.36 ´ 1012 cm -3 (D) 396 . ´ 1013 cm -3 boron at a concentration of 2.5 ´ 10 cm 1 ´ 10 -3 13 arsenic at a concentration of (A) +0.045 eV (B) - 0.046 eV (C) +0.039 eV (D) - 0.039 eV 16. A silicon sample contains acceptor atoms at a concentration of N a = 5 ´ 1015 cm -3. Donor atoms are 10. A sample of silicon at T = 300 K is doped with 13 Chap 2.1 added forming and n - type compensated and with semiconductor such that the Fermi level is 0.215 eV cm -3. The below the conduction band edge. The concentration of material is donors atoms added are (A) p - type with p0 = 15 . ´ 1013 cm -3 (A) 12 . ´ 1016 cm -3 (B) 4.6 ´ 1016 cm -3 (B) p - type with p0 = 15 . ´ 10 7 cm -3 (C) 39 . ´ 1012 cm -3 (D) 2.4 ´ 1012 cm -3 (C) n - type with n0 = 15 . ´ 1013 cm -3 17. A silicon semiconductor sample at T = 300 K is (D) n - type with n0 = 15 . ´ 10 7 cm -3 doped with phosphorus atoms at a concentrations of 11. In a sample of gallium arsenide at T = 200 K, n0 = 5 p0 and N a = 0. The value of n0 is (A) 9.86 ´ 10 9 cm -3 (B) 7 cm -3 (C) 4.86 ´ 10 3 cm -3 (D) 3 cm -3 12. Germanium at T = 300 K is uniformly doped with -3 an acceptor concentration of N a = 10 cm and a donor 15 concentration of N d = 0. The position of fermi energy with respect to intrinsic Fermi level is 1015 cm -3. The position of the Fermi level with respect to the intrinsic Fermi level is (A) 0.3 eV (B) 0.2 eV (C) 0.1 eV (D) 0.4 eV 18. A silicon crystal having a cross-sectional area of 0.001 cm 2 and a length of 20 mm is connected to its ends to a 20 V battery. At T = 300 K, we want a current of 100 mA in crystal. The concentration of donor atoms to be added is (A) 0.02 eV (B) 0.04 eV (A) 2.4 ´ 1013 cm -3 (B) 4.6 ´ 1013 cm -3 (C) 0.06 eV (D)0.08 eV (C) 7.8 ´ 1014 cm -3 (D) 8.4 ´ 1014 cm -3 13. In germanium T = 300 at concentration are N d = 10 14 cm -3 K, the donor N a = 0. The and Fermi energy level with respect to intrinsic Fermi level is (A) 0.04 eV (B) 0.08 eV (C) 0.42 eV (D) 0.86 eV 14. A GaAs device is doped with a donor concentration 19. The cross sectional area of silicon bar is 100 mm 2 . The length of bar is 1 mm. The bar is doped with arsenic atoms. The resistance of bar is (A) 2.58 mW (B) 11.36 kW (C) 1.36 mW (D) 24.8 kW 20. A thin film resistor is to be made from a GaAs film doped n - type. The resistor is to have a value of 2 kW. of 3 ´ 1015 cm -3. For the device to operate properly, the The resistor length is to be 200 mm and area is to be intrinsic carrier concentration must remain less than 10 -6 cm 2 . The doping efficiency is known to be 90%. 5% The mobility of electrons is 8000 of the total concentration. The maximum cm 2 V - s. The temperature on that the device may operate is doping needed is (A) 763 K (B) 942 K (A) 8.7 ´ 1015 cm -3 (B) 8.7 ´ 10 21 cm -3 (C) 486 K (D) 243 K (C) 4.6 ´ 1015 cm -3 (D) 4.6 ´ 10 21 cm -3 15. For a particular semiconductor at T = 300 K E g = 15 . eV, m = 10 m * p * n and ni = 1 ´ 10 15 -3 cm . The 21. A silicon sample doped n - type at 1018 cm -3 have a resistance of 10 W . The sample has an area of 10 -6 www.nodia.co.in Chap 2.1 Semiconductor Physics 109 cm 2 and a length of 10 mm . The doping efficiency of 27. For a sample of GaAs scattering time is t sc = 10 -13 s the sample is (m n = 800 cm 2 V - s) and electron’s effective mass is me* = 0.067 mo . If an (A) 43.2% (B) 78.1% electric field of 1 kV cm is applied, the drift velocity (C) 96.3% (D) 54.3% produced is 22. Six volts is applied across a 2 cm long (A) 2.6 ´ 106 cm s (B) 263 cm s (C) 14.8 ´ 10 (D) 482 6 cm s semiconductor bar. The average drift velocity is 10 4 28. A gallium arsenide semiconductor at T = 300 K is cm s. The electron mobility is (A) 4396 cm V - s (B) 3 ´ 10 cm V - s doped with impurity concentration N d = 1016 cm -3. The (C) 6 ´ 10 4 cm 2 V - s (D) 3333 cm 2 V - s mobility m n is 7500 cm 2 V - s. For an applied field of 2 4 2 10 V cm the drift current density is 23. For a particular semiconductor material following (A) 120 A cm 2 (B) 120 A cm 2 parameters are observed: (C) 12 ´ 10 4 A cm 2 (D) 12 ´ 10 4 A cm 2 m n = 1000 cm 2 V - s , 29. In a particular semiconductor the donor impurity m p = 600 cm 2 V - s , concentration is N d = 1014 cm -3. Assume the following N c = N v = 1019 cm -3 These parameters, parameters temperature. The are measured independent conductivity -6 intrinsic material is s = 10 (W - cm) -1 m n = 1000 cm 2 V - s, of of the æ T ö N c = 2 ´ 1019ç ÷ è 300 ø at T = 300 K. The conductivity at T = 500 K is (A) 2 ´ 10 -4 (W - cm) -1 (B) 4 ´ 10 -5 (W - cm) -1 (C) 2 ´ 10 -5 (W - cm) -1 (D) 6 ´ 10 -3 (W - cm) -1 æ T ö N v = 1 ´ 1019ç ÷ è 300 ø 32 cm -3, 32 cm -3, . eV. E g = 11 24. An n - type silicon sample has a resistivity of 5 W - cm at T = 300 K. The mobility is m n = 1350 cm 2 V - s. The donor impurity concentration is (A) 2.86 ´ 10 -14 cm -3 (C) 11.46 ´ 10 cm 15 25. (B) 9.25 ´ 1014 cm -3 -3 (D) 11 . ´ 10 -15 cm -3 An electric field of E = 10 V cm is applied. The electric current density at 300 K is (A) 2.3 A cm 2 (B) 1.6 A cm 2 (C) 9.6 A cm 2 (D) 3.4 A cm 2 Statement for Q.30-31: In a silicon sample the electron concentration drops linearly from 1018 cm -3 to 1016 cm -3 over a length A semiconductor has following parameter of 2.0 mm. The current density due to the electron m n = 7500 cm 2 V - s, diffusion current is ( Dn = 35 cm 2 s). m p = 300 cm 2 V - s, (A) 9.3 ´ 10 A cm 4 (B) 2.8 ´ 10 A cm 2 4 (C) 9.3 ´ 10 9A cm 2 2 ni = 3.6 ´ 1012 cm -3 (D) 2.8 ´ 10 9 A cm 2 30. 26. In a GaAs sample the electrons are moving under an electric field of 5 kV cm and 16 concentration is uniform at 10 the carrier -3 cm . The electron 7 When conductivity is minimum, the hole concentration is (A) 7.2 ´ 1011 cm -3 (B) 1.8 ´ 1013 cm -3 (C) 1.44 ´ 1011 cm -3 (D) 9 ´ 1013 cm -3 velocity is the saturated velocity of 10 cm s. The drift 31. The minimum conductivity is current density is (A) 1.6 ´ 10 A cm 4 (C) 1.6 ´ 108 A cm 2 2 2 (A) 0.6 ´ 10 -3 (W - cm) -1 (B) 17 . ´ 10 -3 (W - cm) -1 (D) 2.4 ´ 108 A cm 2 (C) 2.4 ´ 10 -3 (W - cm) -1 (D) 6.8 ´ 10 -3 (W - cm) -1 (B) 2.4 ´ 10 A cm 4 www.nodia.co.in 110 Semiconductor Physics 32. A particular intrinsic semiconductor has a Chap 2.1 æ -x ö ç ÷ ç Lp ÷ ø Hole concentration p0 = 1015 e è resistivity of 50 (W - cm) at T = 300 K and 5 (W - cm) at T = 330 K. If change in mobility with temperature is cm -3,x ³ 0 æ -x ö ÷ ç neglected, the bandgap energy of the semiconductor is Electron concentration n0 = 5 ´ 1014 e è L n ø cm -3,x £ 0 (A) 1.9 eV (B) 1.3 eV Hole diffusion coefficient Dp = 10 cm 2 s (C) 2.6 eV (D) 0.64 eV Electron diffusion coefficients Dn = 25 cm 2 s a Hole diffusion length Lp = 5 ´ 10 -4 cm, semiconductor. If only the first mechanism were Electron diffusion length Ln = 10 -3 cm 33. Three scattering mechanism exist in present, the mobility would be 500 cm V - s. If only 2 the second mechanism were present, the mobility The total current density at x = 0 is would be 750 cm 2 V - s. If only third mechanism were (A) 1.2 A cm 2 (B) 5.2 A cm 2 present, the mobility would be 1500 cm 2 V - s. The net (C) 3.8 A cm 2 (D) 2 A cm 2 mobility is (A) 2750 cm 2 V - s (B) 1114 cm 2 V - s (C) 818 cm 2 V - s (D) 250 cm 2 V - s 37. A germanium Hall device is doped with 5 ´ 1015 donor atoms per cm 3 at T = 300 K. The device has the geometry d = 5 ´ 10 -3 cm, W = 2 ´ 10 -2 cm and L = 0.1 34. In a sample of silicon at T = 300 K, the electron cm. The current is I x = 250 mA, the applied voltage is mV, and the magnetic flux is Bz = 5 ´ 10 -2 concentration varies linearly with distance, as shown Vx = 100 in fig. P2.1.34. The diffusion current density is found tesla. The Hall voltage is to be J n = 0.19 A cm . If the electron diffusion (A) -0.31mV (B) 0.31 mV coefficient is Dn = 25 cm s, The electron concentration (C) 3.26 mV (D) -3.26 mV 2 2 at is Statement for Q.38-39: A silicon Hall device at T = 300 K has the n(cm-3) 5´10 14 geometry d = 10 -3 cm , W = 10 -2 cm, L = 10 -1 cm. The following parameters are measured: I x = 0.75 mA, Vx = 15 V, V H = +5.8 mV, tesla n(0) 0.010 0 x(cm) 38. The majority carrier concentration is Fig. P2.1.34 (A) 4.86 ´ 10 cm 8 -3 (C) 9.8 ´ 10 26 cm -3 (A) 8 ´ 1015 cm -3, n - type -3 (B) 8 ´ 1015 cm -3, p - type (D) 5.4 ´ 1015 cm -3 (C) 4 ´ 1015 cm -3, n - type (B) 2.5 ´ 10 cm 13 35. The hole concentration in p - type GaAs is given by 39. The majority carrier mobility is xö æ p = 1016 ç 1 - ÷ cm -3 for 0 £ x £ L Lø è where L = 10 mm. The hole diffusion coefficient is 10 cm 2 s. The hole diffusion current density at x = 5 mm is (A) 20 A cm 2 (B) 16 A cm 2 (C) 24 A cm 2 (D) 30 A cm 2 (A) 430 cm 2 V - s (B) 215 cm 2 V - s (C) 390 cm 2 V - s (D) 195 cm 2 V - s 40. In a semiconductor n0 = 1015 cm -3 and ni = 1010 cm -3. The excess-carrier life time is 10 -6 s. The excess hole concentration is dp = 4 ´ 1013 cm -3. electron-hole recombination rate is 36. For a particular semiconductor sample consider following parameters: (D) 4 ´ 1015 cm -3, p - type (A) 4 ´ 1019 cm -3s -1 (B) 4 ´ 1014 cm -3s -1 (C) 4 ´ 10 24 cm -3s -1 (D) 4 ´ 1011 cm -3s -1 www.nodia.co.in The Chap 2.1 Semiconductor Physics 111 41. A semiconductor in thermal equilibrium, has a Solutions hole concentration of p0 = 1016 cm -3 and an intrinsic concentration of ni = 1010 cm -3. The minority carrier life time 4 ´ 10 -7s. is The thermal equilibrium recombination rate of electrons is 1. (D) n = N c N v e 2 i æ -Eg ö -ç ç kT ÷÷ è ø (A) 2.5 ´ 10 22 cm -3 s -1 (B) 5 ´ 1010 cm -3 s -1 æ 400 ö Vt = 0.0259ç ÷ = 0.0345 è 300 ø (C) 2.5 ´ 1010 cm -3 s -1 (D) 5 ´ 10 22 cm -3 s -1 For Ge at 300 K, N c = 104 . ´ 1019, N v = 6.0 ´ 1018 , E g = 0.66 eV Statement for Q.42-43: æ 0 .66 ö 3 concentration of N d = 106 cm -3. The minority carrier -ç ÷ æ 400 ö 0 .0345 ø ni2 = 104 . ´ 1019 ´ 6.0 ´ 1018 ´ ç ÷ ´e è è 300 ø hole lifetime is t p 0 = 10 m s. Þ A n-type silicon sample contains a donor 42. The thermal equilibrium generation rate of hole is ni = 8.5 ´ 1014 cm -3 æ -Eg ö -ç ç kT ÷÷ è ø (A) 5 ´ 108 cm -3 s -1 (B) 10 4 cm -3 s -1 2. (C) n = N c N v e (C) 2. 25 ´ 10 9 cm -3 s -1 (D) 10 3 cm -3 s -1 æ T ö - çè (1012 ) 2 = 2.8 ´ 1019 ´ 104 . ´ 1019ç ÷ e è 300 ø 2 i 3 43. The thermal equilibrium generation rate for 3 T e electron is (A) 1125 . ´ 10 9 cm -3 s -1 (B) 2.25 ´ 10 9 cm -3 s -1 (C) 8.9 ´ 10 -10 cm -3 s -1 (D) 4 ´ 10 9 cm -3 s -1 -13´10 3 T = 9.28 ´ 10 -8 , By trial T = 382 K - 44. A n -type silicon sample contains a donor concentration of N d = 1016 cm -3. The minority carrier hole lifetime is t p 0 = 20 m s. The lifetime of the majority (B) 8.9 ´ 10 -6 s (C) 4.5 ´ 10 -17 s (D) 113 . ´ 10 -7 E gA 4. (A) p0 = 45. In a silicon semiconductor material the doping concentration are N a = 1016 cm -3 and N a = 0. The = 2257.5 Þ - 6. (B) p0 = N v e ( EF - Ev ) - kT -0 .22 = 104 . ´ 1019 e 0 .0259 = 2 ´ 1015 cm -3 ( EF - Ev ) kT Þ æN ö EF - Ev = kT ln ç v ÷ è p0 ø equilibrium recombination rate is Rp 0 = 1011 cm -3s -1 . A At 300 K, N v = 10 . ´ 1019 cm -3 uniform generation rate produces an excess- carrier æ 104 . ´ 1019 ö EF - Ev = 0.0259 lnç ÷ = 0. 239 eV 1015 è ø concentration of dn = dp = 1014 cm -3. The factor, by which the total recombination rate increase is (A) 2.3 ´ 1013 (B) 4.4 ´ 1013 (C) 2.3 ´ 10 9 (D) 4.4 ´ 10 9 niA = 47.5 niB ni2 (15 . ´ 1010 ) 2 = = 4.5 ´ 1015 cm -3 n0 5 ´ 10 4 5. (A) p0 = N v e s æ E gA - E gB ö ÷÷ kT ø -ç ç n2 e kT 3. (B) iA = E gB = e è 2 niB e kT carrier is ( ni = 15 . ´ 1010 cm -3) (A) 8.9 ´ 106 s æ 1 .12 e ö ÷ kT ø ( Ec - EF ) n0 = N c e kT At 300 K, N c = 2.8 ´ 1019 cm -3 Ec - EF = 112 . - 0. 239 = 0.881 eV n0 = 4.4 ´ 10 4 cm -3 *********** 2 7. (C) p0 = Na - Nd N ö æ + ç N a - d ÷ + ni2 2 2 ø è For Ge ni = 2.4 ´ 10 3 2 p0 = www.nodia.co.in æ 1013 ö 1013 + ç ÷ + (2.4 ´ 1013) 2 = 2.95 ´ 1013 cm -3 2 2 è ø 112 Semiconductor Physics 2 8. (A) n0 = 2 Nd - Na N ö æ + ç N d - a ÷ + ni2 2 2 ø è n0 = 2 = Chap 2.1 æ 5 ´ 1015 ö 5 ´ 1015 + ç ÷ + (2.4 ´ 1013) 2 = 5 ´ 1015 cm -3 2 2 è ø æ 1014 ö 1014 + ç . ´ 1014 cm -3 ÷ + (2.4 ´ 1013) 2 = 1055 2 2 è ø æn ö æ 1055 . ´ 1014 ö EF - EFi = kT ln ç 0 ÷ = 0.0259 ln ç ÷ 13 è ni ø è 2.4 ´ 10 ø = 0.0383 eV n2 (2.4 ´ 1013) 2 9. (B) p0 = i = = 195 . ´ 1013 cm -3 p0 2.95 ´ 1013 2 14. (A) n0 = 10. (A) Since N a > N d , thus material is p-type , p0 = N a - N d = 2.5 ´ 10 - 1 ´ 10 = 15 . ´ 10 cm 3 3 13 ni = 0.05 n0 -3 æ 200 ö 11. (D) kT = 0.0259ç ÷ = 0.0173 eV è 300 ø æ 1 .42 ö n02 5 15. (A) EFi - Emidgap = . ´ 10 cm N c = 104 -3 , N v = 6 ´ 10 18 3 æ 400 ö ni2 = 104 . ´ 1019 ´ 6 ´ 1018 ç ÷ e è 300 ø cm 0 .66 ö - æç ÷ è 0 .0345 ø -3 , E g = 0.66 eV = 7. 274 ´ 10 29 Ec - EF ö ÷ kT ø N d = 5 ´ 1015 + 2.8 ´ 1019 e 0 .215 ö - æç ÷ è 0 .0259 ø = 119 . ´ 1016 cm -3 æN ö 17. (A) EF - EFi = kT ln ç d ÷ è Ni ø æ 1015 ö = 0.0259 ln ç ÷ = 0.287 eV . ´ 1010 ø è 15 ni = 8.528 ´ 1014 cm -3 2 Na æN ö + ç a ÷ + ni2 2 è 2 ø 2 æ 10 ö 10 + ç ÷ + 7. 274 ´ 10 29 2 è 2 ø p0 = 1.489 ´ 1015 cm -3 æ p ö æ 1.489 ´ 1015 ö EFi - EF = kT ln ç 0 ÷ = 0.0345 ln ç ÷ 14 è n0 ø è 8.528 ´ 10 ø = 0.019 eV 18. (D) R = s= Nd æN ö + ç d ÷ + ni2 2 è 2 ø For Ge at T = 300 K, ni = 2.4 ´ 1013 cm -3 V 20 = = 200 W I 100m L 2 ´ 10 -3 = = 0.01( W - cm) -1 RA (200) (0.001) s » em n n0 , For Si, m n = 1350. Þ 0.01 = (1.6 ´ 10 -19)(1350)n0 n0 = 4.6 ´ 1013 cm -3, n0 >> ni 2 13. (A) n0 = - æç è For Si, N c = 2.8 ´ 1019 cm -3 19 Þ æ 1 .42 ´300 ö æ mp* ö 3 kT ln ç * ÷ = 0.0446 eV çm ÷ 4 è pø 16. (A) n0 = N d - N a = N c e For Ge at 300 K, = E g = 1.42 eV N v = 7 ´ 1018 , By trial and error T = 763 K æ -Eg ö -ç ç kT ÷÷ è ø 15 For GaAs at T = 300 K, æ T ö - çè 0 .0259T ÷ø (1504 . ) 2 = 4.7 ´ 1017 ´ 7 ´ 1018 ç ÷ e è 300 ø æ 400 ö 12. (A) kT = 0.0259ç ÷ = 0.0345 eV è 300 ø 15 æ -Eg ö -ç ç kT ÷÷ è ø 3 n0 = 5 ni = 3.3 cm -3 p0 = . n0 = 30075 ´ 1015 cm -3 N c = 4.7 ´ 1017, ni = 1.48 cm -3 ni2 = N c N v e Þ n = Nc Nv e E g = 1.42 eV N v = 7.0 ´ 1018 , 3 ni2 = n0 p0 = 5 p02 = n0 = 15 . ´ 1015 + (15 . ´ 1015) 2 + (0.05 n0 ) 2 2 i æ 200 ö - çè 0 .0173 ÷ø ni2 = 4.7 ´ 1017 ´ 7.0 ´ 1018 ç ÷ e è 300 ø Þ Þ ni = 1504 . ´ 1014 cm -3 For GaAs at 300 K, N c = 4.7 ´ 1017 cm -3, Nd æN ö + ç d ÷ + ni2 2 è 2 ø Þ n0 = N d 19. (B) N d >> ni R= www.nodia.co.in Þ L L , = s A em n N d A n0 = N d , s » e m n n0 , Chap 2.1 = Semiconductor Physics (1.6 ´ 10 0.1 = 11.36 kW )(1100)(5 ´ 1016 )(100 ´ 10 -8 ) -19 L , sA 20. (A) R = Þ n0 = s » e m n n0 , R= L em n n0 A et sc E (1.6 ´ 10 -19)(10 -13)(10 5) = (0.067)(9.1 ´ 10 -31 ) me* = 26.2 ´ 10 3 m s = 2.6 ´ 106 cm s L em n AR 28. (A) N d >> ni -4 20 ´ 10 = 8.7 ´ 1015 cm -3 (0.9)(1.6 ´ 10 )( 8000)(10 -6 )(2 ´ 10 3) Þ J = em n n0 E = (1.6 ´ 10 -19 21. (B) s » e m n n0 , R = = 26. (A) J = evn = (1.6 ´ 10 -19)(10 7)(1016 ) = 1.6 A cm 2 27. (A) vd = n0 = 0.9 N d = 113 L L , n0 = sA em n AR 10 ´ 10 -4 = 7.81 ´ 1017 cm -3 -19 (1.6 ´ 10 )( 800)(10 -6 )(10) n0 7.8 ´ 10 ´ 100 = ´ 100 = 78.1 % Nd 1018 17 Efficiency = V 6 22. (D) E = = = 3 V/cm, vd = m n E, L 2 vd 10 4 = 3333 cm 2 V - s = E 3 mn = 29. (D) n = N c N v e 2 i At T = 300 K, ni = 391 . ´ 10 cm -3 æN N ö Þ E g = kT ln ç c 2 v ÷ è ni ø æ 500 ö At T = 500 K , kT = 0.0259ç ÷ = 0.0432 eV, è 300 ø Þ = (1.6 ´ 10 -19)(1000)(1014 )(100) = 1.6 A cm 2 30. (A) s = em n n0 + em p p0 and n0 = = (1.6 ´ 10 -19)(2.29 ´ 1013)(1000 + 600) = 5.86 ´ 10 (W - cm) 24. (B) r = Nd = -1 1 1 = s em n N d 1 1 = = 9.25 ´ 1014 cm -3 5(1.6 ´ 10 -19)(1350) re m n 25. (B) J n = eDn s = em n ni2 p0 ni2 + em p p0 , p0 Þ æm p0 = ni ç n çm è p dn dx æ 1018 - 1016 ö = (1.6 ´ 10 -19)( 35)ç ÷ = 2.8 ´ 10 4 A cm 2 -4 2 ´ 10 è ø 1 ö2 2 ÷ = 3.6 ´ 1012 æç 7500 ö÷ ÷ è 300 ø ø = 7. 2 ´ 1011 cm -3 31. (B) smin = 2 s i m pm n mp + mn = 2 en i m pm n = 2 ´ 1.6 ´ 10 -19( 3.6 ´ 1012 ) (7500)( 300) . ´ 10 -3(W - cm) -1 = 17 cm -3, ni = 2.29 ´ 1013 cm -3 -3 N d = n0 1 æ 1019 ö eV Þ E g = 2(0.0259) ln ç . ÷ = 1122 9 391 . ´ 10 è ø ni2 = (1019) 2 e Þ ( -1) em n ni2 ds =0 = + em p dp0 p02 9 1 .122 ö - æç ÷ è 0 .0432 ø = 7.18 ´ 1019 ni = 8.47 ´ 10 9 cm -3 N d >> ni 10 -6 = (1.6 ´ 10 -19)(1000 + 600)ni ni2 = N c N v e 1 .1 ö - æç ÷ è 0 .0259 ø J = sE = em n n0 E Þ 23. (D) s1 = eni (m n + m p ) æ Eg ö -ç ç kT ÷÷ è ø )(7500)(1016 )(10) = 120 A cm 2 æ -Eg ö -ç ç kT ÷÷ è ø = (2 ´ 1019)(1 ´ 1019) e Þ n0 = N d -19 32. (B) s = 1 = emni , r Eg 1 2 kT1 n e r1 = i1 = Eg 1 ni 2 2 kT2 e r2 0.1 = e - Eg æ 1 1 ö ÷ ç 2 k è T1 T2 ø E g æ 330 - 300 ö ç ÷ = ln 10 2 k è 330 ´ 300 ø E g = 22( k300) ln 10 = 1.31 eV 33. (D) www.nodia.co.in 1 1 1 1 = + + m m1 m 2 m 3 114 Semiconductor Physics 1 1 1 1 = + + m 500 750 1500 Þ m = 250 cm 2 V - s 41. (C) n0 = æ 5 ´ 1014 - n(0) ö 0.19 = (1.6 ´ 10 -19)(25)ç ÷, 0.010 è ø = p0 = 16 x ö ö e10 Dp æ 1 = ÷ ç ÷ L øø L è (1.6 ´ 10 -19)(1016 )(10) 10 ´ 10 -4 dn0 dx = x =0 J = Jp + Jn = = 1015 eDp x =0 Lp 5 ´ 1014 eDn Ln 1015 eDp Lp + 5 ´ 1014 eDn Ln æ 1015(10) 5 ´ 1014 (25) ö = 1.6 ´ 10 -19ç + ÷ = 5. 2 A cm 2 -4 -3 15 ´ 10 10 è ø = - I x Bz ned 38. (B) V H is positive p-type p= I x Bz Þ epd p= I x Bz eV H d (0.75 ´ 10 -3)(10 -1 ) (1.6 ´ 10 -19)(5.8 ´ 10 -3)(10 -5) = 8.08 ´ 10 21 m -3 = 8.08 ´ 1015 cm -3 39. (C) up = Ix L epVxWd = (0.75 ´ 10 -3)(10 -3) )( 8.08 ´ 10 21 )(15)(10 -4 )(10 -5) (1.6 ´ 10 Recombination rate. G = Rn 0 = Rp 0 = 2.25 ´ 10 9 cm -3s -1 44. (A) Recombination rates are equal N d >> ni n0 = N d , p0 = ni2 n0 n0 n2 t p 0 = 02 t p 0 p0 ni tn 0 = æ 1016 ö =ç ÷ ´ 20 ´ 10 -6 = 8.9 ´ 106 s 10 ´ 15 10 . è ø 45. (D) N d >> ni p0 = Rp = Rp Rp 0 -19 Þ n0 = N d n (15 . ´ 10 ) = = 2. 25 ´ 10 4 cm -3 n0 1016 2 i Rp 0 = p0 tp 0 10 2 Þ tp 0 = p0 2. 25 ´ 10 4 = = 2. 25 ´ 10 7 s Rp 0 1011 dp 1014 = = 4.44 ´ 10 20 cm -3s -1 t p 0 2.25 ´ 10 -7 = 4.44 ´ 10 20 = 4.44 ´ 10 9 1011 *********** m p = 39 . ´ 10 -2 m 2 V - s = 390 cm 2 V - s 40. (A) n-type semiconductor R= n0 p = 0, tn 0 tp 0 2 (250 ´ 10 -6 )(5 ´ 10 -2 ) = -0.313 mV (5 ´ 10 21 )(1.6 ´ 10 -19)(5 ´ 10 -5) VH = 2.25 ´ 10 4 = 2.25 ´ 10 9 cm -3s -1 10 ´ 10 -6 Rn 0 = carrier are equal . The generation rate is equal to dp 36. (B) J p = -eDp 0 dx 37. (A) V H = (15 . ´ 1010 ) 2 = 2.25 ´ 10 4 cm -3 1016 43. (B) Recombination rate for minority and majority J = 16 A cm 2 J n = e Dn n2 p0 , p0 = i , n0 = N d = 106 cm -3 n0 tp 0 42. (C) Rn 0 = n(0) = 2.5 ´ 1013 cm -3 dp d æ 16 = - eDp ç 10 dx dx è ni2 (1010 ) 2 = = 10 4 cm -3 p0 1016 n0 10 4 = = 2.5 ´ 1010 cm -3s -1 t n 0 4 ´ 10 -7 Rn 0 = dn 34. (B) J n = eDn dx 35. (B) J = -eDp Chap 2.1 dp 4 ´ 1013 = = 4 ´ 1019 cm -3s -1 tp 0 10 -6 www.nodia.co.in