...

2.1 Semiconductor Physics In the problems assume the parameter given in

by user

on
Category: Documents
14

views

Report

Comments

Transcript

2.1 Semiconductor Physics In the problems assume the parameter given in
2.1
Semiconductor Physics
In the problems assume the parameter given in
eV and material B has a bandgap energy of 1.2 eV.
following table. Use the temperature T = 300 K unless
The ratio of intrinsic concentration of material A to
otherwise stated.
that of material B is
Property
Si
Ga As
Bandgap Energy
1.12
1.42
0.66
Dielectric Constant
11.7
13.1
16.0
Effective density of
states in conduction
band Nc (cm-3)
2.8 ´ 10
Effective density of
states in valence
band Nv (cm-3)
1.04 ´ 1019
Intrinsic carrier
concertration
ni (cm-3)
Mobility
Electron
Hole
Ge
(A) 2016
(B) 47.5
(C) 58.23
(D) 1048
4. In silicon at T = 300 K the thermal-equilibrium
concentration of electron is n0 = 5 ´ 10 4 cm -3. The hole
concentration is
19
4.7 ´ 10
17
7.0 ´ 1018
1.04 ´ 10
19
6.0 ´ 1018
(A) 4.5 ´ 1015 cm -3
(B) 4.5 ´ 1015 m -3
(C) 0.3 ´ 10 -6 cm -3
(D) 0.3 ´ 10 -6 m -3
5. In silicon at T = 300 K if the Fermi energy is 0.22 eV
above the valence band energy, the value of p0 is
1.5 ´ 10
1.8 ´ 10
2.4 ´ 10
1350
480
8500
400
3900
1900
10
6
18
1. In germanium semiconductor material at T = 400 K
the intrinsic concentration is
(A) 26.8 ´ 1014 cm -3
(B) 18.4 ´ 1014 cm -3
(C) 8.5 ´ 1014 cm -3
(D) 3.6 ´ 1014 cm -3
(A) 2 ´ 1015 cm -3
(B) 1015 cm -3
(C) 3 ´ 1015 cm -3
(D) 4 ´ 1015 cm -3
6. The thermal-equilibrium concentration of hole p0 in
silicon at T = 300 K is 1015 cm -3. The value of n0 is
(A) 3.8 ´ 108 cm -3
(B) 4.4 ´ 10 4 cm -3
(C) 2.6 ´ 10 4 cm -3
(D) 4.3 ´ 108 cm -3
7. In germanium semiconductor at T = 300 K, the
acceptor concentrations is N a = 1013 cm -3 and donor
concentration is N d = 0. The thermal equilibrium
concentration p0 is
2. The intrinsic carrier concentration in silicon is to be
no greater than ni = 1 ´ 1012 cm -3. The maximum
temperature allowed for the silicon is (Assume
(A) 2.97 ´ 10 9 cm -3
(B) 2.68 ´ 1012 cm -3
(C) 2.95 ´ 1013 cm -3
(D) 2.4 cm -3
Statement for Q.8-9:
In germanium semiconductor at T = 300 K, the
E g = 112
. eV)
(A) 300 K
(B) 360 K
(C) 382 K
(D) 364 K
impurity concentration are
N d = 5 ´ 1015 cm -3 and N a = 0
3. Two semiconductor material have exactly the same
8. The thermal equilibrium electron concentration n0
properties except that material A has a bandgap of 1.0
is
www.nodia.co.in
108
Semiconductor Physics
(A) 5 ´ 1015 cm -3
(C) 115
. ´ 10 cm
9
(B) 115
. ´ 1011 cm -3
-3
(D) 5 ´ 10 cm
6
position of Fermi level with respect to the center of the
bandgap is
-3
9. The thermal equilibrium hole concentration p0 is
(A) 396
. ´ 1013
(B) 195
. ´ 1013 cm -3
(C) 4.36 ´ 1012 cm -3
(D) 396
. ´ 1013 cm -3
boron at a concentration of 2.5 ´ 10
cm
1 ´ 10
-3
13
arsenic at a concentration of
(A) +0.045 eV
(B) - 0.046 eV
(C) +0.039 eV
(D) - 0.039 eV
16. A silicon sample contains acceptor atoms at a
concentration of N a = 5 ´ 1015 cm -3. Donor atoms are
10. A sample of silicon at T = 300 K is doped with
13
Chap 2.1
added
forming
and
n - type
compensated
and with
semiconductor such that the Fermi level is 0.215 eV
cm -3. The
below the conduction band edge. The concentration of
material is
donors atoms added are
(A) p - type with p0 = 15
. ´ 1013 cm -3
(A) 12
. ´ 1016 cm -3
(B) 4.6 ´ 1016 cm -3
(B) p - type with p0 = 15
. ´ 10 7 cm -3
(C) 39
. ´ 1012 cm -3
(D) 2.4 ´ 1012 cm -3
(C) n - type with n0 = 15
. ´ 1013 cm -3
17. A silicon semiconductor sample at T = 300 K is
(D) n - type with n0 = 15
. ´ 10 7 cm -3
doped with phosphorus atoms at a concentrations of
11. In a sample of gallium arsenide at T = 200 K,
n0 = 5 p0 and N a = 0. The value of n0 is
(A) 9.86 ´ 10 9 cm -3
(B) 7 cm -3
(C) 4.86 ´ 10 3 cm -3
(D) 3 cm -3
12. Germanium at T = 300 K is uniformly doped with
-3
an acceptor concentration of N a = 10 cm and a donor
15
concentration of N d = 0. The position of fermi energy
with respect to intrinsic Fermi level is
1015 cm -3. The position of the Fermi level with respect
to the intrinsic Fermi level is
(A) 0.3 eV
(B) 0.2 eV
(C) 0.1 eV
(D) 0.4 eV
18. A silicon crystal having a cross-sectional area of
0.001 cm 2 and a length of 20 mm is connected to its
ends to a 20 V battery. At T = 300 K, we want a
current of 100
mA in crystal. The concentration of
donor atoms to be added is
(A) 0.02 eV
(B) 0.04 eV
(A) 2.4 ´ 1013 cm -3
(B) 4.6 ´ 1013 cm -3
(C) 0.06 eV
(D)0.08 eV
(C) 7.8 ´ 1014 cm -3
(D) 8.4 ´ 1014 cm -3
13.
In
germanium
T = 300
at
concentration are N d = 10
14
cm
-3
K,
the
donor
N a = 0. The
and
Fermi energy level with respect to intrinsic Fermi
level is
(A) 0.04 eV
(B) 0.08 eV
(C) 0.42 eV
(D) 0.86 eV
14. A GaAs device is doped with a donor concentration
19. The cross sectional area of silicon bar is 100 mm 2 .
The length of bar is 1 mm. The bar is doped with
arsenic atoms. The resistance of bar is
(A) 2.58 mW
(B) 11.36 kW
(C) 1.36 mW
(D) 24.8 kW
20. A thin film resistor is to be made from a GaAs film
doped n - type. The resistor is to have a value of 2 kW.
of 3 ´ 1015 cm -3. For the device to operate properly, the
The resistor length is to be 200 mm and area is to be
intrinsic carrier concentration must remain less than
10 -6 cm 2 . The doping efficiency is known to be 90%.
5%
The mobility of electrons is 8000
of
the
total
concentration.
The
maximum
cm 2 V - s. The
temperature on that the device may operate is
doping needed is
(A) 763 K
(B) 942 K
(A) 8.7 ´ 1015 cm -3
(B) 8.7 ´ 10 21 cm -3
(C) 486 K
(D) 243 K
(C) 4.6 ´ 1015 cm -3
(D) 4.6 ´ 10 21 cm -3
15. For a particular semiconductor at T = 300 K
E g = 15
. eV, m = 10 m
*
p
*
n
and ni = 1 ´ 10
15
-3
cm . The
21. A silicon sample doped n - type at 1018 cm -3 have a
resistance of 10 W . The sample has an area of 10 -6
www.nodia.co.in
Chap 2.1
Semiconductor Physics
109
cm 2 and a length of 10 mm . The doping efficiency of
27. For a sample of GaAs scattering time is t sc = 10 -13 s
the sample is (m n = 800 cm 2 V - s)
and electron’s effective mass is me* = 0.067 mo . If an
(A) 43.2%
(B) 78.1%
electric field of 1 kV cm is applied, the drift velocity
(C) 96.3%
(D) 54.3%
produced is
22. Six volts is applied across a 2 cm long
(A) 2.6 ´ 106 cm s
(B) 263 cm s
(C) 14.8 ´ 10
(D) 482
6
cm s
semiconductor bar. The average drift velocity is 10 4
28. A gallium arsenide semiconductor at T = 300 K is
cm s. The electron mobility is
(A) 4396 cm V - s
(B) 3 ´ 10 cm V - s
doped with impurity concentration N d = 1016 cm -3. The
(C) 6 ´ 10 4 cm 2 V - s
(D) 3333 cm 2 V - s
mobility m n is 7500 cm 2 V - s. For an applied field of
2
4
2
10 V cm the drift current density is
23. For a particular semiconductor material following
(A) 120 A cm 2
(B) 120 A cm 2
parameters are observed:
(C) 12 ´ 10 4 A cm 2
(D) 12 ´ 10 4 A cm 2
m n = 1000 cm 2 V - s ,
29. In a particular semiconductor the donor impurity
m p = 600 cm 2 V - s ,
concentration is N d = 1014 cm -3. Assume the following
N c = N v = 1019 cm -3
These
parameters,
parameters
temperature.
The
are
measured
independent
conductivity
-6
intrinsic material is s = 10 (W - cm)
-1
m n = 1000 cm 2 V - s,
of
of
the
æ T ö
N c = 2 ´ 1019ç
÷
è 300 ø
at T = 300 K.
The conductivity at T = 500 K is
(A) 2 ´ 10 -4 (W - cm) -1
(B) 4 ´ 10 -5 (W - cm) -1
(C) 2 ´ 10 -5 (W - cm) -1
(D) 6 ´ 10 -3 (W - cm) -1
æ T ö
N v = 1 ´ 1019ç
÷
è 300 ø
32
cm -3,
32
cm -3,
. eV.
E g = 11
24. An n - type silicon sample has a resistivity of 5
W - cm at T = 300 K. The mobility is m n = 1350
cm 2 V - s. The donor impurity concentration is
(A) 2.86 ´ 10 -14 cm -3
(C) 11.46 ´ 10 cm
15
25.
(B) 9.25 ´ 1014 cm -3
-3
(D) 11
. ´ 10
-15
cm
-3
An electric field of E = 10 V cm is applied. The
electric current density at 300 K is
(A) 2.3 A cm 2
(B) 1.6 A cm 2
(C) 9.6 A cm 2
(D) 3.4 A cm 2
Statement for Q.30-31:
In a silicon sample the electron concentration
drops linearly from 1018 cm -3 to 1016 cm -3 over a length
A semiconductor has following parameter
of 2.0 mm. The current density due to the electron
m n = 7500 cm 2 V - s,
diffusion current is ( Dn = 35 cm 2 s).
m p = 300 cm 2 V - s,
(A) 9.3 ´ 10 A cm
4
(B) 2.8 ´ 10 A cm
2
4
(C) 9.3 ´ 10 9A cm 2
2
ni = 3.6 ´ 1012 cm -3
(D) 2.8 ´ 10 9 A cm 2
30.
26. In a GaAs sample the electrons are moving under
an
electric
field
of
5
kV cm and
16
concentration is uniform at 10
the
carrier
-3
cm . The electron
7
When
conductivity
is
minimum,
the
hole
concentration is
(A) 7.2 ´ 1011 cm -3
(B) 1.8 ´ 1013 cm -3
(C) 1.44 ´ 1011 cm -3
(D) 9 ´ 1013 cm -3
velocity is the saturated velocity of 10 cm s. The drift
31. The minimum conductivity is
current density is
(A) 1.6 ´ 10 A cm
4
(C) 1.6 ´ 108 A cm 2
2
2
(A) 0.6 ´ 10 -3 (W - cm) -1
(B) 17
. ´ 10 -3 (W - cm) -1
(D) 2.4 ´ 108 A cm 2
(C) 2.4 ´ 10 -3 (W - cm) -1
(D) 6.8 ´ 10 -3 (W - cm) -1
(B) 2.4 ´ 10 A cm
4
www.nodia.co.in
110
Semiconductor Physics
32. A particular intrinsic semiconductor has a
Chap 2.1
æ -x ö
ç
÷
ç Lp ÷
ø
Hole concentration p0 = 1015 e è
resistivity of 50 (W - cm) at T = 300 K and 5 (W - cm) at
T = 330 K. If change in mobility with temperature is
cm -3,x ³ 0
æ -x ö
÷
ç
neglected, the bandgap energy of the semiconductor is
Electron concentration n0 = 5 ´ 1014 e è L n ø cm -3,x £ 0
(A) 1.9 eV
(B) 1.3 eV
Hole diffusion coefficient Dp = 10 cm 2 s
(C) 2.6 eV
(D) 0.64 eV
Electron diffusion coefficients Dn = 25 cm 2 s
a
Hole diffusion length Lp = 5 ´ 10 -4 cm,
semiconductor. If only the first mechanism were
Electron diffusion length Ln = 10 -3 cm
33.
Three
scattering
mechanism
exist
in
present, the mobility would be 500 cm V - s. If only
2
the second mechanism were present, the mobility
The total current density at x = 0 is
would be 750 cm 2 V - s. If only third mechanism were
(A) 1.2 A cm 2
(B) 5.2 A cm 2
present, the mobility would be 1500 cm 2 V - s. The net
(C) 3.8 A cm 2
(D) 2 A cm 2
mobility is
(A) 2750 cm 2 V - s
(B) 1114 cm 2 V - s
(C) 818 cm 2 V - s
(D) 250 cm 2 V - s
37. A germanium Hall device is doped with 5 ´ 1015
donor atoms per cm 3 at T = 300 K. The device has the
geometry d = 5 ´ 10 -3 cm, W = 2 ´ 10 -2 cm and L = 0.1
34. In a sample of silicon at T = 300 K, the electron
cm. The current is I x = 250 mA, the applied voltage is
mV, and the magnetic flux is Bz = 5 ´ 10 -2
concentration varies linearly with distance, as shown
Vx = 100
in fig. P2.1.34. The diffusion current density is found
tesla. The Hall voltage is
to be J n = 0.19 A cm . If the electron diffusion
(A) -0.31mV
(B) 0.31 mV
coefficient is Dn = 25 cm s, The electron concentration
(C) 3.26 mV
(D) -3.26 mV
2
2
at is
Statement for Q.38-39:
A silicon Hall device at T = 300 K has the
n(cm-3)
5´10
14
geometry d = 10 -3 cm , W = 10 -2 cm, L = 10 -1 cm. The
following parameters are measured: I x = 0.75 mA,
Vx = 15 V, V H = +5.8 mV, tesla
n(0)
0.010
0
x(cm)
38. The majority carrier concentration is
Fig. P2.1.34
(A) 4.86 ´ 10 cm
8
-3
(C) 9.8 ´ 10 26 cm -3
(A) 8 ´ 1015 cm -3, n - type
-3
(B) 8 ´ 1015 cm -3, p - type
(D) 5.4 ´ 1015 cm -3
(C) 4 ´ 1015 cm -3, n - type
(B) 2.5 ´ 10 cm
13
35. The hole concentration in p - type GaAs is given by
39. The majority carrier mobility is
xö
æ
p = 1016 ç 1 - ÷ cm -3 for 0 £ x £ L
Lø
è
where L = 10 mm. The hole diffusion coefficient is
10 cm 2 s. The hole diffusion current density at
x = 5 mm is
(A) 20 A cm 2
(B) 16 A cm 2
(C) 24 A cm 2
(D) 30 A cm 2
(A) 430 cm 2 V - s
(B) 215 cm 2 V - s
(C) 390 cm 2 V - s
(D) 195 cm 2 V - s
40. In a semiconductor n0 = 1015 cm -3 and ni = 1010
cm -3. The excess-carrier life time is 10 -6 s. The excess
hole
concentration
is
dp = 4 ´ 1013
cm -3.
electron-hole recombination rate is
36. For a particular semiconductor sample consider
following parameters:
(D) 4 ´ 1015 cm -3, p - type
(A) 4 ´ 1019 cm -3s -1
(B) 4 ´ 1014 cm -3s -1
(C) 4 ´ 10 24 cm -3s -1
(D) 4 ´ 1011 cm -3s -1
www.nodia.co.in
The
Chap 2.1
Semiconductor Physics
111
41. A semiconductor in thermal equilibrium, has a
Solutions
hole concentration of p0 = 1016 cm -3 and an intrinsic
concentration of ni = 1010 cm -3. The minority carrier
life
time
4 ´ 10 -7s.
is
The
thermal
equilibrium
recombination rate of electrons is
1. (D) n = N c N v e
2
i
æ -Eg ö
-ç
ç kT ÷÷
è
ø
(A) 2.5 ´ 10 22 cm -3 s -1
(B) 5 ´ 1010 cm -3 s -1
æ 400 ö
Vt = 0.0259ç
÷ = 0.0345
è 300 ø
(C) 2.5 ´ 1010 cm -3 s -1
(D) 5 ´ 10 22 cm -3 s -1
For Ge at 300 K,
N c = 104
. ´ 1019, N v = 6.0 ´ 1018 , E g = 0.66 eV
Statement for Q.42-43:
æ 0 .66 ö
3
concentration of N d = 106 cm -3. The minority carrier
-ç
÷
æ 400 ö
0 .0345 ø
ni2 = 104
. ´ 1019 ´ 6.0 ´ 1018 ´ ç
÷ ´e è
è 300 ø
hole lifetime is t p 0 = 10 m s.
Þ
A n-type
silicon
sample
contains
a
donor
42. The thermal equilibrium generation rate of hole is
ni = 8.5 ´ 1014 cm -3
æ -Eg ö
-ç
ç kT ÷÷
è
ø
(A) 5 ´ 108 cm -3 s -1
(B) 10 4 cm -3 s -1
2. (C) n = N c N v e
(C) 2. 25 ´ 10 9 cm -3 s -1
(D) 10 3 cm -3 s -1
æ T ö - çè
(1012 ) 2 = 2.8 ´ 1019 ´ 104
. ´ 1019ç
÷ e
è 300 ø
2
i
3
43. The thermal equilibrium generation rate for
3
T e
electron is
(A) 1125
.
´ 10 9 cm -3 s -1
(B) 2.25 ´ 10 9 cm -3 s -1
(C) 8.9 ´ 10 -10 cm -3 s -1
(D) 4 ´ 10 9 cm -3 s -1
-13´10 3
T
= 9.28 ´ 10 -8 , By trial T = 382 K
-
44. A n -type silicon sample contains a donor
concentration of N d = 1016 cm -3. The minority carrier
hole lifetime is t p 0 = 20 m s. The lifetime of the majority
(B) 8.9 ´ 10 -6 s
(C) 4.5 ´ 10
-17
s
(D) 113
. ´ 10
-7
E gA
4. (A) p0 =
45. In a silicon semiconductor material the doping
concentration are N a = 1016 cm -3 and N a = 0. The
= 2257.5
Þ
-
6. (B) p0 = N v e
( EF - Ev )
-
kT
-0 .22
= 104
. ´ 1019 e 0 .0259 = 2 ´ 1015 cm -3
( EF - Ev )
kT
Þ
æN ö
EF - Ev = kT ln ç v ÷
è p0 ø
equilibrium recombination rate is Rp 0 = 1011 cm -3s -1 . A
At 300 K, N v = 10
. ´ 1019 cm -3
uniform generation rate produces an excess- carrier
æ 104
. ´ 1019 ö
EF - Ev = 0.0259 lnç
÷ = 0. 239 eV
1015
è
ø
concentration of dn = dp = 1014 cm -3. The factor, by
which the total recombination rate increase is
(A) 2.3 ´ 1013
(B) 4.4 ´ 1013
(C) 2.3 ´ 10 9
(D) 4.4 ´ 10 9
niA
= 47.5
niB
ni2 (15
. ´ 1010 ) 2
=
= 4.5 ´ 1015 cm -3
n0
5 ´ 10 4
5. (A) p0 = N v e
s
æ E gA - E gB ö
÷÷
kT
ø
-ç
ç
n2
e kT
3. (B) iA
= E gB = e è
2
niB
e kT
carrier is ( ni = 15
. ´ 1010 cm -3)
(A) 8.9 ´ 106 s
æ 1 .12 e ö
÷
kT ø
( Ec - EF )
n0 = N c e
kT
At 300 K, N c = 2.8 ´ 1019 cm -3
Ec - EF = 112
. - 0. 239 = 0.881 eV
n0 = 4.4 ´ 10 4 cm -3
***********
2
7. (C) p0 =
Na - Nd
N ö
æ
+ ç N a - d ÷ + ni2
2
2 ø
è
For Ge ni = 2.4 ´ 10 3
2
p0 =
www.nodia.co.in
æ 1013 ö
1013
+ ç
÷ + (2.4 ´ 1013) 2 = 2.95 ´ 1013 cm -3
2
2
è
ø
112
Semiconductor Physics
2
8. (A) n0 =
2
Nd - Na
N ö
æ
+ ç N d - a ÷ + ni2
2
2 ø
è
n0 =
2
=
Chap 2.1
æ 5 ´ 1015 ö
5 ´ 1015
+ ç
÷ + (2.4 ´ 1013) 2 = 5 ´ 1015 cm -3
2
2
è
ø
æ 1014 ö
1014
+ ç
.
´ 1014 cm -3
÷ + (2.4 ´ 1013) 2 = 1055
2
2
è
ø
æn ö
æ 1055
.
´ 1014 ö
EF - EFi = kT ln ç 0 ÷ = 0.0259 ln ç
÷
13
è ni ø
è 2.4 ´ 10 ø
= 0.0383 eV
n2 (2.4 ´ 1013) 2
9. (B) p0 = i =
= 195
. ´ 1013 cm -3
p0
2.95 ´ 1013
2
14. (A) n0 =
10. (A) Since N a > N d , thus material is p-type ,
p0 = N a - N d = 2.5 ´ 10 - 1 ´ 10 = 15
. ´ 10 cm
3
3
13
ni = 0.05 n0
-3
æ 200 ö
11. (D) kT = 0.0259ç
÷ = 0.0173 eV
è 300 ø
æ 1 .42 ö
n02
5
15. (A) EFi - Emidgap =
. ´ 10 cm
N c = 104
-3
, N v = 6 ´ 10
18
3
æ 400 ö
ni2 = 104
. ´ 1019 ´ 6 ´ 1018 ç
÷ e
è 300 ø
cm
0 .66 ö
- æç
÷
è 0 .0345 ø
-3
, E g = 0.66 eV
= 7. 274 ´ 10 29
Ec - EF ö
÷
kT ø
N d = 5 ´ 1015 + 2.8 ´ 1019 e
0 .215 ö
- æç
÷
è 0 .0259 ø
= 119
. ´ 1016 cm -3
æN ö
17. (A) EF - EFi = kT ln ç d ÷
è Ni ø
æ 1015 ö
= 0.0259 ln ç
÷ = 0.287 eV
. ´ 1010 ø
è 15
ni = 8.528 ´ 1014 cm -3
2
Na
æN ö
+ ç a ÷ + ni2
2
è 2 ø
2
æ 10 ö
10
+ ç
÷ + 7. 274 ´ 10 29
2
è 2 ø
p0 = 1.489 ´ 1015 cm -3
æ p ö
æ 1.489 ´ 1015 ö
EFi - EF = kT ln ç 0 ÷ = 0.0345 ln ç
÷
14
è n0 ø
è 8.528 ´ 10 ø
= 0.019 eV
18. (D) R =
s=
Nd
æN ö
+ ç d ÷ + ni2
2
è 2 ø
For Ge at T = 300 K, ni = 2.4 ´ 1013 cm -3
V
20
=
= 200 W
I 100m
L
2 ´ 10 -3
=
= 0.01( W - cm) -1
RA (200) (0.001)
s » em n n0 , For Si, m n = 1350.
Þ
0.01 = (1.6 ´ 10 -19)(1350)n0
n0 = 4.6 ´ 1013 cm -3,
n0 >> ni
2
13. (A) n0 =
- æç
è
For Si, N c = 2.8 ´ 1019 cm -3
19
Þ
æ 1 .42 ´300 ö
æ mp* ö
3
kT ln ç * ÷ = 0.0446 eV
çm ÷
4
è pø
16. (A) n0 = N d - N a = N c e
For Ge at 300 K,
=
E g = 1.42 eV
N v = 7 ´ 1018 ,
By trial and error T = 763 K
æ -Eg ö
-ç
ç kT ÷÷
è
ø
15
For GaAs at T = 300 K,
æ T ö - çè 0 .0259T ÷ø
(1504
.
) 2 = 4.7 ´ 1017 ´ 7 ´ 1018 ç
÷ e
è 300 ø
æ 400 ö
12. (A) kT = 0.0259ç
÷ = 0.0345 eV
è 300 ø
15
æ -Eg ö
-ç
ç kT ÷÷
è
ø
3
n0 = 5 ni = 3.3 cm -3
p0 =
.
n0 = 30075
´ 1015 cm -3
N c = 4.7 ´ 1017,
ni = 1.48 cm -3
ni2 = N c N v e
Þ
n = Nc Nv e
E g = 1.42 eV
N v = 7.0 ´ 1018 ,
3
ni2 = n0 p0 = 5 p02 =
n0 = 15
. ´ 1015 + (15
. ´ 1015) 2 + (0.05 n0 ) 2
2
i
æ 200 ö - çè 0 .0173 ÷ø
ni2 = 4.7 ´ 1017 ´ 7.0 ´ 1018 ç
÷ e
è 300 ø
Þ
Þ
ni = 1504
.
´ 1014 cm -3
For GaAs at 300 K,
N c = 4.7 ´ 1017 cm -3,
Nd
æN ö
+ ç d ÷ + ni2
2
è 2 ø
Þ
n0 = N d
19. (B) N d >> ni
R=
www.nodia.co.in
Þ
L
L
,
=
s A em n N d A
n0 = N d , s » e m n n0 ,
Chap 2.1
=
Semiconductor Physics
(1.6 ´ 10
0.1
= 11.36 kW
)(1100)(5 ´ 1016 )(100 ´ 10 -8 )
-19
L
,
sA
20. (A) R =
Þ n0 =
s » e m n n0 ,
R=
L
em n n0 A
et sc E (1.6 ´ 10 -19)(10 -13)(10 5)
=
(0.067)(9.1 ´ 10 -31 )
me*
= 26.2 ´ 10 3 m s = 2.6 ´ 106 cm s
L
em n AR
28. (A) N d >> ni
-4
20 ´ 10
= 8.7 ´ 1015 cm -3
(0.9)(1.6 ´ 10 )( 8000)(10 -6 )(2 ´ 10 3)
Þ
J = em n n0 E = (1.6 ´ 10
-19
21. (B) s » e m n n0 , R =
=
26. (A) J = evn = (1.6 ´ 10 -19)(10 7)(1016 ) = 1.6 A cm 2
27. (A) vd =
n0 = 0.9 N d
=
113
L
L
, n0 =
sA
em n AR
10 ´ 10 -4
= 7.81 ´ 1017 cm -3
-19
(1.6 ´ 10 )( 800)(10 -6 )(10)
n0
7.8 ´ 10
´ 100 =
´ 100 = 78.1 %
Nd
1018
17
Efficiency =
V 6
22. (D) E =
= = 3 V/cm, vd = m n E,
L 2
vd 10 4
= 3333 cm 2 V - s
=
E
3
mn =
29. (D) n = N c N v e
2
i
At T = 300 K, ni = 391
. ´ 10 cm
-3
æN N ö
Þ E g = kT ln ç c 2 v ÷
è ni ø
æ 500 ö
At T = 500 K , kT = 0.0259ç
÷ = 0.0432 eV,
è 300 ø
Þ
= (1.6 ´ 10 -19)(1000)(1014 )(100) = 1.6 A cm 2
30. (A) s = em n n0 + em p p0 and n0 =
= (1.6 ´ 10 -19)(2.29 ´ 1013)(1000 + 600)
= 5.86 ´ 10 (W - cm)
24. (B) r =
Nd =
-1
1
1
=
s em n N d
1
1
=
= 9.25 ´ 1014 cm -3
5(1.6 ´ 10 -19)(1350)
re m n
25. (B) J n = eDn
s = em n
ni2
p0
ni2
+ em p p0 ,
p0
Þ
æm
p0 = ni ç n
çm
è p
dn
dx
æ 1018 - 1016 ö
= (1.6 ´ 10 -19)( 35)ç
÷ = 2.8 ´ 10 4 A cm 2
-4
2
´
10
è
ø
1
ö2
2
÷ = 3.6 ´ 1012 æç 7500 ö÷
÷
è 300 ø
ø
= 7. 2 ´ 1011 cm -3
31. (B) smin =
2 s i m pm n
mp + mn
= 2 en i m pm n
= 2 ´ 1.6 ´ 10 -19( 3.6 ´ 1012 ) (7500)( 300)
. ´ 10 -3(W - cm) -1
= 17
cm -3,
ni = 2.29 ´ 1013 cm -3
-3
N d = n0
1
æ 1019
ö
eV
Þ E g = 2(0.0259) ln ç
.
÷ = 1122
9
391
.
´
10
è
ø
ni2 = (1019) 2 e
Þ
( -1) em n ni2
ds
=0 =
+ em p
dp0
p02
9
1 .122 ö
- æç
÷
è 0 .0432 ø
= 7.18 ´ 1019
ni = 8.47 ´ 10 9 cm -3
N d >> ni
10 -6 = (1.6 ´ 10 -19)(1000 + 600)ni
ni2 = N c N v e
1 .1 ö
- æç
÷
è 0 .0259 ø
J = sE = em n n0 E
Þ
23. (D) s1 = eni (m n + m p )
æ Eg ö
-ç
ç kT ÷÷
è
ø
)(7500)(1016 )(10) = 120 A cm 2
æ -Eg ö
-ç
ç kT ÷÷
è
ø
= (2 ´ 1019)(1 ´ 1019) e
Þ
n0 = N d
-19
32. (B) s =
1
= emni ,
r
Eg
1
2 kT1
n
e
r1
= i1 =
Eg
1
ni 2
2 kT2
e
r2
0.1 = e
-
Eg æ 1
1 ö
÷
ç
2 k è T1
T2 ø
E g æ 330 - 300 ö
ç
÷ = ln 10
2 k è 330 ´ 300 ø
E g = 22( k300) ln 10 = 1.31 eV
33. (D)
www.nodia.co.in
1 1
1
1
=
+
+
m m1 m 2 m 3
114
Semiconductor Physics
1
1
1
1
=
+
+
m 500 750 1500
Þ
m = 250 cm 2 V - s
41. (C) n0 =
æ 5 ´ 1014 - n(0) ö
0.19 = (1.6 ´ 10 -19)(25)ç
÷,
0.010
è
ø
=
p0 =
16
x ö ö e10 Dp
æ
1
=
÷
ç
÷
L øø
L
è
(1.6 ´ 10 -19)(1016 )(10)
10 ´ 10 -4
dn0
dx
=
x =0
J = Jp + Jn =
=
1015 eDp
x =0
Lp
5 ´ 1014 eDn
Ln
1015 eDp
Lp
+
5 ´ 1014 eDn
Ln
æ 1015(10)
5 ´ 1014 (25) ö
= 1.6 ´ 10 -19ç
+
÷ = 5. 2 A cm 2
-4
-3
15
´
10
10
è
ø
=
- I x Bz
ned
38. (B) V H is positive p-type
p=
I x Bz
Þ
epd
p=
I x Bz
eV H d
(0.75 ´ 10 -3)(10 -1 )
(1.6 ´ 10 -19)(5.8 ´ 10 -3)(10 -5)
= 8.08 ´ 10 21 m -3 = 8.08 ´ 1015 cm -3
39. (C) up =
Ix L
epVxWd
=
(0.75 ´ 10 -3)(10 -3)
)( 8.08 ´ 10 21 )(15)(10 -4 )(10 -5)
(1.6 ´ 10
Recombination rate.
G = Rn 0 = Rp 0 = 2.25 ´ 10 9 cm -3s -1
44. (A) Recombination rates are equal
N d >> ni
n0 = N d , p0 =
ni2
n0
n0
n2
t p 0 = 02 t p 0
p0
ni
tn 0 =
æ 1016 ö
=ç
÷ ´ 20 ´ 10 -6 = 8.9 ´ 106 s
10
´
15
10
.
è
ø
45. (D) N d >> ni
p0 =
Rp =
Rp
Rp 0
-19
Þ
n0 = N d
n
(15
. ´ 10 )
=
= 2. 25 ´ 10 4 cm -3
n0
1016
2
i
Rp 0 =
p0
tp 0
10 2
Þ
tp 0 =
p0
2. 25 ´ 10 4
=
= 2. 25 ´ 10 7 s
Rp 0
1011
dp
1014
=
= 4.44 ´ 10 20 cm -3s -1
t p 0 2.25 ´ 10 -7
=
4.44 ´ 10 20
= 4.44 ´ 10 9
1011
***********
m p = 39
. ´ 10 -2 m 2 V - s = 390 cm 2 V - s
40. (A) n-type semiconductor
R=
n0
p
= 0,
tn 0 tp 0
2
(250 ´ 10 -6 )(5 ´ 10 -2 )
= -0.313 mV
(5 ´ 10 21 )(1.6 ´ 10 -19)(5 ´ 10 -5)
VH =
2.25 ´ 10 4
= 2.25 ´ 10 9 cm -3s -1
10 ´ 10 -6
Rn 0 =
carrier are equal . The generation rate is equal to
dp
36. (B) J p = -eDp 0
dx
37. (A) V H =
(15
. ´ 1010 ) 2
= 2.25 ´ 10 4 cm -3
1016
43. (B) Recombination rate for minority and majority
J = 16 A cm 2
J n = e Dn
n2
p0
, p0 = i , n0 = N d = 106 cm -3
n0
tp 0
42. (C) Rn 0 =
n(0) = 2.5 ´ 1013 cm -3
dp
d æ 16
= - eDp
ç 10
dx
dx è
ni2 (1010 ) 2
=
= 10 4 cm -3
p0
1016
n0
10 4
=
= 2.5 ´ 1010 cm -3s -1
t n 0 4 ´ 10 -7
Rn 0 =
dn
34. (B) J n = eDn
dx
35. (B) J = -eDp
Chap 2.1
dp 4 ´ 1013
=
= 4 ´ 1019 cm -3s -1
tp 0
10 -6
www.nodia.co.in
Fly UP