Comments
Description
Transcript
Document 1804401
Chapter 4, continued 5. x 2 1 22x 1 c 78. F; 3 3x 2 2y 5 10 l y 5 }2 x 2 5 l y-intercept 5 (0, 25) 25 2 1 26 0 2 (24) 3 So m 5 2}2 , b 5 25. c 5 1} 5 112 5 121 22 22 2 3 m5}5} 5 2}2 4 x 2 1 22x 1 121 5 (x 1 11)(x 1 11) 5 (x 1 11)2 6. x 2 2 9x 1 c 29 2 c 5 1} 5} 2 2 4 Lesson 4.7 81 x 2 2 9x 1 } 5 1 x 2 }2 21 x 2 }2 2 5 1 x 2 }2 2 4 81 Investigating Algebra Activity 4.7 (p. 283) 9 9 9 2 7. x 2 1 6x 1 4 5 0 1. x 2 1 6x 5 24 Completing the Square x 1 6x 1 9 5 24 1 9 2 Number of 1-tiles needed to complete the square Expression written as a square x 2 1 2x 1 ? 1 x 2 1 2x 1 1 5 (x 1 1)2 x 2 1 4x 1 ? 4 x 2 1 4x 1 4 5 (x 1 2)2 9 x 1 6x 1 9 5 (x 1 3)2 16 x 2 1 8x 1 16 5 (x 1 4)2 25 x 1 10x 1 25 5 (x 1 5)2 Expression (x 1 3)2 5 5 x 2 1 8x 1 ? 2. a. The value of d is one half the value of b. 8. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 2 2 10x 1 8 5 0 x 2 2 10x 1 25 5 28 1 25 (x 2 5)2 5 17 } x 2 5 5 6Ï17 } x 5 5 6 Ï 17 } } The solutions are 5 1 Ï 17 and 5 2 Ï 17 . 9. 2n 2 2 4n 2 14 5 0 n 2 2 2n 2 7 5 0 n 2 2 2n 5 7 c. You can multiply the value of b by one half and then n 2 2 2n 1 1 5 7 1 1 square the result. (n 2 1)2 5 8 4.7 Guided Practice (pp. 285–287) } n 2 1 5 6Ï 8 1. x 1 6x 1 9 5 36 2 } n 5 1 6 Ï8 (x 1 3)2 5 36 } n 5 1 6 2Ï 2 x 1 3 5 66 } } The solutions are 1 1 2Ï 2 and 1 2 2Ï2 . x 5 23 6 6 The solutions are 23 1 6 5 3 and 23 2 6 5 29. 10. 3x 2 1 12x 2 18 5 0 x 2 1 4x 2 6 5 0 2. x 2 2 10x 1 25 5 1 x 2 1 4x 5 6 (x 2 5)2 5 1 x 1 4x 1 4 5 6 1 4 2 x 2 5 5 61 (x 1 2)2 5 10 x5561 } x 1 2 5 6Ï 10 The solution are 5 1 1 5 6 and 5 2 1 5 4. } x 5 22 6 Ï 10 3. x 2 2 24x 1 144 5 100 } } The solutions are 22 1 Ï 10 and 22 2 Ï10 . (x 2 12)2 5 100 x 2 12 5 610 11. 6x(x 1 8) 5 12 6x 2 1 48x 5 12 x 5 12 6 10 The solutions are 12 1 10 5 22 and 12 2 10 5 2. 4. x 2 1 14x 1 c x 2 1 8x 5 2 x 2 1 8x 1 16 5 2 1 16 (x 1 4) 2 5 18 c 5 1} 5 72 5 49 22 2 x 1 14x 1 49 5 (x 1 7)(x 1 7) 5 (x 1 7) 2 } x 2 2 10 5 28 b. The value of c is the square of the value of d. 14 } The solutions are 23 1 Ï 5 and 23 2 Ï5 . 2 x 2 1 10x 1 ? } x 5 23 6 Ï 5 2 x 2 1 6x 1 ? } x 1 3 5 6Ï 5 2 } x 1 4 5 63Ï 2 } x 5 24 6 3Ï 2 } } The solutions are 24 1 3Ï 2 and 24 2 3Ï2 . Algebra 2 Worked-Out Solution Key 209 Chapter 4, 4p(p 2 2) 5 100 4. x 2 1 10x 1 25 5 64 4 p 2 8p 5 100 (x 1 5)2 5 64 2 p 2 2 2p 5 25 x 1 5 5 68 p 2 2p 1 1 5 25 1 1 x 5 25 6 8 2 ( p 2 1) 5 26 The solutions are 25 1 8 5 3 and 25 2 8 5 213. 2 } p 2 1 5 6Ï26 5. n 2 1 16n 1 64 5 36 } p 5 1 6 Ï26 } (n 1 8)2 5 36 } The solutions are 1 1 Ï26 and 1 2 Ï26 . 13. n 1 8 5 66 n 5 28 6 6 y 5 x 2 2 8x 1 17 The solutions are 28 1 6 5 22 and 28 2 6 5 214. y 1 16 5 (x2 2 8x 1 16) 1 17 6. m 2 2 2m 1 1 5 144 y 1 16 5 (x 2 4)2 1 17 (m 2 1)2 5 144 y 5 (x 2 4)2 1 1 The vertex form of the function is y 5 (x 2 4)2 1 1. The vertex is (4, 1). 14. 7. x2 2 22x 1 121 5 13 (x 2 11)2 5 13 y 1 9 5 (x 1 3)2 1 3 The vertex form of the function is y 5 (x 1 3) 2 6. The vertex is (23, 26). 2 f (x) 5 x 2 2 4x 2 4 f (x) 1 4 5 (x 2 2 4x 1 4) 2 4 f (x) 1 4 5 (x 2 2)2 2 4 f (x) 5 (x 2 2)2 2 8 The vertex form of the function is f (x) 5 (x 2 2)2 2 8. The vertex is (2, 28). y 5 216(t 2 2 5t) 1 2 1 4 2 y 2 100 5 2161 t 2 }2 2 1 2 5 2 y 5 2161 t 2 }2 2 1 102 5 2 The vertex is 1 }2 , 102 2, so the maximum height of the 5 baseball is 102 feet. 4.7 Exercises (pp. 288–291) Skill Practice 1. A binomial is the sum of two monomials and a trinomial is the sum of three monomials. 2. For an expression of the form x 2 1 bx, you complete the square by first finding half of b and squaring the result. Then you add the result to the expression. 3. x 2 1 4x 1 4 5 9 (x 1 2) 5 9 2 x 1 2 5 63 x 5 22 6 3 The solutions are 22 1 3 5 1 and 22 2 3 5 25. 210 Algebra 2 Worked-Out Solution Key } } The solutions are 11 1 Ï13 and 11 2 Ï 13 . 8. x 2 2 18x 1 81 5 5 (x 2 9)2 5 5 } x 2 9 5 6Ï 5 } x 5 9 6 Ï5 } } The solutions are 9 1 Ï 5 and 9 2 Ï 5 . 9. t 2 1 8t 1 16 5 45 } t 1 4 5 63Ï 5 25 25 y 5 (216) } 5 216 t 2 2 5t 1 } 1 2 } x 5 11 6 Ï 13 (t 1 4)2 5 45 y 5 216t 2 1 80t 1 2 142 } x 2 11 5 6Ï 13 y 5 (x 1 3)2 2 6 16. m 5 1 6 12 The solutions are 1 1 12 5 13 and 1 2 12 5 211. y 5 x 2 1 6x 1 3 y 1 9 5 (x2 1 6x 1 9) 1 3 15. m 2 1 5 612 } t 5 24 6 3Ï 5 } } The solutions are 24 1 3Ï 5 and 24 2 3Ï5 . 10. 4u 2 1 4u 1 1 5 75 (2u 1 1)2 5 75 } 2u 1 1 5 65Ï 3 } 2u 5 21 6 5Ï 3 1 } 5Ï3 u 5 2}2 6 } 2 1 } 5Ï 3 } 5Ï3 1 and 2}2 2 } . The solutions are 2}2 1 } 2 2 11. 9x 2 2 12x 1 4 5 23 (3x 2 2)2 5 23 } 3x 2 2 5 6Ï23 } 3x 5 2 6 Ï 23 } 3x 5 2 6 i Ï3 } 2 i Ï3 2 i Ï3 x 5 }3 6 } 3 } 2 } i Ï3 and }3 2 } . The solutions are }3 1 } 3 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 12. continued Chapter 4, continued 12. A; x 2 1 4x 5 10 22. x 2 4x 1 4 5 21 x 1 4x 1 4 5 10 1 4 2 (x 2 2) 5 21 2 (x 1 2)2 5 14 2 } x 2 2 5 6Ï21 x 5 2 6 Ï21 } x 2 1 8x 5 21 23. x 2 1 8x 1 16 5 21 1 16 c 5 1 }2 2 5 32 5 9 6 2 (x 1 4)2 5 15 x 1 6x 1 9 5 (x 1 3)(x 1 3) 5 (x 1 3) 2 2 } 24. x 2 1 6x 2 3 5 0 x 2 1 12x 1 36 5 (x 1 6)(x 1 6) 5 (x 1 6)2 x 2 1 6x 5 3 15. x 2 2 24x 1 c x 2 1 6x 1 9 5 3 1 9 224 2 c5 } 5 (212)2 5 144 2 2 (x 1 3)2 5 12 } x 5 23 6 Ï 12 16. x 2 2 30x 1 c } x 5 23 6 2Ï 3 230 2 c5 } 5 (215)2 5 225 2 2 } } The solutions are 23 1 2Ï 3 and 23 2 2Ï3 . x 2 2 30x 1 225 5 (x 2 15)(x 2 15) 5 (x 2 15)2 25. x 2 1 12x 1 18 5 0 x 2 1 12x 5 218 17. x 2 2 2x 1 c x 2 1 12x 1 36 5 218 1 36 22 2 c5 } 5 (21)2 5 1 2 1 2 (x 1 6)2 5 18 } x 1 6 5 6Ï 18 x 2 2 2x 1 1 5 (x 2 1)(x 2 1) 5 (x 2 1)2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. } x 1 3 5 6Ï 12 x 2 2 24x 1 144 5 (x 2 12)(x 2 12) 5 (x 2 12)2 } x 5 26 6 Ï 18 18. x 2 1 50x 1 c } x 5 26 6 3Ï 2 1 2 50 2 c5 } 5 252 5 625 2 } } The solutions are 26 1 3Ï 2 and 26 2 3Ï2 . x 2 1 50x 1 625 5 (x 1 25)(x 1 25) 5 (x 1 25)2 26. x 2 2 18x 1 86 5 0 x 2 2 18x 5 286 19. x 2 1 7x 1 c x 2 18x 1 81 5 286 1 81 2 c 5 1 }2 2 5 } 4 49 (x 2 9)2 5 25 1 21 2 1 2 49 7 7 7 2 5 x 1 }2 x 1 }2 5 x 1 }2 x 2 1 7x 1 } 4 } x 2 9 5 6Ï25 } x 5 9 6 Ï 25 20. x 2 13x 1 c 2 } x 5 9 6 i Ï5 } c 5 1} 5} 2 2 4 169 } The solutions are 9 1 i Ï 5 and 9 2 i Ï5 . 5 1x 2 } x2} 5 x2} x 2 2 13x 1 } 4 2 21 22 1 22 169 13 13 2 13 27. x 2 2 2x 1 25 5 0 x 2 2 2x 5 225 x 2 2 2x 1 1 5 225 1 1 21. x 2 2 x 1 c (x 2 1)2 5 224 c 5 1 2}2 2 5 }4 1 } x 21 5 6Ï 224 x 2 2 x 1 }4 5 1 x 2 }2 21 x 2 }2 2 5 1 x 2 }2 2 1 } The solutions are 24 1 Ï 15 and 24 2 Ï15 . 12 2 1 2 } x 5 24 6 Ï 15 c 5 1} 5 62 5 36 22 213 2 } x 1 4 5 6Ï 15 14. x 2 1 12x 1 c 7 2 } The solutions are 22 1 Ï 14 and 22 2 Ï 14 . 13. x 2 1 6x 1 c 1 } x 5 22 6 Ï 14 x526i 1 } x 1 2 5 6Ï 14 } 1 1 1 2 } x 5 1 6Ï 224 } x 5 1 6 2i Ï 6 } } The solutions are 1 1 2i Ï6 and 1 2 2i Ï6 . Algebra 2 Worked-Out Solution Key 211 Chapter 4, continued 2k 2 1 16k 5 212 33. 6r 2 1 6r 1 12 5 0 r2 1 r 1 2 5 0 r 2 1 r 5 22 k 2 1 8k 5 26 k 1 8k 1 16 5 26 1 16 2 (k 1 4)2 5 10 1 k 1 4 5 6Ï10 1 r 1 }12 2 2 } k 5 24 6 Ï10 } } The solutions are 24 1 Ï 10 and 24 2 Ï 10 . 1 3x 1 42x 5 224 x 2 1 14x 5 28 x 1 14x 1 49 5 28 1 49 } } } The solutions are 27 1 Ï 41 and 27 2 Ï 41 . x 2 10x 2 3 5 0 2 x2 2 10x 5 3 x 2 10x 1 25 5 3 1 25 2 Î 1 i Ï7 1 i Ï7 } 7 } } } i Ï7 1 34. C; } x 1 5 5 6Ï 12 } x 5 25 6 Ï 12 } x 2 5 5 6Ï28 } x 5 25 6 2Ï 3 } x 5 5 6 Ï28 35. Area of rectangle 5 *w 5 50 } x 5 5 6 2Ï7 } (x 1 10)(x) 5 50 } The solutions are 5 1 2Ï 7 and 5 2 2Ï7 . x 2 1 10x 5 50 31. 3s 2 1 6s 1 9 5 0 x 2 1 10x 1 25 5 50 1 25 s 2 1 2s 1 3 5 0 s 2 1 2s 5 23 2 4s 1 2s 1 1 5 23 1 1 (s 1 1)2 5 22 (x 1 5)2 5 75 } x 1 5 5 6Ï 75 } x 5 25 6 Ï 75 } x 5 25 6 5Ï 3 } } The value of x is 25 1 5Ï3 . } s 5 21 6 Ï22 36. Area of parallelogram 5 bh 5 48 } s 5 21 6 i Ï 2 } } The solutions are 21 1 i Ï2 and 21 2 i Ï2 . 32. 7t 2 1 28t 1 56 5 0 t 2 1 4t 1 8 5 0 t 2 1 4t 5 28 2 t 1 4t 1 4 5 28 1 4 (t 1 2)2 5 24 (x 1 6)(x) 5 48 x 2 1 6x 5 48 x 2 1 6x 1 9 5 48 1 9 (x 1 3)2 5 57 } x 1 3 5 6Ï 57 } x 5 23 6 Ï 57 } The value of x is 23 1 Ï57 . } t 1 2 5 6Ï24 } t 5 22 6 Ï24 t 5 22 6 2i The solutions are 22 1 2i and 22 2 2i. Algebra 2 Worked-Out Solution Key 1 x 2 1 10x 1 8 5 25 x 2 1 10x 5 213 2 x 1 10x 1 25 5 213 1 25 (x 1 5)2 5 12 30. 4x 2 40x 2 12 5 0 2 212 7 and 2}2 2 } . The solutions are 2}2 1 } 2 2 } x 5 27 6 Ï41 s 1 1 5 6Ï22 } r 5 2}2 6 } 2 x 1 7 5 6Ï41 (x 2 5)2 5 28 Î r 5 2}2 6 2}4 2 (x 1 7)2 5 41 7 5 2}4 r 1 }2 5 6 2}4 2 29. 1 r 2 1 r 1 }4 5 22 1 }4 } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 28. Chapter 4, continued 1 37. Area of triangle 5 } bh 5 40 2 1 } (x)(x 1 4) 5 40 2 1 } x(x 1 4) 5 40 2 1 } x 2 1 2x 5 40 2 42. y 1 4 5 1 x 2 2 4x 1 4 2 2 1 y 1 4 5 (x 2 2)2 2 1 y 5 (x 2 2)2 2 5 The vertex form of the function is y 5 (x 2 2)2 2 5. The vertex is (2, 25). x 2 1 4x 5 80 x 2 1 4x 1 4 5 80 1 4 (x 1 2)2 5 84 43. y 1 36 5 (x 1 6) 2 1 37 } y 5 (x 1 6) 2 1 1 x 5 22 6 Ï 84 } The vertex form of the function is y 5 (x 1 6)2 1 1. The vertex is (26, 1). x 5 22 6 2Ï21 } The value of x is 22 1 2Ï 21 . 1 38. Area of trapezoid 5 } (b1 1 b2)h 5 20 2 1 } (x 1 9 1 3x 2 1)(x) 5 20 2 1 } x(4x 1 8) 5 20 2 44. y 1 100 5 (x 1 10)2 1 90 y 5 (x 1 10) 2 2 10 The vertex form of the function is y 5 (x 1 10)2 2 10. The vertex is (210, 210). x 2 1 2x 5 10 x 1 2x 1 1 5 10 1 1 2 (x 1 1)2 5 11 45. 9 } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. h 5 216t 2 1 89.6t h 5 216 (t 2 2 5.6t) h 1 (216)(7.84) 5 216 (t 2 2 5.6t 1 7.84) h 2 125.44 5 216(t 2 2.8)2 h 5 216(t 2 2.8)2 1 125.44 The vertex of the function’s graph is (2.8, 125.44). This means that at 2.8 seconds, the water will reach its maximum height of 125.44 feet. y 5 0.0085x 2 2 1.5x 1 120 y 5 0.0085(x 2 2 176.47x) 1 120 y 1 (0.0085)(7785.42) 5 0.0085(x 2 2 176.47x 1 7785.42) 1 120 y 1 66.18 5 0.0085(x 2 88.24)2 1 120 y 5 0.0085(x 2 88.24)2 1 53.82 The vertex of the function’s graph is (88.24, 53.82). This means that when you walk about 88.24 meters per minute, your rate of energy use will reach a minimum of 53.82 calories per minute. y 5 x 2 8x 1 19 2 9 f (x) 1 }4 5 1 x 2 }2 2 1 4 9 x 5 21 6 Ï 11 The value of x is 21 1 Ï 11 . 41. f (x) 5 x 2 2 3x 1 4 f (x) 1 }4 5 1 x 2 2 3x 1 }4 2 1 4 } x 1 1 5 6Ï 11 } y 5 x 2 1 20x 1 90 y 1 100 5 (x 2 1 20x 1 100) 1 90 2x 2 1 4x 5 20 40. y 5 x 2 1 12x 1 37 y 1 36 5 (x 2 1 12x 1 36) 1 37 } x 1 2 5 6Ï 84 39. y 5 x 2 2 4x 2 1 3 2 f (x) 5 1 x 2 }2 2 1 }4 3 2 7 The vertex form of the function is f (x) 5 1 x 2 }2 2 1 }4 . 3 2 7 The vertex is 1 }2, }4 2. 3 7 46. g(x) 5 x 2 1 7x 1 2 g(x) 1 } 5 1 x 2 1 7x 1 } 12 4 42 49 49 5 1 x 1 }2 2 1 2 g(x) 1 } 4 7 2 49 g(x) 5 1 x 1 }2 2 2 } 4 7 2 41 . The vertex form of the function is g(x) 5 1 x 1 }2 2 2 } 4 7 2 41 . The vertex is 1 2}2, 2} 42 7 47. 41 y 5 2x 2 1 24x 1 25 y 5 2(x 2 1 12x) 1 25 y 1 (2)(36) 5 2(x 2 1 12x 1 36) 1 25 y 1 16 5 (x 2 8x 1 16) 1 19 2 y 1 72 5 2(x 1 6)2 1 25 y 1 16 5 (x 2 4) 1 19 2 y 5 2(x 1 6)2 2 47 y 5 (x 2 4) 1 3 2 The vertex form of the function is y 5 2(x 1 6)2 2 47. The vertex form of the function is y 5 (x 2 4) 1 3. The vertex is (4, 3). 2 The vertex is (26, 247). Algebra 2 Worked-Out Solution Key 213 Chapter 4, continued y 5 5x 2 1 10x 1 7 53. x 2 1 3x 1 14 5 0 y 5 51 x 2 1 2x 2 1 7 y 1 (5)(1) 5 51 x 2 x 2 1 3x 5 214 1 2x 1 1 2 1 7 9 y 1 5 5 5(x 1 1) 1 7 1 x 1 }32 2 2 y 5 5(x 1 1)2 1 2 The vertex form of the function is y 5 5(x 1 1)2 1 2. The vertex is (21, 2). q 2 1 2q 5 31 q 2 1 2q 1 1 5 31 1 1 (q 1 1)2 5 32 last step. } q 1 1 5 6Ï32 } Ï 12 5 Ï 4 + Ï 3 5 2Ï 3 } q 5 21 6 4Ï 2 x 1 10x 1 13 5 0 2 } } The solutions are 21 1 4Ï 2 and 21 2 4Ï2 . x 2 1 10x 5 213 x 2 1 10x 1 25 5 213 1 25 3x 2 1 x 5 2x 2 6 55. 3x 2 2 x 5 26 (x 1 5)2 5 12 } x 1 5 5 6Ï12 1 x 2 2 }3 x 5 22 } x 5 25 6 Ï12 } x 5 25 6 2Ï3 1 1 1 5 22 1 } x2 2 }3 x 1 } 36 36 1 x 2 }16 2 2 51. The method of completing the square was done incorrectly. Because 4(9), or 36, is added to the left side, it must also be added to the right side. 71 5 2} 36 Î } 1 71 x 2 }6 5 6 2} 36 4x 1 24x 2 11 5 0 2 } i Ï 71 1 4(x 2 1 6x) 5 11 x 5 }6 6 } 6 4(x 2 1 6x 1 9) 5 11 1 36 } i Ï 71 1 1 } i Ï71 and }6 2 } . The solutions are }6 1 } 6 6 4(x 1 3)2 5 47 47 (x 1 3)2 5 } 4 56. 0.1x 2 2 x 1 9 5 0.2x } Ï 0.1x 2 2 1.2x 5 29 47 x1356 } 4 } Ï47 x 5 23 6 } 2 x 2 2 12x 5 290 x 2 12x 1 36 5 290 1 36 2 (x 2 6)2 5 254 } 52. x 1 9x 1 20 5 0 2 x 2 6 5 6Ï254 } x 2 1 9x 5 220 x 5 6 6 3i Ï6 81 81 x 2 1 9x 1 } 5 220 1 } 4 4 1 Î } 1 x 1 }2 5 6 }4 9 1 x 5 2}2 6 }2 The solutions are 24 and 25. 214 } i Ï47 5q 2 1 10q 5 155 } 9 3 7q 2 1 10q 5 2q 2 1 155 54. 50. The error was made when simplifying Ï 12 in the 5 }4 } i Ï 47 3 The vertex form of the function is y 5 2(x 2 7)2 1 1. The vertex is (7, 1). 2 } i Ï47 and 2}2 2 } . The solutions are 2}2 1 } 2 2 y 5 2(x 2 7)2 1 1 1 x 1 }92 2 47 3 y 1 98 5 2(x 2 7)2 1 99 } } x 5 2}2 6 } 2 y 1 (2)(49) 5 2(x 2 2 14x 1 49) 1 99 } Î 3 y 5 2(x 2 2 14x) 1 99 } 47 5 2} 4 x 1 }2 5 6 2} 4 y 5 2x 2 2 28x 1 99 49. 9 x 2 1 3x 1 }4 5 214 1 }4 2 Algebra 2 Worked-Out Solution Key } } The solutions are 6 1 3i Ï6 and 6 2 3i Ï 6 . Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 48. Chapter 4, continued 57. 0.4v 2 1 0.7v 5 0.3v 2 2 Problem Solving 0.4v2 1 0.4v 5 22 h 5 216t 2 1 32t 1 6 62. v 1 v 5 25 2 h 5 2161 t 2 2 2t 2 1 6 h 1 (216)(1) 5 2161 t 2 2 2t 1 1 2 1 6 1 1 v 2 1 v 1 }4 5 25 1 }4 1 2 h 2 16 5 216(t 2 1)2 1 6 19 1 2 5 2} 2 4 v1} h 5 216(t 2 1)2 1 22 Î } 1 The maximum height of the baton is 22 feet. 19 v 1 }2 5 6 2} 4 } i Ï 19 1 h 5 216t 2 1 48t 1 4 63. } 1 i Ï 19 v 5 2}2 6 } 2 1 h 5 216(t 2 2 3t) 1 4 } i Ï19 h 1 (216)1 }4 2 5 2161 t 2 2 3t 1 }4 2 1 4 h 2 36 5 2161 t 2 }2 2 1 4 3 2 58. Sample answer: x 2 1 6x 5 1 59. a. y y h 5 2161 t 2 }2 2 1 40 3 2 The maximum height of the volleyball is 40 feet. 1 1 y 5 (x 1 1)2 1 21 x y 5 (70 2 x)(50 1 x) 64. x y 5 x2 1 2x y 5 3500 1 70x 2 50x 2 x 2 y 5 (x 1 2)2 y 5 3500 1 20x 2 x 2 y 5 x2 1 4x y 5 2x 2 1 20x 1 3500 y 6 9 9 and 2}2 2 } . The solutions are 2}2 1 } 2 2 y 5 2(x 2 2 20x) 1 3500 y 5 (x 2 3)2 y 1 (21)(100) 5 2(x 2 2 20x 1 100) 1 3500 y 2 100 5 2(x 2 10)2 1 3500 21 y 5 2(x 2 10)2 1 3600 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. y 5 x 2 2 6x The shop can maximize weekly revenue by decreasing the price per skateboard by $10. With this decrease in price, the weekly revenue will be $3600. b. When you complete the square, there is a vertical 1 2 b 2 translation of the graph of y 5 x 2 1 bx, }2 units up. 60. 1 real solution: k 5 0 2 real solutions: k > 0 2 imaginary solutions: k < 0 61. x 2 1 bx 1 c 5 0 x 2 1 bx 5 2c x 2 1 bx 1 1 }2 2 5 2c 1 1 }2 2 b 2 1 x 1 }b2 2 2 b b 2 b2 5} 2c 4 Î } b2 2c x 1 }2 5 6 } 4 b Î 6Î } b2 2c x 5 2}2 6 } 4 b x 5 2}2 } b 2 2 4c 4 } } b Ïb 2 2 4c x 5 2}2 6 } 2 65. y 5 (200 1 10x)(40 2 x) y 5 8000 2 200x 1 400x 2 10x 2 y 5 8000 1 200x 2 10x 2 y 5 210x 2 1 200x 1 8000 y 5 210(x 2 2 20x) 1 8000 y 1 (210)(100) 5 210(x 2 2 20x 1 100) 1 8000 y 2 1000 5 210(x 2 10)2 1 8000 y 5 210(x 2 10)2 1 9000 The store can maximize monthly revenue by increasing the price per video game system by 10x 5 10(10) 5 $100. With this increase in price, the monthly revenue will be $9000. 66. a. y 5 20.0110x 2 1 1.23x 1 5.50 y 5 20.0110(x2 2 111.82x) 1 5.50 y 1 (20.0110)(3125.93) 5 20.0110(x 2 2 111.82x) 1 3125.93 1 5.50 y 2 34.39 5 20.0110(x 2 55.91)2 1 5.50 y 5 20.0110(x 2 55.91)2 1 39.89 } 2b 6 Ïb 2 2 4c x 5 }} 2 Algebra 2 Worked-Out Solution Key 215 Chapter 4, continued Volume of clay: b. x 0 10 20 y 5.50 16.71 25.71 x 70 80 90 y 37.71 33.51 30 40 50 Vclay 5 Voutside 2 Vinside 60 200 5 9:(x 1 6x 1 9) 2 9:(9 2 x) 32.51 37.11 39.51 39.71 100 27.11 18.51 110 120 7.71 25.29 200 5 9: 1 x 2 1 6x 1 9 2 9 1 x 2 200 5 9: 1 x 2 1 7x 2 200 9: }F 5 x 2 1 7x y y 5 20.0110(x 2 55.91)2 1 39.89 40 200 9: 49 4 1 200 9: 49 4 1 32 Height (ft) 49 4 }F 1 } 5 x 2 1 7x 1 } } Ï 7 49 200 1} 5x 2}2 6 Î} 4 9: 200 49 7 6 } F 1} 5 x 1 }2 4 9: 16 } 8 0 0 24 48 72 96 120 The maximum height of the softball is 39.89 feet. The ball travels a distance of 116.13 feet. 67. a. Area of cutting section 5 *w 1500 5 x(120 2 2x) b. x(120 2 2x) 5 1500 120x 2 2x 2 5 1500 22x 2 1 120x 5 1500 x 2 2 60x 5 2750 2 x 2 60x 1 900 5 2750 1 900 (x 2 30)2 5 150 } x 2 30 5 6Ï150 23.5 6 4.4 ø x x Horizontal position (ft) Reject the negative value, 23.5 2 4.4, or 27.9. The pencil holder should have a thickness of about 0.9 centimeter. Mixed Review for TAKS 69. A; If the quadrilateral is reflected in the line y 5 3, the image of point N will be the same as the original point N. The image of point N will be in Quadrant I. 70. H; Gallons in small pool Hours to fill small pool } 120 1.5 } Length 5 30 1 5Ï6 ø 42.25 The dimensions of the eating section are 35.51 feet by 42.25 feet. 68. Volume of cylinder 5 :r 2h Outside cylinder: r 5 x 1 3 h59 Voutside 5 :(x 1 3)2(9) 5 9: 1 x 2 1 6x 1 9 2 Inside cylinder: r 5 3 h592x Vinside 5 :(3) (9 2 x) 5 9:(9 2 x) 2 600 h }5} } You must reject 30 2 5Ï 6 , or about 17.75. This value of x gives a width of about 84.5 feet. A width of 84.5 feet is not possible because the side of the school is 70 feet. } c. Width 5 120 2 21 30 1 5Ï 6 2 ø 35.51 Gallons in large pool Hours to fill large pool }} 5 }} x 5 30 6 5Ï6 120h 5 900 h 5 7.5 It will take 7.5 hours to fill the 600 gallon pool. Quiz 4.5–4.7 (p. 291) 1. 4x 2 5 64 2. 3( p 2 1)2 5 15 x 2 5 16 ( p 2 1)2 5 5 } x 5 6Ï 16 x 5 64 4. 22z 2 5 424 1 (m 1 5)2 5 }2 Î z 2 5 2212 } 1 m 1 5 5 6 }2 } Ï } 1 m 5 25 6 }2 } Ï2 5. s 2 1 12 5 9 } s 5 6Ï23 } s 5 6 i Ï3 Algebra 2 Worked-Out Solution Key } p 5 1 6 Ï5 3. 16(m 1 5)2 5 8 s 2 5 23 } p 2 1 5 6Ï5 m 5 25 6 } 2 216 2 7 2 2 }F 1}5 x1} 24 2 z 5 6Ï2212 } z 5 6 i Ï 212 } z 5 6 2i Ï53 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. c. Chapter 4, continued 6. 7x 2 2 4 5 26 7x 5 22 y 1 49 5 (x 2 1 14x 1 49) 1 45 y 1 49 5 (x 1 7)2 1 45 2 x 2 5 2}7 y 5 x 2 1 14x 1 45 14. 2 y 5 (x 1 7)2 2 4 Î } 2 x 5 6 2}7 The vertex form of the function is y 5 (x 1 7)2 2 4. The vertex is (27, 24). } Ï 2 x 5 6 i }7 f(x) 5 x 2 2 10x 1 17 15. } f (x) 1 25 5 (x 2 2 10x 1 25) 1 17 Ï 14 x 5 6 i} 7 f(x) 1 25 5 (x 2 5)2 1 17 f(x) 5 (x 2 5)2 2 8 7. (5 2 3i) 1 (22 1 5i) 5 [5 1 (22)] 1 (23 1 5)i The vertex form of the function is f(x) 5 (x 2 5)2 2 8. The vertex is (5, 28). 5 3 1 2i 8. (22 1 9i) 2 (7 1 8i) 5 (22 2 7) 1 (9 2 8)i 16. 5 29 1 i g(x) 1 1 5 (x 2 2 2x 1 1) 2 7 9. 3i(7 2 9i) 5 21i 2 27i 2 g(x) 1 1 5 (x 2 1)2 2 7 5 21i 2 27(21) g(x) 5 (x 2 1)2 2 8 5 27 1 21i 10. (8 2 3i)(26 2 10i) 5 248 2 80i 1 18i 1 30i The vertex form of the function is g(x) 5 (x 2 1)2 2 8. The vertex is (1, 28). 2 5 248 2 62i 1 30(21) 17. 5 278 2 62i 1 1 1 2 3 The vertex form of the function is y 5 1 x 1 }2 2 1 }4. 1 2 244 2 24i Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 2 y 5 1 x 1 }2 2 1 }4 224i 1 44(21) 5 }} 36 2 121(21) 3 The vertex is 1 2}2, }4 2. 1 3 5} 157 24 2} i 5 2} 157 157 18. 3 2 2i 3 2 2i 28 2 5i 12. } 5 } + } 28 1 5i 28 2 5i 28 1 5i y 5 x 2 1 9x 1 19 5 1 x 2 1 9x 1 } 1 19 y1} 4 42 81 224 2 15i 1 16i 1 10i 2 64 1 40i 2 40i 2 25i 81 5 1 x 1 }2 2 1 19 y1} 4 81 5 }} 2 224 1 i 1 10(21) 9 2 y 5 1 x 1 }2 2 2 }4 9 2 5 }} 64 2 25(21) 5 The vertex form of the function is y 5 1 x 1 }2 2 2 }4 . 234 1 i 9 2 5} 89 5 The vertex is 1 2}2, 2}4 2. 9 1 1} i 5 2} 89 89 13. 1 y 1 }4 5 1 x 1 }2 2 1 1 224i 1 44i 2 36 2 66i 1 66i 2 121i 5 }}2 34 y 5 x2 1 x 1 1 y 1 }4 5 1 x 2 1 x 1 }4 2 1 1 4i 26 1 11i 4i 11. } 5 } + } 26 2 11i 26 1 11i 26 2 11i 44 g(x) 5 x 2 2 2x 2 7 y 5 x 2 2 4x 1 9 19. 5 h 5 216t 2 1 h0 0 5 216t 2 1 45 y 1 4 5 (x 2 2 4x 1 4) 1 9 245 5 216t 2 y 1 4 5 (x 2 2)2 1 9 y 5 (x 2 2)2 1 5 The vertex form of the function is y 5 (x 2 2) 1 5. The vertex is (2, 5). 2 45 16 } 5 t2 Î45 } 6 } 5t 16 61.7 ø t Reject the negative solution, 21.7, because time must be positive. The ball is in the air for about 1.7 seconds. Algebra 2 Worked-Out Solution Key 217