Comments
Transcript
TAVOLA DEGLI SVILUPPI DI TAYLOR DELLE FUNZIONI
TAVOLA DEGLI SVILUPPI DI TAYLOR DELLE FUNZIONI ELEMENTARI PER x → 0. ex = sin x = cos x = tan x = sinh x = cosh x = tanh x = 1 1−x x2 x3 xn + + ··· + + o(xn ) 2 6 n! x5 (−1)n 2n+1 + + ··· + x + o(x2n+2 ) 5! (2n + 1)! x4 (−1)n 2n + + ··· + x + o(x2n+1 ) 4! (2n)! 2 17 7 62 9 + x5 + x + x + o(x10 ) 15 315 2835 x5 x2n+1 + + ··· + + o(x2n+2 ) 5! (2n + 1)! x4 x2n + + ··· + + o(x2n+1 ) 4! (2n)! 2 17 7 62 9 + x5 − x + x + o(x10 ) 15 315 2835 1+x+ x3 6 x2 1− 2 x3 x+ 3 x3 x+ 6 x2 1+ 2 x3 x− 3 x− = 1 + x + x2 + x3 + · · · + xn + o(xn ) x2 x3 (−1)n+1 n + + ··· + x + o(xn ) 2 3 n x3 x5 (−1)n 2n+1 arctan x = x − + + ··· + x + o(x2n+2 ) 3 5 2n + 1 x3 x5 x2n+1 arctanh x = x + + + ··· + + o(x2n+2 ) 3 5 2n + 1 µ ¶ α(α − 1) 2 α(α − 1)(α − 2) 3 α n (1 + x)α = 1 + αx + x + x + ··· + x + o(xn ) n 2 6 log(1 + x) = con x− µ ¶ α(α − 1)(α − 2) · · · · · (α − n + 1) α = n n! 1 TAVOLA DI PRIMITIVE DI FUNZIONI ELEMENTARI Z xa dx Z Z 1 dx x ax dx = xa+1 +C a+1 se a 6= −1 = log |x| + C = Z ax +C log a cos x dx = sin x + C sin x dx = − cos x + C Z Z 1 dx cos2 x Z 1 dx 2 sin x Z cosh x dx Z sinh x dx = tan x + C = − cotan x + C = sinh x + C = cosh x + C Z 1 dx 2 Z cosh x 1 dx 2 sinh x Z 1 dx 2 a + x2 Z 1 √ dx 1 − x2 Z 1 √ dx 2 x +1 Z 1 √ dx 2 x −1 = tanh x + C = − cotanh x + C = 1 x arctan + C a a = arcsin x + C ³ ´ p = arcsinh x + C = log x + x2 + 1 + C ³ ´ p = arccosh x + C = log x + x2 − 1 + C 2 per x > 1