Comments
Description
Transcript
1.4 Circuit Theorems
1.4 Circuit Theorems 1. vTH , RTH = ? (C) 1 V, 3W 2W 5 W 6 (D) -1 V, 6 W 5 4. A simple equivalent circuit of the 2 terminal 6W 6V vTH, RTH network shown in fig. P1.4.4 is R Fig. P.1.4.1 (A) 2 V, 4 W (B) 4 V, 4 W (C) 4 V, 5 W (D) 2 V, 5 W i v Fig. P.1.4.4 2. i N , R N = ? 2W R 2W R 4W 15 V v iN, RN (A) (B) Fig. P.1.4.2 (A) 3 A, R R 10 W 3 i (B) 10 A, 4 W (C) 1,5 A, 6 W i (D) 1.5 A, 4 W (C) (D) 5. i N , R N = ? 3. vTH , RTH = ? 2W 2W 3W 2A 1W vTH, RTH 6A 6 W 5 (B) 2 V, 3W iN RN Fig. P.1.4.5 Fig. P.1.4.3 (A) -2 V, 4W 5 W 6 (A) 4 A, 3 W (B) 2 A, 6 W (C) 2 A, 9 W (D) 4 A, 2 W www.nodia.co.in 34 Circuit Theorems 6. vTH , RTH = ? Chap 1.4 The value of the parameter are vTH RTH iN RN (A) 4 V 2 W 2 A 2 W (B) 4 V 2 W 2 A 3 W 1.2 W 5 W 25 W 30 W 20 W vTH, RTH 5V 5A Fig. P.1.4.6 (A) -100 V, 75 W (B) 155 V, 55 W (C) 155 V, 37 W (D) 145 V, 75 W (C) 8 V 1.2 W 30 A 3 (D) 8 V 5 W 8 A 5 10. v1 = ? 2W 1W 7. RTH = ? 6W 2W 8V 6W 3W 1W + v1 6W 18 V – 6W 2A RTH Fig. P.1.4.10 5V (A) 6 V (B) 7 V (C) 8 V (D) 10 V Fig. P.1.4.7 (A) 3 W (B) 12 W (C) 6 W (D) ¥ 11. i1 = ? 4 kW i1 20 V 4 kW 6 kW 8. The Thevenin impedance across the terminals ab of the network shown in fig. P.1.4.8 is 12 V 24 V 3 kW 4 kW a 3W Fig. P.1.4.11 6W 2A 8W 2V 8W b (B) 6 W (C) 6.16 W (D) (B) 0.75 mA (C) 2 mA (D) 1.75 mA Statement for Q.12–13: Fig. P.1.4.8 (A) 2 W (A) 3 A A circuit is given in fig. P.1.4.12–13. Find the Thevenin equivalent as given in question.. 4 W 3 10 W 16 W x y 9. For In the the circuit shown in fig. P.1.4.9 a network 2W 8W 3W x’ RTH 4V 40 W 5V and its Thevenin and Norton equivalent are given iN 2A vTH Fig. P.1.4.9 y’ Fig. P.1.4.12–13 RN 12. As viewed from terminal x and x¢ is (A) 8 V, 6 W (B) 5 V, 6 W (C) 5 V, 32 W (D) 8 V, 32 W www.nodia.co.in 1A Chap 1.4 Circuit Theorems 13. As viewed from terminal y and y¢ is (A) 8 V, 32 W (B) 4 V, 32 W (C) 5 V, 6 W (D) 7 V, 6 W 35 (C) 0 A, 20 W (D) 0 A, -20 W 19. vTH , RTH = ? i1 6W 14. A practical DC current source provide 20 kW to a 50 W load and 20 kW to a 200 W load. The maximum 3i1 power, that can drawn from it, is (A) 22.5 kW (B) 45 kW (C) 30.3 kW (D) 40 kW RN Fig. P1.4.19 Statement for Q.15–16: In the circuit of fig. P.1.4.15–16 when R = 0 W , the current iR equals 10 A. (A) 0 W (B) 1.2 W (C) 2.4 W (D) 3.6 W 20. vTH , RTH = ? 2W 4W iN, 4W 2W 4V + E 4W 2W R 4A iR vTH RTH v1 5W 0.1v1 – Fig. P.1.4.15–16. Fig. P.1.4.20 15. The value of R, for which it absorbs maximum power, is (A) 8 V, 5 W (B) 8 V, 10 W (D) 4 V, 10 W (A) 4 W (B) 3 W (C) 4 V, 5 W (C) 2 W (D) None of the above 21. RTH = ? 3W 2W 16. The maximum power will be + (A) 50 W (B) 100 W (C) 200 W (D) value of E is required vx 4 4V 17. Consider a 24 V battery of internal resistance the current drawn from the battery is i . The current drawn form the battery will be i 2 when RL is equal to (A) 2 W (B) 4 W (C) 8 W (D) 12 W Fig. P.1.4.21 (A) 3 W (B) 1.2 W (C) 5 W (D) 10 W 22. In the circuit shown in fig. P.1.4.22 the effective resistance faced by the voltage source is 4W 18. i N , R N = ? 5W 10 W i1 20i1 iN, 30 W vs RN i i 4 Fig. P.1.4.22 Fig. P.1.4.18 (A) 2 A, 20 W RTH – r = 4 W connected to a variable resistance RL . The rate of heat dissipated in the resistor is maximum when vx (B) 2 A, -20 W (A) 4 W (B) 3 W (C) 2 W (D) 1 W www.nodia.co.in 36 Circuits Theorems Chap 1.4 23. In the circuit of fig. P1.4.23 the value of RTH at ix terminal ab is 16 V 0.75va RL 3W 0.9 A 2W Fig. P.1.4.26–27 8W a – 26. The value of RL will be va + 4W 9V b Fig. P.1.4.23 (A) -3 W 8 (C) - W 3 (B) 3 W (C) 1 W (D) None of the above 27. The maximum power is 9 W 8 (B) (A) 2 W (D) None of the above (A) 0.75 W (B) 1.5 W (C) 2.25 W (D) 1.125 W 28. RTH = ? 24. RTH = ? -2ix 200 W – va 100 va + 100 W 50 W RTH 100 W 300 W ix Fig. P.1.4.24 (A) ¥ (C) (B) 0 3 W 125 (D) 125 W 3 maximum power if RL is equal to 800 W (C) 200 W (D) 272.8 W 29. Consider the circuits shown in fig. P.1.4.29 ia 2W 6W 6W 2W 2W RL 3i RTH – (B) 136.4 W 100 W 200 W vx (A) 100 W i 6V + Fig. P.1.4.28 25. In the circuit of fig. P.1.4.25, the RL will absorb 40 W 100 W 0.01vx 12 V 8V 12 V Fig. P.1.4.25 6W (A) 400 W 3 (B) 2 kW 9 (C) 800 W 3 (D) 4 kW 9 ib 2W 6W 6W 2W 2W Statement for Q.26–27: In the circuit shown in fig. P1.4.26–27 the 18 V 6W 3A maximum power transfer condition is met for the load RL . Fig. P.1.4.29a & b www.nodia.co.in 12 V Chap 1.4 Circuit Theorems 37 33. If vs1 = 6 V and vs 2 = - 6 V then the value of va is The relation between ia and ib is (A) ib = ia + 6 (B) ib = ia + 2 (A) 4 V (B) -4 V (C) ib = 15 . ia (D) ib = ia (C) 6 V (D) -6 V 30. Req = ? 34. A network N feeds a resistance R as shown in fig. 12 W P1.4.34. Let the power consumed by R be P. If an 4W identical network is added as shown in figure, the Req 6W power consumed by R will be 2W 18 W 6W 9W R N N N R Fig. P.1.4.30 (A) 18 W (C) (B) 36 W 13 72 W 13 Fig. P.1.4.34 (D) 9 W 31. In the lattice network the value of RL for the maximum power transfer to it is (A) equal to P (B) less than P (C) between P and 4P (D) more than 4P 35. A certain network consists of a large number of ideal linear resistors, one of which is R and two constant ideal source. The power consumed by R is P1 7W when only the first source is active, and P2 when only 6 the second source is active. If both sources are active W simultaneously, then the power consumed by R is 5 W RL 9W (A) P1 ± P2 (B) (C) ( P1 ± P2 ) 2 (D) ( P1 ± P2 ) 2 P1 ± P2 Fig. P.1.4.31 (A) 6.67 W (B) 9 W 36. A battery has a short-circuit current of 30 A and an (C) 6.52 W (D) 8 W open circuit voltage of 24 V. If the battery is connected to an electric bulb of resistance 2 W, the power dissipated by the bulb is Statement for Q.32–33: A circuit is shown in fig. P.1.4.32–33. (A) 80 W (B) 1800 W (C) 112.5 W (D) 228 W 12 W 1W 3W 3W 37. 1W va 1W following results were obtained from measurements taken between the two terminal of a + vs1 The vs2 resistive network – Fig. P.1.4.32–33 32. If vs1 = vs 2 = 6 V then the value of va is Terminal voltage 12 V 0V Terminal current 0A 1.5 A The Thevenin resistance of the network is (A) 3 V (B) 4 V (A) 16 W (B) 8 W (C) 6 V (D) 5 V (C) 0 (D) ¥ www.nodia.co.in 38 Circuit Theorems Chap 1.4 38. A DC voltmeter with a sensitivity of 20 kW/V is Solutions used to find the Thevenin equivalent of a linear network. Reading on two scales are as follows 1. (B) vTH = (a) 0 - 10 V scale : 4 V (b) 0 -15 V scale : 5 V The Thevenin voltage the Thevenin 2. (A) 2W resistance of the network is 16 1 (A) V, MW 3 15 32 V, 3 200 kW 3 (D) 36 V, 200 kW 3 (B) 2 MW 15 (C) 18 V, and ( 6)( 6) = 4 V, RTH = ( 3||6) + 2 = 4 W 3+ 6 isc Fig. S.1.4.2 15 10 2 =6W R N = 2 ||4 + 2 = W, v1 = 1 1 1 3 + + 2 2 4 v isc = i N = 1 = 3 A 2 + RL 4W 15 V 39. Consider the network shown in fig. P.1.4.39. Linear Network 2W v1 vab – Fig. P.1.4.39 The power absorbed by load resistance RL is 3. (C) vTH = shown in table : RL 10 kW 30 kW P 3.6 MW 4.8 MW (2)( 3)(1) 5 = 1 V, RTH = 1||5 = W 3+ 3 6 4. (B) After killing all source equivalent resistance is R Open circuit voltage = v1 The value of RL , that would absorb maximum 5. (D) isc = 6´ 4 = 4 A = i N , R N = 6 ||3 = 2 W 4+2 2W power, is (A) 60 kW (B) 100 W (C) 300 W (D) 30 kW isc 3W 4W 6A 40. Measurement made on terminal ab of a circuit of fig.P.1.4.40 yield the current-voltage characteristics Fig. S1.4.5 shown in fig. P.1.4.40. The Thevenin resistance is 6. (B) RTH = 30 + 25 = 55 W, vTH = 5 + 5 ´ 30 = 155 V i(mA) + 30 Resistive Network 20 10 -4 -3 -2 -1 0 vab – 1 2 v a 7. (C) After killing the source, RTH = 6 W b 6W 6W Fig. P.1.4.40 RTH (A) 300 W (B) -300 W (C) 100 W (D) -100 W Fig. S.1.4.7 *********** www.nodia.co.in Chap 1.4 Circuit Theorems 8. (B) After killing all source, RTH = 3||6 + 8 ||8 = 6 W 6W 8W 8W If we Thevenized the left side of xx¢ and source transformed right side of yy¢ 4 8 + 8 24 RTH = 8 ||(16 + 8) = 6 W = 5 V, vxx ¢ = vTH = 1 1 + 8 24 a 3W 39 b Fig. S1.4.8 13. (D) v yy¢ = vTH 9. (D) voc = 2 ´ 2 + 4 = 8 V = vTH RTH = 2 + 3 = 5 W = R N , iN = vTH 8 = A RTH 5 4 8 + 24 8 = 7 V, R = ( 8 + 16)||8 = 6 W = TH 1 1 + 24 8 14. (A) 10. (A) By changing the LHS and RHS in Thevenin i equivalent 1W 1W 2W 1W Fig. S1.4.14 + 6W 4V RL r v1 12 V – 2 2 æ ir ö æ ir ö ÷ 50 = 20 k, ç ÷ 200 = 20 k ç è r + 50 ø è r + 200 ø Þ ( r + 200) 2 = 4( r + 50) 2 Fig. S1.4.10 Pmax i = 30 A, 4 12 + + +2 =6 V 1 1 1 v1 = 1 1 1 + + 1+1 6 1+2 r = 100 W ( 30) 2 ´ 100 = = 22.5 kW 4 15. (C) Thevenized the circuit across R, RTH = 2 W 4W 2W 2W 11. (B) By changing the LHS and RHS in Thevenin 2W 4W equivalent i1 2 kW 4 kW 20 V 2 kW Fig. S1.4.15 6V 8V 17. (D) RL = r = 4 W, i = Fig. S1.4.11 i1 = 20 - 6 - 8 = 0.75 mA 2k + 4k + 2k 24 3 = RL¢ + 4 2 12. (B) 8W 16 W x 2 æ 10 ö ÷ ´ 2 = 50 W 16. (A) isc = 10 A, RTH = 2 W, Pmax = ç è 2 ø y Þ 24 =3 A 4+4 R¢L = 12 W 18. (C) i N = 0, 8W 1- i1 10 W 5W i1 4V + 8V 20i1 30 W 1A vtest – x’ y’ Fig. S1.4.18 Fig. S1.4.12 www.nodia.co.in 40 Circuit Theorems 20 i1 = 30 i1 - 10(1 - i1 ) Þ i1 = 0.5 A 22. (B) vs = 4 ´ vtest = 5 ´ 1 + 30 ´ 0.5 = 20 V v R N = test = 20 W 1 3i 4 vs = 3W i Þ voc voc - 9 + + 0.75 va = 0 4 8 23. (C) voc = vab = -va , 19. (B) Circuit does not contains any independent source, vTH = 0 i1 6W + 4W 3i1 Chap 1.4 1A vtest 2 voc + voc - 9 + 6( -voc ) = 0 , voc = - 3 V If terminal ab is short circuited, va = 0 9 v -3 -8 A and RTH = oc = isc = = W 8 isc 9 8 3 24. (D) Using source transform i1 – 100 W 200 W – + Fig. S1.4.19 va va 1A vtest – Applying 1 A at terminal, i1 = -1 A vtest vtest - 3( -1) . V + = 1 Þ vtest = 12 4 6 v RTH = test = 12 . W 1 + Fig. S1.4.24 va = 100 i1 + 200 i1 + 50( i1 + 1) va = 100 i1 - va Þ va = 50 i1 50 i1 = 300 i1 + 50 i1 + 50 20. (B) 4V isc Þ i1 = - 1 A 6 æ 1 ö 125 vtest = 50ç 1 - ÷ = W 6ø 3 è 25. (C) 5W 0.1v1 50 W 100 W 2i 40 W + i Fig. S1.4.20 200 W 6V v1 = 4 + 5 ´ 0.1v1 Þ 3i v1 = 8 V – v1 = voc = vTH Fig. S1.4.25a For isc , v1 = 0 4 v isc = A, RTH = oc = 10 W 5 isc 21. (D) vx = 2 vx +4 4 6 = 200 i - 40 ´ 2 i Þ i= 1 A 20 voc = 100 ´ 3i + 200 ´ i = 25 V Þ vx = 8 V = voc 40 W 3W 2W 100 W v1 i isc 4V voc 6V vx 4 200 W isc 3i1 Fig. S1.4.25b Fig. S1.4.21 If terminal is short circuited, vx = 0 4 v 8 isc = = 0.8 A, RTH = oc = = 10 W 2+3 isc 0.8 6 15 15 3 40 V, i = A = v1 = = 1 1 1 4 4 ´ 200 160 + + 40 200 100 www.nodia.co.in Chap 1.4 isc = Circuit Theorems 16 3´ 3 3 v 25 800 A, RTH = oc = + = = W 4 ´ 100 160 32 isc 3 32 3 41 30. (D) Changing the D to Y 12 W 26. (B) ix + 0.9 = 10 ix Þ 2 W 3 2W ix = 0.1 A 10ix 2W 1W Req 18 W + 6W 9W 16 V voc 3W 0.9 A Fig. S1.4.30 – Fig. S1.4.26 voc = 3 ´ 10 ix = 30 ix isc = 10 ix = 1 A, RTH æ æ 2 öö Req = 18 ||çç 14 + 10 ||ç 6 + ÷ ÷÷ = 18 ||(14 + 4) = 9 W 3 øø è è Þ voc = 3 V 3 = = 3W 1 31. (C) RTH = 7 ||5 + 6 ||9 = 6.52 W 7W 2 3 = 0.75 W 4´ 3 6 W RTH W 27. (A) vTH = voc = 3 V, RL = 3 W, Pmax = 5 28. (A) ix = 1 A , vx = vtest -2ix 9W Fig. S1.4.31 100 W 0.01vx 100 W + 300 W 1A vtest – For maximum power transfer RL = RTH = 6.52 W 32. (D) The given circuit has mirror symmetry. It is modified and redrawn as shown in fig. S.1.4.32a. ix 6W 800 W Fig. S1.4.28 1W vtest = 1200 - 800 ix - 3vtest 4 vtest = 1200 - 800 = 400 v RTH = test = 100 W 1 Þ 1W 3W vtest = 100 (1 - 2 ix ) + 300 (1 - 2 ix - 0.01vx ) + 800 Þ 6W 6V 3W 2W 2W vtest = 100 V + va 6V – Fig. S.1.4.32a 29. (C) In circuit (b) transforming the 3 A source in to Now in this circuit all straight-through connection 18 V source all source are 1.5 times of that in circuit have been cut as shown in fig. S1.4.32b (a). Hence ib = 15 . ia . ib 6W 1W 2W 6W 3W 6W 2W 2W 2W 18 V 18 V va – 12 V Fig. S.1.4.32b 6W Fig. S1.4.29 + va = www.nodia.co.in 6 ´ (2 + 3) =5 V 2 + 3+1 6V 42 Circuit Theorems 33. (B) Since both source have opposite polarity, hence short circuit the all straight-through connection as shown in fig. S.1.4.33 6W 1W 3W 2W + va For 0 -50 V scale Rm = 50 ´ 20 k = 1 MW 4 For 4 V reading i = ´ 50 = 20 mA 10 vTH = 20mRTH + 20m ´ 200 k = 4 + 20mRTH 5 For 5 V reading i = ´ 50m = 5 mA 50 ...(i) vTH = 5m ´ RTH + 5m ´ 1M = 5 + 5mRTH ...(ii) Solving (i) and (ii) 16 200 V, RTH = vTH = kW 3 3 6V – Fig. S1.4.33 va = - 39. (D) v10 k = 10 k ´ 3.6m = 6 6 ´ ( 6 ||3) = -4 V 2+1 v30 k = 30 k ´ 4.8m = 12 V 6 = 10 vTH 10 + RTH 12 = 30 vTH 30 + RTH 34. (C) Let Thevenin equivalent of both network RTH Chap 1.4 RTH RTH Þ Þ 10 vTH = 6 RTH + 60 5 vTH = 2 RTH + 60 RTH = 30 kW vTH R vTH R 40. (D) At v = 0 , isc = 30 mA At i = 0, voc = - 3 V v -3 RTH = oc = = - 100 W isc 30m Fig. S1.4.34 2 æ VTH ö ÷÷ R P = çç è RTH + R ø æ ç VTH P¢ = ç R ç ç R + TH è 2 vTH 2 ö ÷ æ VTH ÷ R = 4ç ç2R + R ÷ è TH ÷ ø 2 ************ ö ÷÷ R ø Thus P < P ¢ < 4 P 35. (C) i1 = P1 P2 and i2 = R R using superposition i = i1 + i2 = P1 ± R P2 R i 2 R = ( P1 ± P2 ) 2 36. (C) r = P= voc = 1. 2 W isc 24 2 ´ 2 = 112.5 W (1. 2 + 2) 2 37. (B) RTH = 38. (A) Let voc 12 = =8W isc 15 . 1 1 = = 50 mA sensitivity 20 k For 0 -10 V scale Rm = 10 ´ 20 k = 200 kW www.nodia.co.in