Comments
Description
Transcript
Diapositiva 1 - Associazione aicap
Il nuovo quadro normativo sulla progettazione antincendio delle strutture di calcestruzzo armato Venerdì 8 febbraio 2008 AICAP – Università di Roma Tre Meccanica del danno in caso di incendio prof. ing. Andrea Benedetti Dip. DISTART, Univ. di Bologna Viale Risorgimento 2, 40136 BOLOGNA E-mail: [email protected] Phase Changes with Fire • The hot resistance of concrete depends on the decomposition of: • - Tobermoritic GEL • - Calcium Hydroxide • - a - b quartz • The quenched resistance of the concrete depends on the micro cracks formed by the cement paste around the gravel and sand elements Merloni production plant fire DIAVIA Fire (1995) • La struttura pallettizzata del magazzino ha favorito la propagazione di un incendio a riscaldamento rapido • Le pareti tagliafuoco in cartongesso con camera hanno consentito l’operatività dei locali protetti anche durante l’incendio • Il calcestruzzo prefabbricato ad alta resistenza ha subito un danno consistente principalmente per esfoliazione (ploughing) Damage of Concrete elements of DIAVIA • Tutti gli elementi strutturali sono caratterizzati da perdite di materia per esfoliazione con conseguente esposizione delle armature • La presenza di cloro liberato dalla combustione della plastica ha innescato pesanti effetti di corrosione del ferro • Gli elementi di bassa massività (quali quelli di copertura) presentano ampi squarci e caduta di pezzi Thermal Shock sloughing or cover detachment Laboratory Calibration of the NDT Site Measurements 600 mm A B Avanzamento carotatrice B Velocità Ultrasonore (m/s) 4500 3750 3000 Vus Trasversali carote Vus Assiali cilindri 2250 0 100 200 300 400 Ascissa nella Carota (mm) 500 600 Resistenza Cilindri (kg/cm2) A X 300 200 100 0 • Core Laboratory characterization – – – – Transversal ultrasound velocity measurements Cylinder preparation for cutting Longitudinal velocity measurement in cut samples Compression test of the cylindrical samples Elastic moduli distribution in fire damaged concrete sections 30 20 10 0 0 10 20 30 40 50 Andrea Benedetti, (1998), “On the ultrasonic pulse propagation into fire damaged concrete”, ACI Structural Journal, vol. 95-3. 60 70 Path reconstruction by the minimum travelling time concept Crack Density as a measure of Damage Spatial Crack Distribution along the section thickness 900 800 resistenza cilindrica [kg/cm^2] Correlation with the concrete disk punch tests 700 600 500 400 300 200 100 0 0 30 60 ascissa carota [mm] 90 120 Disk Splitting Tensile Test • The tensile strength is temperature and thus depth dependent Other Damage Measures (1) Surface Hardness Other Damage Measures (2) Flexural Strength Other Damage Measures (3) Dynamic Modulus Other Damage Measures (4) Ultrasonic Pulse Velocity Hot Concrete Strength Schneider U., (1986), “Modeling of concrete behaviour at high temperature”, In: Anchor, Malhotra, Purkiss, Ed.s: Design of structures against fire, New York, Elsevier, p. 53–69. Residual strength after cooling • Residual Strength is dependent on the stress level during the thermal cycling Formulas for tangent modulus and peak strength Time-Temperature-Load non Holonomic Processes Evidence of Creep Irreversibility Thermo Plastic Creep of Concrete (LITS) Stress Profiles of heated cylinders under axial load Maximum Restraint Force During Expansion Heating test of a concrete specimen confined by two fixed distance plate. The test shows the features of the thermo plastic viscous behavior Thelandersson Analysis (1) • The standard thermo elastic analysis is not able to capture the essence of the LITS phenomenon ( , T ) 1 ij kk ij ij a T ij E E x x Ex aT x x Ex aT Thelandersson Analysis (2) • The LITS effect comes out from coupling of stress and temperature increase ( , , T , T ) 1 1 1 ij aT kk kk kk T ij ij ij E 21 E 22 x 1 x x a T xT Ex 21 x cr x Ex (a x )(T T0 ) Constitutive Models (1) • Anderberg & Thelandersson Anderberg Y., Thelandersson S., (1976), “Stress and deformation characteristics of concrete, experimental investigation and material behaviour model”, Bulletin 54, University of Lund, Sweden Constitutive Models (2) • Schneider Schneider U., (1986), “Modeling of concrete behaviour at high temperature”, In: Anchor, Malhotra, Purkiss, Ed.s: Design of structures against fire, New York, Elsevier, p. 53–69. Constitutive Models (3) • Diederichs Diederichs U., (1987), “Modelle zur Beschreibung der Betonverformung bei instantionaren Temperaturen“. In Abschlubkolloquium Bauwerke unter Brandeinwirkung, Technische Universität, Braunschweig, p. 25–34. Constitutive Models (4) • Khoury and Terro Terro M., (1886), “Numerical modelling of the behaviour of concrete structures”, ACI Structural Journal 95(2), pp. 183–193. Comparison of Models (1) Li L., Purkiss J., (2005), “Stress–strain constitutive equations of concrete material at elevated temperatures”, Fire Safety Journal, 40, pp. 669–686 Comparison of Models (2) 2 u 0 T T (T ) 0.021 0.009 E0 1000 1000 * uT 2 Comparison of Models (3) Comparison of Models (4) Comparison of Models (5) Biaxial limit surface for heated concrete Water moisture migration in concrete during fire FERRARI Experience Centre Fire damages to the Ferrari Experience Centre Rate of Heat Release 400,0 300,0 250,0 200,0 RHR Data 150,0 RHR Computed 100,0 50,0 0,0 0 20 40 60 Time [min] 80 100 120 Gas Temperature Analysis Name: 800 700 600 500 400 Hot Zone 300 Cold Zone 200 100 0 0 Analysis Name: 20 40 60 Time [min] 80 100 120 Two Zone Model of the fire evolution 350,0 P/C Beam Thermal Analysis 2.5 Coducibility [W/m2°C] Specific Heat [W/kg°C] 1600 1400 1200 1000 800 200 400 600 800 1000 1200 2 1.5 1 0.5 200 400 600 800 1000 1200 Temperature in the Beam Flange 700,00 T [°C] 600,00 Temperature profile in the horizontal direction at a depth of 40 mm t = 3600 s t = 4500 s t = 2700 s 500,00 400,00 300,00 200,00 100,00 X [cm] 0,00 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 700,00 T [°C] Temperature profile in the vertical direction at a depth of 40 mm t = 3600 s t = 4500 s t = 2700 s 600,00 500,00 400,00 300,00 200,00 100,00 Y [cm] 0,00 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 Steel wire Temperature Web temperature in the transversal direction 700,00 T [°C] 600,00 t = 3600 s t = 4800 s 500,00 400,00 300,00 200,00 100,00 X [cm] 0,00 0,00 2,00 4,00 6,00 400 8,00 10,00 Prestressing wire temperature 12,00 T (°C) 1 2 300 3 5 6 9 13 200 7 4 5 8 12 2 4 7 11 1 3 6 10 10 8 11 12 9 13 100 t (sec) 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Light gray denotes the section area that rises up to a temperature larger than 500°C Ultrasonic NDT Tests 46 cm 16 cm Reduction of the elastic modulus with the temperature increase 1 Misura tipo A 0.6 0.4 3 f ck ( ) 2 c1 ( ) 0 0 200 400 Vus ( ) a us Vus 0 600 800 17 cm Ec 0 ( ) 0.2 m isura tipo C kE ( ) kc2 ( ) 0.8 misura tipo B x2 x1 x2 x1 ds k E ( ( s)) Paths used for the ultrasonic velocity measurements 0.6 Elastic Modulus Distribution 0.5 0.4 0.3 0.2 0.1 0 2.5 5 7.5 10 12.5 15 Elastic modulus distributions along path A Elastic modulus distributions along path B Ultrasonic propagation data 4500 4000 3500 3000 2500 2000 1500 1000 500 0 0,00 4500 4000 4000 3500 3000 2500 2000 1500 1000 500 3500 Trave 7 Trave 2 3000 Ttave 3 Trave 7 y = 1755,5Ln(x) - 1413,8 Trave 4 2 Trave 2 2500R = 0,8197 Trave 5 Trave 3 Trave 6 Trave 4 Trave 8 2000 Trave 5 Trave 9 Trave 6 Trave 10 1500 y = 1319,4Ln(x) - 53,658 Trave 8 Best Fit 2 Trave 9 R = 0,7844 y = 440,86Ln(x) + 1818,5 Best Fit 2 1000 Trave 7 Trave 2 Trave 3 Trave 4 Trave 5 R = 0,1894 8,00 0 4,00 500 0,00 4,00 0 0,00 12,00 8,00 16,00 12,00 4,00 8,00 Sezione A B C 20,00 16,00 12,00 Spessore 160 450 120 24,00 20,00 Trave 6 Trave 8 Trave 9 Best Fit 24,00 16,00 aus(2,0) 0,215 0,000 0,531 20,00 24,00 aus MEDIO 0,755 0,669 0,710 aus(22,0) 1,000 1,000 0,794 Comparison between theory and measurements Comparison of the strength reduction in the main section Calculation of the residual resisting moment 3500 momento flettente 3000 2500 2000 momento dei carichi momento resistente momento danneggiato momento rinforzato 1500 1000 500 0 0 400 800 1200 ascissa trave 1600 2000 2400 Thanks for Your Attention Inquiries to: [email protected]