Comments
Description
Transcript
2 Limiti di funzioni Esercizi
2. Limiti di funzioni 2 4 Limiti di funzioni Esercizi A) Calcolare i seguenti limiti: 1. lim 2x 3 3x 2 + 5x x4 x x!0 2. lim 2x 3 3x 2 + 5x x4 x 2x 4 3x 3 + 5x x6 x2 x!+1 3. lim x! 1 4. lim x3 4x 2 + 5x x2 4 x!2 5. lim x!1 6. lim+ x2 x3 2x 5 x!0 2 1 3x + 2 sin x + 5x 2 x2 x sin(x + x 4 ) 7. lim+ x!0 x3 x sin(3x) 8. lim x!0 tg(5x) p 3+2 x 15. lim p x!+1 x sin x p 1+ x 1 16. lim x!+1 e 3x 1 17. lim x!0 sin(2x 2 ) cos2 x sin2 x log(1 + 4x 2 ) x!0 sin(x 3 + 4x 4 ) p p 19. lim x4 + 1 x4 + x2 + 1 18. lim x!+1 p 20. lim x 2 + 2x 3 + x sin2 x x!0 21. lim+ p x 2 + 2x 3 + x sin2 x x!0 22. lim x e 3x x!0 x2 cos(x + x 2 ) 23. lim x 2 e 2/x 1 24. lim x 2 e 2/x 1 x!+1 x sin(3x) + x 4 9. lim x!0 2x 2 + x sin(2x 3 ) p x 2 10. lim x!4 x sin(4 x) sin(2x) x!⇡/2 cos x 11. lim sin x 2 x!0 sin x 2 + x 12. lim 13. lim+ p x!0 p p x + x2 x + 2x 2 p x x + 3x 2 4 + x2 2 14. lim p x!0 1+ x 1 1 cos(3x) x! 1 25. lim (x + 3)2 log x!+1 1 2x 2 2x 2 + 1 cos(x 2 x 3 ) x!0 (x 2 2x 3 ) sin(x 2 3x 3 ) p p x sin 2x 27. lim x!0 x + 3x 3/2 sin(x 2 ) p exp x 5 + 3x 10 1 28. lim+ p x!0 cos(3 + x 5 ) sin 2x 5 26. lim 1 x + x9 x + 2x 8 29. lim p x!0 x 4 + 8x 6 sin x 5 log 2. Limiti di funzioni 30. lim x!0 p 5 x 4 + 2x 6 sin(5x 2 ) 39. lim log cos(4x 2 + 2x 3 ) cos(6x 2 ) 31. lim x!0 x 2 log(x 2 40. lim log 3 x!+1 ✓ ◆ 3 + 7x 2 exp e3 1 + 3x 32. lim Å ã Å ã 3 + 7x 3 + 7x x!0 log cos 3 + 3x 2 3 + 3x 2 2x + x 2 p x 4 + x 2 e 1/(x+3) 1 2x + 1 ◆ x4 + 3 41. lim log exp(1 + 5 log x 2 ) x x!+1 x4 + 1 ✓ 6 ◆6 5 + x2 5 + x2 log log 5 + 4x 1 + 4x p p 5x 10 + x 11 5 x5 e 2x x 3 + 1 x!+1 e x + 3x 4 42. lim+ e x+1 + e x/2 x 2 x!+1 e x 1 e x/2 3 + x5 1 + 3x 2 x5 43. lim log log 1 + e sin x!+1 x + x5 1 + 5x 3 x!0 34. lim ✓ e x+1 + e x/2 x 2 1 e x 1 e x/2 5x 2 + 2 exp 2x 2 + 1 35. lim x! log p 36. lim x!+1 sin p 38. lim x!+1 x4 x!0 x 4 + 2x 3 x 3x 4 + 45. lim + 2x 3 x3 x 2 ⇣ 8 +x 16 ä ⇣ x ⌘ exp x +2 p e 1 cos(3x 2 ) 1 ✓ Determinare a 2 R⇤ e b 2 R tali che: p 1. 2 log 3 + x 4 + 4x ⇠ a x b x !0 p 2 + 6x 2 exp p 2 ✓ 6x 2 ⇠ ax b ◆ ✓ 2 ◆ x2 + 3 3x + 1 p 6 3. log log 4x + 1 ⇠ ax b x2 + 4 4x 2 + 1 ✓ ◆ ã Å ã✓ x x 1 exp p 4. sin cos x2 + 6 x2 + 3 6x 2 + 1 Å e 3 cos x e3 2 log(1 + 3x) sin(1 + 5x) p x6 6x 3 ⇠ axb x3 + 3 ⇠ a x b x !0 x ! +1 e sin(3x 2 ) ◆ ◆ x + 3x 2 2 exp e sin e 6x 1 3 x + 6x 46. lim p x!0 x x 4 + x 8 arctan(1 + 3x) B) 2. exp e2 x 4 + x 6 exp(1 + x 2 + x 4 ) ✓ ⌘ ◆ sin2 log(1 + 5x) cos2 log(1 + 5x) x!0 p exp 3 x x!+1 p 44. lim x2 Ä 37. lim x 4 log 2 6. 1 sin ✓ 33. lim 5. 2 4e x + x log cos(3x) x!0 1 + 3) p 2 4 x !0 x! 1 ◆ 1 ⇠ ax b x ! +1 2. Limiti di funzioni 7. p 6 ✓ x 8 + 2x 2 x 4 x 2 ◆ ✓ 2 ◆ x5 + 4 4x + 4 log exp ⇠ ax b 5 2 x + 2x + 4 x +2 p x 4 + 10x 3 + 2x 2 x 2 5x 2 ⇠ ax b x ! +1 p p 9. (1 + x 2 ) x 6 + 6x 4 + x 2 x6 + x2 3x 3 ⇠ ax b x ! 0+ 8. 10. (1 + x 2 ) p x 6 + 6x 4 + x 2 p x6 + x2 x 6 + 6x 4 + x 2 p x !0 11. (1 + x 2 ) p 3x 3 ⇠ ax b x6 + x2 x 6 + 6x 4 + x 2 p x ! +1 12. (1 + x 2 ) p 3x 3 ⇠ ax b x6 + x2 3x 3 ⇠ ax b x! 1 Determinare a, b 2 R tali che: Å ã 1 1. (x + 3) exp = a x + b + o(1) x Å ã 1 2. (x + 3) exp = a x + b + o(1) x 2 p 3. x 4 + 6x 3 x 2 = a x + b + o(1) C) x ! +1 x ! +1 x ! +1 2 (x 2 + 2)e 1/x 4. = a x + b + o(1) x +3 x ! +1 5. (x + 2)(x 2 + 1) = a x + b + o(1) p x x 2 + 4x + 5 x ! +1 6. (x + 2)(x 2 + 1) = a x + b + o(1) p x x 2 + 4x + 5 x! 1 7. 8. p p x 2 + 3x + 3 1 + e 2/x x x 2 + 3x + 3 1 + e 2/x x = a x + b + o(1) x ! +1 = a x + b + o(1) x! 1 x ! +1 2. Limiti di funzioni 7 Soluzioni A) 1. 5 26. 2. 0 27. 3. 0 1 4. 4 5. 6. 1 7. 2 28. p 1 1 3 8. 5 3 9. 2 10. 2 cos 3 29. 2 30. 5 8 31. 54 32. 27e 3 7 cos 1 1 16 34. e 2 1 2 37. 3 38. e 39. 29 72 40. 1 2 12. 0 13. 1 33. +1 11. 2 14. 0 15. 2 16. 0 17. 2 18. 1 2 p 1 35. +1 p 36. 3 41. 2e 19. 1 2 42. p 2 5 46 log 5 56 20. 1 43. 3 5 21. +1 22. 6 23. +1 24. 25. 1 1 2 44. e2 25 45. 2e 9 46. 36e ⇡ 2. Limiti di funzioni 8 B) 1 b =2 4 p p 2. a = 3 2 e 2 b = 2 1. a = 3. a = 2 log 3 b =1 4 1 4. a = p b = 2 6 5. a = 6. a = 3e 6 b =3 4 9 b= 3 2 7. a = e 4 b = 12 8. a = 27 b =0 2 9. a = 3 b =5 2 10. a = 6 b = 3 11. a = 3 b =1 2 12. a = 6 b = 3 C) 1. a = 1 b = 3 5. a = 1 b = 0 2. a = 1 b = 2 6. a = 1 b = 0 3. a = 3 b = 9 2 4. a = 1 b = 3 7. a = 0 b = 3 4 8. a = 1 b = 1 4