Comments
Description
Transcript
Transmission Lines 8.6
Transmission Lines 8.6 Statement for Q.7–8: Statement for Q.1–3: A telephone line has the following parameters: The propagation constant of a lossy transmission R = 60 W m, G = 600 mS m, L = 0.3 mH m, C = 0.75 nF m line g = 1 + j2 m -1 and characteristic impedance is 20 W at frequency 1 Mrad s. 1. If the line operate at 10 MHz, the characteristic 7. The values of G and C are respectively impedance Z o is (A) 210 . - j17.6 W (B) 29.6 - j21.4 W (A) 0.2 S m, 0.1 mF m (B) 0.05 S m, 1 mF m (C) 10.8 - j7.9 W (D) 14.0 - j 42 W (C) 0.05 S m, 0.1 mF m (D) 0.2 S m, 1 mF m 8. The values of R and L are respectively 2. The velocity v will be (A) 18 ´ 106 m s (B) 46 ´ 106 m s (C) 23 ´ 106 m s (D) 36 ´ 106 m s (A) 20 W m, 40 mH m (B) 40 W m, 50 mH m (C) 40 W m, 40 mH m (D) 20 W m, 50 mH m 9. A line comprised of two copper wires of diameter 1.2 3. The voltage will drop by 30 dB in the line after mm that have 3.2 mm center to center spacing. If the (A) 1.46 m (B) 3.36 m wires are separated by a dielectric material with (C) 4.39 m (D) 6.43 m . , the value of characteristic impedance Z o is e r = 35 Statement for Q.4–6: A distortion less line operating at 120 MHz has the following parameters: R = 18 W m, L = 0.9 mH m, C = 21 pF m . (A) 96 W (B) 150 W (C) 74 W (D) 105 W Statement for Q.10–11: Consider the following parameters air-filled planer line: Width w = 40 cm 4. The voltage will drop 20% in the line after (A) 93.2 m (B) 18.5 m Distance between plane d = 1.6 cm (C) 2.6 m (D) 0.67 m Thickness of conducting plane t = 4 mm Conductivity of plane sc = 7 ´ 10 7 S m 5. The propagation constant is (A) (7.56 + j14.25)10 -9 m -1 (B) 0.056 + j 4.37 m -1 (C) 8.08 ´ 10 -3 - j0.304 m -1 (D) 0.087 + j 3.28 m -1 Operating frequency f = 500 MHz. 10. The values of R and L are respectively (A) 26.55 mW m, 50.3 nH m 6. To suffer a 45° phase shift it will travel (B) 13.28 mW m, 50.3 nH m (A) 2.46 m (B) 2.01 m (C) 26.55 mW m, 100.3 nH m (C) 1.48 m (D) 0.24 m (D) 13.28 mW m, 100.3 nH m www.nodia.co.in for an Chap 8.6 Transmission Lines 2 11. The values of C and G are respectively 18. A lossless transmission line operating at 4.5 GHz (A) 167 mF m, 175 . ´ 10 S m (B) 167 mF m, 0 has L = 2.6 mH m and Z o = 80 W. The phase constant b (C) 221 pF m, 175 . ´ 10 9 S m (D) 221 pF m, 0 and the phase velocity v is 9 (A) 148 rad m, 274 ´ 10 5 m s 12. A 81 W lossless planer line was designed but did (B) 714 rad m, 30.8 ´ 10 4 m s not meet a requirement. To get the characteristic (C) 919 rad m, 30.8 ´ 106 m s impedance of 75 W the fraction of the width of the strip should be (D) None of the above (A) added by 4% (B) removed by 4% 19. A 60 W coaxial cable feeds a 75 + j25 W dipole (C) added by 8% (D) removed by 8% antenna. The voltage reflection coefficient G and standing wave ratio s are respectively 13. A lossless line has a voltage wave V ( z, t) = 10 sin ( wt - bz). The line has parameter L = 0.2 mH m, C = 0.5 nF m. The corresponding current wave (A) 0.212 Ð48.55 °, 1.538 (B) 0.486 Ð68.4 °, 2.628 (C) 0.486 Ð41.45 °, 2.682 (D) 0.212 Ð68.4 °, 1.538 20. For a short-circuited coaxial transmission line: is (A) 20 sin ( wt - bz) (B) 0.5 sin ( wt - bz) Characteristic impedance Z o = 35 + j 49 W , (C) 200 sin ( wt - bz) (D) sin ( wt - bz) Propagation constant g = 1.4 + j5 m -1 Length of line l = 0.4 m. Statement for Q.14–15: On a distrortion less line, the voltage wave is V(z, t) = 180 e2 .5 ´10 -3 z cos (108 t + 2z) + 90 e-2 .5 ´10 -3 z cos (108 t - 2z) The input impedance of short-circuited line is (A) 82 + j 39 W (B) 41 + j78 W (C) 68 + j 46 W (D) 34 + j23 W where z is the distance from the load. The load impedance is Z L = 300 W . Statement for Q.21–22: Consider the lossless transmission line shown in 14. The phase velocity is (A) 12.6 ´ 10 9 m s (B) 314 . ´ 108 m s (C) 20 ´ 10 7 m s (D) 5 ´ 10 7 m s fig. P8.6.21–22. l/6 Zg 15. The characteristic impedance Z o is (A) 400 W (B) 200 W (C) 100 W (D) 70 W Zo = 60 W Vg Z L 125 W ~ Fig. P8.6.21–22 Statement for Q.16–17: 21. The SWR s is A 8.4m long coaxial line has following distributed parameters: R = 13 W m , L = 6.8 mH m, G = 4.2 mS m, C = 10.75 pF m. The line operates at 2 MHz. (A) 2.08 (B) 1.63 (C) 2.44 (D) 1.93 16. The characteristic impedance is 22. The input impedance Z in at the generator is (A) 23 + j186 W (B) 46 + j93 W (A) 36 + j 32.4 W (B) 18 + j16.2 W (C) 109.9 + j915 . W (D) 55 + j 46 W (C) 35 - j24.8 W (D) 54 - j26.4 W 17. The end-to-end propagation time delay is 23. The quarter-wave lossless 100 W line is terminated (A) 260 ns (B) 130 ns by load Z L = 210 W. If the voltage at the receiving end (C) 180 ns (D) 90 ns is 60 V, the voltage at the sending end is www.nodia.co.in 3 Transmission Lines Chap 8.6 (A) 126 V (B) 28.6 V 29. At 3 m from the source is (C) 21.3 V (D) 169 V (A) j18.2 W, 5.75 Ð59 ° V (B) - j18.2 W, 5.75 Ð59 ° V (C) - j18.2 W, 5.75 Ð - 59 ° V (D) j18.2 W , 5.75 Ð59 ° V 24. A 60 W lossless line has VL = 15 e j 25 V and Z L = 75 e j 30 °. The current at l 8 from the load is (A) 0.2 e j 40 (C) 0.2 e j 50 A A 30. A lossless transmission line with a characteristic (B) 0.46 e j 40 A impedance of 80 W is terminated by a load of 125 W. (D) 0.46 e j 50 A The length of line is 1.25l. The input impedance is 25. Consider a 300 W quarter-wave long transmission line operating at 1 GHz. It is connected to 10 V, 50 W source at one end and is left open circuited at the other (A) 80 W (B) 51.2 W (C) 125 W (D) 45 W Statement for Q.31–32: end. The magnitude of the voltage at the open circuited end of line is A 50 W, 8.4 m long lossless line operates at 150 MHz . The input impedance at the middle of the line (A) 10 (B) 5 (C) 0 (D) 7.707 is 80 - j 60 W. The phase velocity is 0.8 c. 31. The input impedance at the generator is Statement for Q.26–29: The loss line line shown in fig. P8.6.26-29 has following parameter: V g = 10 Ð0 ° V, Z g = 50 - j 40 W, b = 0.25 rad m. Determine the input impedance Z in and (A) 40.3 + j 38.4 W (B) 21.6 - j20.3 W (C) 43.2 - j 40.3 W (D) 80.3 + j76.8 W 32. The voltage reflection coefficient at the load is voltage at the point given in question and choose (A) 0.468 Ð - 6.34 ° (B) 0.468 Ð6.34 ° correct option (C) 0.468 Ð - 38.66 ° (D) 0.468 Ð51.34 ° 33. Three lossless lines are connected as shown in fig. 100 m P8.6.33. The input impedance Z in at A is Zg Zo = 60 W Vg ~ ZL A j40 Zin C B Zo = 50 W Zo = 100 W Zo = 75 W 5l/8 3l/4 l/2 Z L 60 - j35 W Fig. P8.6.26–29 26. At sending end is (A) j29.4 W, 2. 68 Ð102 ° V (B) j40.3 W, 5.75 Ð102 ° V (C) j29.4 W, 5.75 Ð102 ° V (D) j40.3 W, 2. 68 Ð102 ° V Fig. P8.6.33 (A) 46 - j 69 W (B) 39 - j57 W (C) 67 + j 48 W (D) 61 + j52 W 27. At receiving end is (A) j40 W, 5.75 Ð109.6 ° V (B) j40 W, 5.75 Ð - 109.6 ° V (C) 60 - j 43 W, 5.75 Ð109.6 ° V (D) 60 - j 43 W, 5.75 Ð - 109.6 ° V 34. Two l 4 transformer in tandem are to connect a 50 W line to a 75 W load as shown in fig. P8.6.34. If Z o 2 = 30 W and there is no reflected wave to the left of A, then the characteristic impedance Z o1 is 28. At 4 m from the load is (A) - j1436 W, 6.75 Ð167 ° V Zo = 50 W Zo1 Zo2 (B) j1436 W, 6.75 Ð167 ° V (C) - j3471 W, 5.75 Ð167 ° V l/4 Fig. P8.6.34 (D) j3471 W, 5.75 Ð167 ° V www.nodia.co.in l/4 75 W Chap 8.6 Transmission Lines (A) 28 W (C) 49 W 4 (B) 56 W 38. The Z in looking into line 3 is (D) 24.5 W (A) 100 W (B) 50 W (C) 25 W (D) ¥ 35. Two identical antennas, each of input impedance 74 W are fed with three identical 50 W quarter-wave lossless transmission lines as shown in fig. P8.6.35. The input impedance at the source end is Statement for Q.39–40: For the transmission line shown in fig. P8.6.39–40 the Z o = 100 W. l/4 l/4 74 W Z L 35 - j47.5 W Zin d S.C. l 74 W Fig. P8.6.39–40 l/4 39. If Z L = 0 the Z in is Fig. P8.6.35 (A) 148 W (B) 106 W (C) 74 W (D) 53 W Consider the three 50 W lossless line shown in fig. l/4 100 e1 (C) 48.23 - j 68.2 W (D) 48.23 + j 68.2 W (A) 39 + j183 W (B) 39 - j183 W (C) 64 + j148 W (D) 64 - j148 W 41. The 300 W lossless line shown in fig. P8.6.41 is l/4 e2 (B) 94.11 + j76.45 W 40. If Z L = ¥, then Z in is Statement for Q.36–38: Line 3 Zo (A) 94.11 - j76.45 W W matched to the left of the stub. The value of Z L is Zo Lin n Zo Li ZL l/4 S.C. S.C. 0 l/1 l/4 Fig. P8.6.41 Fig. P8.6.36–38 36. The input impedance Z in looking into line 1 is (A) o (B) 25 W (C) ¥ (D) 50 W (A) 1 - j1.37 (B) 1 + j1.37 (C) 300 + j 413 (D) 300 - j 413 42. A short-circuited stub is connected to a 50 W 37. The Z in looking into line 2 is transmission line as shown in fig. P8.6.42. The (A) 25 W (B) 0 admittance seen at the junction of the stub and the (C) ¥ (D) 100 W transmission line is www.nodia.co.in 5 Transmission Lines Chap 8.6 Solutions Z L 100 W 1. (B) R + jwL = 60 + j2 p (10 ´ 106 )( 3 ´ 10 -7) = 62.7 Ð17.44 ° l/2 S.C. G + jwC = 600 ´ 10 -6 + j2 p(10 ´ 106 )(0.75 ´ 10 -9) l/8 = 0.047 Ð89.27 ° (A) 00.01 - j0.02 (B) 0.02 + j0.01 (C) 0.04 + j0.02 (D) 0.04 - j0.02 connected 62.7 Ð17.44 ° = 36.52 Ð - 35.9 ° 0.047 Ð89.27 ° = 2. (B) g = ( R + jwL) ( G + jwC) Consider the fig. P8.6.43–44. A 50 W transmission is G + jwC = 29.6 - j21.4 W Statement for Q.43–44: line R + jwL Zo = Fig. P8.6.42 to a load impedance Z L = 35 - j 47.5 W. A short-circuited stub is connected to match the line. 7l/8 = ( 62.7 Ð17.44 ° )(0.047 Ð89.2 ° ) = 172 . Ð53.32 ° = 1027 . + j1.38 m -1 a = 1027 . Np m, b = 1.38 m -1 , v= w 2 p ´ 10 7 = = 46 ´ 106 m s b 1.38 l/4 3. (B) a = 1027 . Np m = 1027 . ´ 8.686 = 8.92 dB m 200+j150 W Zin al = 30 dB Þ l = 30 = 3.36 m 8.92 4. (B) Vo e - al = 0.2 Vo ZL e - al = 0.2 l/8 Þ al = ln 5 = 1.61 1.61 Þ l = = 18.5 m 0.087 a = 0.087 Fig. P8.6.43–44 5. (D) For distortion less line, 43. The length d is (A) 0.111l (B) 0.06l (C) 0.13l (D) 0.02l G= R G = L C R 18 ´ 21 ´ 10 -12 C= = 4.2 ´ 10 -4 S m L 9 ´ 10 -7 a = RG = 18 ´ 4.2 ´ 10 -4 = 0.087 44. The length l is (A) 0.67 l (B) 0.13l (C) 0.53l (D) 0.86 l ************ b = w LC = 2 p ´ 120 ´ 106 0.9 ´ 10 -6 ´ 21 ´ 10 -12 = 3.28 6. (D) bl = 45 ° = p 4 b = 328 . p = 0.24 m 4( 3.28) Þ 7. (C) Z o = Þ l= R + jwL G + jwC = 20 R + jwL = 400( G + jwC) g = ( R + jwL)( G + jwC) = (1 + j2) 2 2 400( G + jwC) 2 = (1 + j2) 2 Þ G + jwC = 0.05 + j 0.1 0.1 G = 0.05 S m, C = 6 = 0.1 mF m 10 www.nodia.co.in Chap 8.6 Transmission Lines 8. (A) R + jwL = 400( G + jwC) = 400(0.05 + j 0.1) G= Þ R + jwL = 20 + j 40 40 R = 20 W m, L = 6 = 40 mH m 10 6 Z L - Z o 300 - Z o 1 = = Z L + Z o 300 + Z o 2 Þ Z o = 100 W 16. (C) R + jwL = 13 + j(2 p)(2 ´ 106 )( 6.8 ´ 10 -6 ) = 13 + j 85.45 9. (D) 2 a = 1.2 mm, d = 3.2 mm L= C= m cosh -1 p æç d ö÷ = 4 ´ 10 -7 cosh -1 çè 2 a ÷ø pe . 10 ´ 35 = = 59.4 pF m . ö÷ æ d ö÷ æ 32 cosh -1 ç cosh -1 ç çè 2 a ÷ø çè 12 . ÷ø L= d= = 2.69 ´ 10 md 4 p ´ 10 -7 ´ 0.016 = = 50.3 nH m w 0.4 ew e o 40 = = 221 pF 1.6 d sw , s = 0 for air thus G = 0 G= d L d m md d 12. (C) Z o = = = C w ew w e d d = 75 W Z o = ho = 81 W, Z o¢ = w¢ ho w w¢ = 108 . w V 13. (B) I ( z, t) = o sin ( wt - bz) Zo L 0.2 ´ 10 -6 Zo = = = 20 W C 0.5 ´ 10 -9 I ( z, t) = G + jwC = V ( z, t) = 0.5 sin ( wt - bz) Zo 14. (D) v = w 10 = = 5 ´ 10 7 m s b 2 15. (C) G = Vo90 1 = = Vo+ 180 2 8 13 + j 85.45 = 109.9 + j915 . ( 4.2 + j 0.13) 10 -3 ( R + jwL)( G + jwC) b = 0.39 rad m, t = pfms p5 ´ 108 ´ 4 p ´ 10 -7 ´ 7 ´ 10 7 Þ R + jwL g = (13 + j 85.45)( 4.2 + j0.13) ´ 10 -3 = 0.45 + j0.39 -6 2 2 = = 26.55 ´ 10 -3 W wdsc 0.4 ´ 2.69 ´ 10 -6 ´ 7 ´ 10 7 w¢ 81 = w 75 Zo = 1 1 11. (D) C = = ( 4.2 + j0.13) ´ 10 -3 17. (A) g = L 0.66 ´ 10 -6 = = 105 W C 59.4 ´ 10 -12 10. (A) Skin depth d = R= æç 3.2 ö÷ = 0.66 mH m çè 1.2 ÷ø -9 Zo = Þ G + jwC = 4.2 ´ 10 -3 + j(2 p)(2 ´ 106 )(10.7 ´ 10 -12 ) 18. (C) Z o = L , C bl 0.39 ´ 8.4 = 260 ns = w 2 p ´ 2 ´ 106 g = jb = jw LC, Z ob = wL, b= wL 2 p ´ 4.5 ´ 10 9 ´ 2.6 ´ 10 -6 = = 919 rad m Zo 80 v= w Zo 80 = = = 30.8 ´ 106 m s b L 2.6 ´ 10 -6 19. (A) G = s= Z L - Z o 75 + j25 - 60 = = 0.212 Ð48.55 ° Z L + Z o 75 + j25 + 60 1 + |G| 1 + 0.212 = = 1538 . 1 -|G| 1 - 0.212 20. (A) Z in = Z sc = Z o tanh gl = Z o sinh gl cosh gl gl = (1.4 + j5)(0.4) = 0.56 + j2 sinh gl = -0.245 + j1055, . cosh gl = -0.483 + j0.536 ( 35 + j 49)( -0.245 + j1055 . ) Z in = = 82 + j 39 W ( -0.483 + j0.536) 21. (A) G = s= Z L - Z o 125 - 60 = = 0.35 Z L + Z o 125 + 60 1 + |G| 1 + 0.35 = = 2.08 1 -|G| 1 - 0.35 22. (C) bl = 2p l = 60 ° l 6 æ Z + jZ o tan bl ö÷ æ 125 + j 60 tan 60 ° ö÷ = 60ç Z in = Z o ç L ç Z o + jZ L tan bl ÷ çè 60 + j125 tan 60 ° ÷ø è ø = 35 - j24.8 23. (A) G = www.nodia.co.in Z L - Z o 210 - 100 = = 0.355 Z L + Z o 210 + 100 7 Transmission Lines SWR s = 1 + |G| 1 + 0.355 = = 2.1 1 -|G| 1 - 0.355 if Chap 8.6 tan bl = ¥, Z in = Since the line is l 4 long, the sending end will be at 31. (B) bl = Vmax and the receiving end will be at Vmin Vmax = sVmin = 2.1 ´ 60 = 126 V 24. (A) bl = IL = æ Z ¢ + jZ o tan bl ö÷ æ 80 - j 60 + j50 ö÷ Z in = Z o ç L = 50ç ç Z o + jZ ¢L tan bl ÷ çè 50 + 60 + j 80 ÷ø è ø VL 15 e j 25° = = 0.2 e - j 5° Z L 75 e j 30 ° = 21.6 - j203 W lö æ I ç l = ÷ = I L e jbl = 0.2 e - j 5°e j 45° = 0.2 e j 40 ° A çè 8 ÷ø |G| = |G¢| = 0.468, 2p l , z= b= l 4 V = V+ e + V- e = V- e 2 V ( Z = 0) = Vo = = j10 V, |V | = 10 V 33. (B) At C, bl = æ j 40 + j 60 tan 352.4 ° ö÷ = 60ç = j29.4 çè 60 - 40 tan 352.4 ° ÷ø Z in Vg Z in + Z g = 39 - j57 = (5.75 Ð102 ° ) e - j 352 .4 = 5.75 Ð109.6 ° V 34. (D) bl = 28. (C) bl = 0.25 ´ 4 = 1 rad = 57.3° æ j 40 + j 60 tan 57.3° ö÷ = 60ç = - j 3471 W çè 60 - 40 tan 57.3° ÷ø V = VL e jbl = (5.75 Ð109.6 ° ) e j 57.3° = 5.75 Ð167 ° V 29. (B) 3 m from the source is the same as 97 m from the load, bl = 0.25 ´ 97 = 24.25 rad = 309.40 ° Z in æ j 40 + j 60 tan 309.40 ° ö÷ = 60ç = - j18.2 çè 60 - 40 tan 309.40 ° ÷ø V = VL e jbl = (5.75 Ð109.6 ° )( e 30. (B) bl = j 309.4 ° ) = 5.75 Ð59 ° 2p p p (1.25 l) = + 360 °, tan = ¥ l 2 2 æ Z + jZ o tan bl ö÷ Z in = Z o ç L ç Z o + jZ L tan bl ÷ è ø 2 p 5l 5 p = , tan 225 ° = 1, Z L = Z inB l 8 4 æ Z + jZ o ö÷ æ 124.4 + j72.5 + j50 ö÷ = 50ç Z in = Z o ç L ç Z o + jZ L ÷ çè 50 + j124.4 - 72.5 ÷ø è ø VL = Vs ( z = l), Vo = VL e jbl Z in tan p = 0 Z o2 100 2 = = 124.4 + j72.5 W Z L 60 - j 35 At A, bl = 27. (A) Z in = Z L = j 40 W VL = Vo e 2p l = p, l 2 Z inC = Z L = 60 - j 35 W 2 p 3l 3p At B, bl = = , Z L = Z inC = 60 - j 35 W l 4 4 Z inB = æ ö÷ j29.4 =ç 10 Ð0 ° = 5.75 Ð102 ° çè j29.4 + 50 - j 40 ÷ø - jbl p = - 38.66 ° + 90 ° = 51.34 ° 4 G = 0.468 Ð51.34 ° 26. (C) bl = 0.25 ´ 100 = 25 rad = 1432.4 ° º 352.4 ° At sending end Z in q G = q G¢ + 2 ´ But jp gz Z ¢L - Z o 80 - j 60 - 50 = = 0.468 Ð - 38.66 ° Z L¢ + Z o 80 - j 60 + 50 32. (D) G¢ = g = a + jb, V+ = 0, V- = 10 V - gz wl 2 p ´ 150 ´ 106 ´ 4.2 21p = = v 0.8 ´ 3 ´ 108 4 tan bl = 1 2p l = 45 ° l 8 25. (A) a = 0 , Z o2 80 2 = = 51.2 W Z L 125 Z2 2p l p p = , tan = ¥, Z in = o , ZL l 4 2 2 Z in 2 = Z o22 , Z L1 = Z in 2 75 Z in 1 = Z o21 = Zo Z L1 35. (A) bl = Þ Z o21 = Z o Z L1 = 2p l p = , l 4 2 Z ¢in = 50 ( 30) 2 = 24.5 W 75 Z o2 50 2 = = 3378 . ZL 74 This act as the load to the left line. But there are two such loads in parallel. Due to the two lines on the right Z ¢L = 16.9 W, Z in = 50 2 = 148 W 16.9 æ 2 p l ö÷ 36. (B) tan bl = tan ç =¥, çè l 4 ÷ø Z in = Z o2 50 2 = = 25W Z L 100 www.nodia.co.in Chap 8.6 Transmission Lines 37. (C) Z L = 0 2 o Z 0 Z in = æ 2 p l ö÷ tan bl = tan ç =0 çè l 2 ÷ø = ¥ (open circuit). 39. (A) For Z in 1 = 42. (A) At junction input impedance of line (short circuit), 38. (A) Z L = 25 || ¥ = 25 W, Z in æ Z + jZ o tan bl ö÷ Z inL = Z o ç L = Z L = 100 W ç Z o + jZ L tan bl ÷ è ø 50 2 = = 100 W 25 input impedance of stub Z L = 0 æ 2 p l ö÷ tan bl = tan ç =1 çè l 8 ÷ø l line tan bl = ¥ 4 æ Z + jZ o tan bl ö÷ = jZ o = j50 W Z ins = Z o ç L ç Z o + jZ L tan bl ÷ è ø 1 1 1 At junction Y = = + = 0.01 - j0.02 Z j50 100 Z o2 100 2 = = 32 - j24 Z L 200 + j150 l line, tan bl = 1 8 For æ 0 + jZ o ö÷ = jZ o = j100 W Z in 2 = Z o ç ç Zo + 0 ÷ è ø At the ZL = 43. (B) Normalized load z L = rL + jxL { ( 32 - j24)( j100) = 47.06 - j1176 . 32 - j24 + j100 æ 47.06 - j1176 . + j100( -1) ö÷ Z in = 100ç = 94.11 - j76.45 çè 100 + j( 47.06 - j1176 . )( -1) ÷ø l line 40. (D) If Z L = ¥, at the input end of 8 æ Z + jZ o ö÷ = - jZ o = - j100 = Zo ç L ç Z o + jZ L ÷ è ø Z L = ( 32 - j 24)||( - j100) = 19.5 - j24.4 æ 19.5 - j24.4 + j100( -1) ö÷ = 64 - j148 W Z in = 100ç çè 100 + j(19.5 - j24.4)( -1) ÷ø 41. (C) For the line to be matched, it is required that the sum of normalized input admittance of the shorted stub and main line at the point where the stub is l shorted stub, z L = 0 and connected be unity. For 10 z ins z + j tan bl = L = j tan bl , 1 + z L j tan bl ì 1 tan -1 t, t ³0 ï d ï 2p =í l ï 1 -1 ï 2 p (p + tan t), t > 0 î Z L = 35 - j 47.5, Z o = 50 W, z L = ZL = 0.7 - j0.95 Zo rL = 0.7, xL = -0.95, 1 t= ( -0.95 ± 0.7{0.7(1 - 0.7) 2 + 0.95 2 } ) = 5.93, 0.4 0.7 - 1 d 1 For t = 5.93, = tan -1 5.93 = 0.223 l 2p d 1 For t = 0.4, = tan -1 0.4 = 0.06 l 2p 44. (B) bB = bB = rL2 t - (1 - xL t)( xL + t) , rL + ( xL + t) 2 For line to be matched at junction normalized input admittance of line must be 1 + j1.3764 æ 2 p l ö÷ tan bl = tan ç =¥ çè l 4 ÷ø For t = 5.93, (0.7) 2 (5.93) - {1 - ( -0.95)(5.93)}(5.93 - 0.95) = - 118 . 0.7 + (5.93 - 0.95) 2 For t = 0.4, bB = 0.9526 1 ì 1 bB ³ 0 tan -1 , ï 2 p b l ïï B =í l ï 1 æç -1 1 ö ÷ ï 2 p ç p + tan b ÷, bB > 0 ïî è B ø æ 2 p l ö÷ yins = - j cot bl = - j cot ç = - j1.3764 çè l 10 ÷ø yin = z L , z L = 1 + j1.3764, } ì 1 xL ± rL ( (1 - rL ) 2 + xL2 ) , rL ¹ 1 ï rL - 1 ï t = tan bd = í ï xL , rL = 1 ïî 2 7l line Z in 1 ||Z in 2 will be load. 8 æ 2 p 7 l ö÷ tan bl = tan ç × = -1 çè l 8 ÷ø Z in 2 8 l = 0.388 l l For bB = 0.953, = 0.13 l For bB = -118 . , Z L = Z o z L = 300 + j 413 www.nodia.co.in *************