Comments
Transcript
BDTIC BSO 615 C SIPMOS Small-Signal-Transistor
Rev. 2.1 BSO 615 C G SIPMOS Small-Signal-Transistor Features Product Summary · Dual N- and P -Channel Drain source voltage VDS · Drain-Source on-state Enhancement mode · Logic Level resistance · Avalanche rated Continuous drain current N P 60 -60 V RDS(on) 0.11 0.3 W ID 3.1 -2 A · Pb-free lead plating; RoHS compliant BDTIC Type Package Marking BSO 615 C PG-DSO-8 615C Maximum Ratings,at T j = 25 °C, unless otherwise specified Parameter Symbol Value N Unit P ID Continuous drain current A T A = 25 °C 3.1 -2 T A = 70 °C 2.5 -1.6 12.4 -8 I D puls Pulsed drain current T A = 25 °C EAS Avalanche energy, single pulse I D = 3.1 A , VDD = 25 V, R GS = 25 W I D = -2 A , VDD = -25 V, RGS = 25 W Avalanche energy, periodic limited by Tjmax Reverse diode dv/dt, T jmax = 150 °C EAR mJ 47 - - 70 0.2 0.2 dv/dt kV/µs I S = 3.1 A, V DS = 48 V, di/dt = 200 A/µs 6 - I S = -2 A, V DS = -48 V, di/dt = -200 A/µs - 6 Gate source voltage VGS ±20 ±20 V Power dissipation Ptot 2 2 W T A = 25 °C T j , Tstg Operating and storage temperature IEC climatic category; DIN IEC 68-1 -55...+150 °C 55/150/56 www.BDTIC.com/infineon Page 1 2012-04-04 Rev. 2.1 BSO 615 C G Termal Characteristics Parameter Symbol Values Unit min. typ. max. - - 40 - - 40 - - 100 Dynamic Characteristics Thermal resistance, junction - soldering point ( Pin 4) N RthJS P RthJA SMD version, device on PCB: @ min. footprint; t £ K/W 10 sec. N BDTIC @ 6 cm 2 cooling area 1) ; t £ 10 sec. N - - 62.5 @ min. footprint; t P - - 110 P - - 62.5 £ 10 sec. @ 6 cm 2 cooling area 1) ; t £ 10 sec. Static Characteristics, at Tj = 25 °C, unless otherwise specified V(BR)DSS Drain- source breakdown voltage V VGS = 0 V, ID = 250 µA N 60 - - VGS = 0 V, ID = -250 µA P -60 - - Gate threshold voltage, VGS = VDS ID = 20 µA VGS(th) N 1.2 1.6 2.0 ID = -450 µA P -1 -1.5 -2.0 IDSS Zero gate voltage drain current µA VDS = 60 V, VGS = 0 V, Tj = 25 °C N - 0.1 1 VDS = 60 V, VGS = 0 V, Tj = 125 °C N - 10 100 VDS = -60 V, VGS = 0 V, Tj = 25 °C P - -0.1 -1 VDS = -60 V, VGS = 0 V, Tj = 125 °C P - -10 -100 IGSS Gate-source leakage current nA VGS = 20 V, VDS = 0 V N - 10 100 VGS = -20 V, VDS = 0 V P - -10 -100 RDS(on) Drain-source on-state resistance W VGS = 4.5 V, ID = 2.7 A N - 0.1 0.15 VGS = -4.5 V, ID = -1.7 A P - 0.27 0.45 RDS(on) Drain-source on-state resistance VGS = 10 V, ID = 3.1 A N - 0.07 0.11 VGS = -10 V , ID = -2 A P - 0.19 0.3 1Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. www.BDTIC.com/infineon Page 2 2012-04-04 Rev. 2.1 BSO 615 C G Electrical Characteristics, at T j = 25 °C, unless otherwise specified Parameter Symbol Values min. typ. Unit max. Characteristics gfs Transconductance S VDS³2 * I D * R DS(on)max, ID = 2.7 A N 2.25 5.5 - VVDS³2 * I D * R DS(on)max, ID = -1.7 A P 1.2 2.4 - Ciss Input capacitance pF BDTIC VGS = 0 V, V DS = 25 V, f = 1 MHz N - 300 380 VGS = 0 V, V DS = -25 V, f = 1 MHz P - 365 460 Coss Output capacitance VGS = 0 V, V DS = 25 V, f = 1 MHz N - 90 120 VGS = 0 V, V DS = -25 V, f = 1 MHz P - 105 135 Crss Reverse transfer capacitance VGS = 0 V, V DS = 25 V, f = 1 MHz N - 50 65 VGS = 0 V, V DS = -25 V, f = 1 MHz P - 40 50 td(on) Turn-on delay time ns VDD = 30 V, VGS = 4.5 V, I D = 2.7 A, RG = 16 W N - 16 24 VDD = -30 V, V GS = -4.5 V, I D = -1.7 A, R G = 13 W P - 24 36 tr Rise time VDD = 30 V, VGS = 4.5 V, I D = 2.7 A, RG = 16 W N - 75 115 VDD = -30 V, V GS = -4.5 V, I D = -1.7 A, R G = 13 W P - 105 160 td(off) Turn-off delay time VDD = 30 V, VGS = 4.5 V, I D = 2.7 A, RG = 16 W N - 25 40 VDD = -30 V, V GS = -4.5 V, I D = -1.7 A, R G = 13 W P - 125 190 tf Fall time VDD = 30 V, VGS = 4.5 V, I D = 2.7 A, RG = 16 W N - 18 27 VDD = -30 V, V GS = -4.5 V, I D = -1.7 , R G = 13 W P - 90 135 www.BDTIC.com/infineon Page 3 2012-04-04 Rev. 2.1 BSO 615 C G Electrical Characteristics, at T j = 25 °C, unless otherwise specified Parameter Symbol Values min. typ. Unit max. Characteristics Q gs Gate to source charge nC VDD = 48 V, ID = 3.1 A N - 0.5 0.75 VDD = -48 V, ID = -2 A P - 1.7 2.6 Q gd Gate to drain charge BDTIC VDD = 48 V, ID = 3.1 A N - 6.3 9.5 VDD = -48 V, ID = -2 A P - 4.3 6.5 Qg Gate charge total VDD = 48 V, ID = 3.1 A, VGS = 0 to 10V N - 15 22.5 VDD = -48 V, ID = -2 A, VGS = 0 to -10V P - 13.5 20 V(plateau) Gate plateau voltage V VDD = 48 V, ID = 3.1 A N - 3.1 - VDD = -48 V, ID = -2 A P - -2.8 - Inverse diode continuous forward current N IS - - 3.1 T A = 25 °C P - - -2 Inverse diode direct current,pulsed N ISM - - 12.4 T A = 25 °C P - - -8 Reverse Diode VSD Inverse diode forward voltage V VGS = 0 V, I F = I S N - 0.8 1.1 VGS = 0 V, I F = I S P - -0.8 -1.1 trr Reverse recovery time ns VR = 30 V, IF=l S, di F/dt = 100 A/µs N - 50 75 VR = -30 V, IF=l S , diF/dt = -100 A/µs P - 85 130 Qrr Reverse recovery charge nC VR = 30 V, IF=l S , diF/dt = 100 A/µs N - 70 105 VR = -30 V, I F=lS, diF/dt = -100 A/µs P - 120 180 www.BDTIC.com/infineon Page 4 A 2012-04-04 Rev. 2.1 BSO 615 C G Power Dissipation (N-Ch.) Power Dissipation (P-Ch.) Ptot = f (TA) Ptot = f (TA ) BSO 615 C BSO 615 C 2.2 2.2 W 1.8 1.8 1.6 1.6 Ptot Ptot W 1.4 1.4 BDTIC 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0 20 40 60 80 100 120 °C 0.0 0 160 20 40 60 80 100 120 TA 160 TA Drain current (N-Ch.) Drain current (P-Ch.) I D = f (T A) ID = f (TA) parameter: VGS³ 10 V parameter: VGS ³ -10 V BSO 615 C BSO 615 C 3.4 -2.2 A A 2.8 -1.8 -1.6 ID 2.4 ID °C 2.0 -1.4 -1.2 1.6 -1.0 1.2 -0.8 -0.6 0.8 -0.4 0.4 0.0 0 -0.2 20 40 60 80 100 120 °C 0.0 0 160 20 40 60 80 TA 100 120 °C 160 TA www.BDTIC.com/infineon Page 5 2012-04-04 Rev. 2.1 BSO 615 C G Safe operating area (N-Ch.) Safe operating area (P-Ch.) I D = f ( VDS ) ID = f ( VDS ) parameter : D = 0 , T A = 25 °C parameter : D = 0 , TA = 25 °C 10 2 BSO 615 C -10 1 BSO 615 C tp = 90.0µs 100 µs /I D A S( on V = 1 ms on ) S 10 µs ) -10 0 ID ID RD VD DS ( = R 10 1 DS A tp = 4.7µs /I D BDTIC 100 µs 10 ms 1 ms 10 0 10 ms -10 -1 10 -1 DC DC 10 -2 -1 10 10 0 10 1 V 10 -10 -2 -1 -10 2 -10 0 -10 1 V VDS -10 VDS Transient thermal impedance (N-Ch.) Transient thermal impedance (P-Ch.) Z thJC = f(t p) ZthJC = f(tp) parameter : D = tp/T parameter : D = tp /T 10 2 2 BSO 615 C 10 2 BSO 615 C K/W K/W Z thJC Z thJC 10 1 10 1 10 0 10 D = 0.50 D = 0.50 0.20 0.20 0.10 0.10 0 0.05 single pulse 10 -1 -5 -4 -3 -2 -1 0 10 10 10 10 10 10 10 1 10 -1 0.05 single pulse 0.02 0.02 0.01 0.01 s 10 10 -2 -5 -4 -3 -2 -1 0 10 10 10 10 10 10 3 tp 10 1 s 10 3 tp www.BDTIC.com/infineon Page 6 2012-04-04 Rev. 2.1 BSO 615 C G Typ. output characteristics (N-Ch.) Typ. output characteristics (P-Ch.) I D = f (VDS) ID = f (VDS ) parameter: tp = 80 µs parameter: tp = 80 µs BSO 615 C 7.5 BSO 615 C -5.0 Ptot = 2.00W A A VGS [V] a 2.5 6.0 5.5 e 5.0 b 2.7 c 3.0 d 3.2 e 3.5 g f VGS [V] a -2.5 e -4.0 b -2.7 c -3.0 d -3.2 e -3.5 d f -3.7 g -4.0 -3.5 ID g f ID Ptot = 2.00W BDTIC 4.5 f 3.7 4.0 g 4.0 -3.0 -2.5 3.5 c d -2.0 3.0 2.5 -1.5 c 2.0 b -1.0 1.5 a 1.0 b 0.5 -0.5 a 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 V 0.0 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 V 5.0 VDS -5.0 VDS Typ. drain-source-on-resistance (N-Ch.) Typ. drain-source-on-resistance (P-Ch.) RDS(on) = f (ID) RDS(on) = f (ID ) parameter: VGS parameter: VGS BSO 615 C BSO 615 C 1.0 0.36 W c d W e b c d 0.8 RDS(on) 0.28 RDS(on) a 0.24 0.7 0.6 0.20 0.5 0.16 0.4 0.12 0.08 0.04 g 0.00 0.0 d 3.2 e f 3.5 3.7 1.0 2.0 0.1 g 4.0 3.0 4.0 5.0 A f g 0.2 VGS [V] = c 3.0 e 0.3 f VGS [V] = 0.0 0.0 6.5 a b c d e f -2.5 -2.7 -3.0 -3.2 -3.5 -3.7 -0.4 -0.8 g -4.0 -1.2 -1.6 -2.0 ID -2.4 -2.8 °C -3.4 Tj www.BDTIC.com/infineon Page 7 2012-04-04 Rev. 2.1 BSO 615 C G Typ. transfer characteristics (N-Ch.) Typ. transfer characteristics (P-Ch.) parameter: tp = 80 µs I D = f (VGS), V DS ³ 2 x I D x R DS(on)max parameter: tp = 80 µs ID = f (VGS ), VDS ³ 2 x ID x RDS(on)max -5.0 7.0 A A 6.0 -4.0 5.5 -3.5 4.5 ID ID 5.0 BDTIC -3.0 4.0 -2.5 3.5 3.0 -2.0 2.5 2.0 -1.5 1.5 -1.0 1.0 -0.5 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 VGS 5.0 0.0 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0VGS -5.0 V V Typ. forward transconductance (N-Ch.) Typ. forward transconductance (P-Ch.) gfs = f(ID); T j = 25 °C gfs = f(ID); Tj = 25 °C parameter: g fs parameter: gfs 10.0 4.0 S S 8.0 3.0 gfs gfs 7.0 6.0 5.0 2.5 2.0 4.0 1.5 3.0 1.0 2.0 0.5 1.0 0.0 0 1 2 3 4 5 6 7 8 0.0 0.0 A 10 ID -1.0 -2.0 -3.0 -4.0 -6.0 A ID www.BDTIC.com/infineon Page 8 2012-04-04 Rev. 2.1 BSO 615 C G Drain-source on-resistance (N-Ch.) Drain-source on-resistance (P-Ch.) RDS(on) = f (Tj) RDS(on) = f (Tj) parameter : I D = 3.1 A , VGS = 10 V parameter : ID = -2 A , VGS = -10 V BSO 615 C BSO 615 C 0.80 0.30 W W RDS(on) RDS(on) 0.24 0.22 0.20 0.60 0.50 BDTIC 0.18 0.16 0.40 98% 0.14 0.12 98% 0.30 0.10 typ typ 0.08 0.20 0.06 0.04 0.10 0.02 0.00 -60 -20 20 60 100 °C 0.00 -60 180 -20 20 60 °C 100 Tj Tj Gate threshold voltage (P-Ch.) VGS(th) = f (T j) VGS(th) = f (Tj) parameter: VGS = VDS, ID = 20 µA parameter: VGS = VDS , ID = -450 µA 3.0 -3.0 V V 2.5 -2.5 2.2 -2.2 V GS(th) V GS(th) Gate threshold voltage (N-Ch.) 98% 2.0 1.8 98% -2.0 -1.8 typ typ 1.5 -1.5 1.2 -1.2 2% 1.0 -1.0 0.8 -0.8 0.5 -0.5 0.2 -0.2 0.0 -60 180 -20 20 60 100 0.0 -60 160 °C Tj 2% -20 20 60 www.BDTIC.com/infineon Page 9 100 160 °C Tj 2012-04-04 Rev. 2.1 BSO 615 C G Typ. capacitances (N-Ch.) Typ. capacitances (P-Ch.) C = f(VDS) C = f(VDS ) parameter: VGS=0 V, f=1 MHz parameter: VGS =0 V, f=1 MHz 10 3 10 3 pF Ciss pF Ciss C C BDTIC 10 2 10 2 Coss Coss Crss Crss 10 1 0 5 10 15 20 25 VDS 10 1 0 35 -5 -10 -15 -20 -25 V VDS -35 V Forward characteristics of reverse diode Forward characteristics of reverse diode I F = f (VSD), (N-Ch.) IF = f (VSD ), (P-Ch.) parameter: Tj , tp = 80 µs parameter: Tj , tp = 80 µs 10 1 BSO 615 C 10 1 BSO 615 C A A IF 10 0 IF 10 0 10 -1 10 -2 0.0 10 -1 0.4 0.8 Tj = 25 °C typ Tj = 25 °C typ Tj = 150 °C typ Tj = 150 °C typ Tj = 25 °C (98%) Tj = 25 °C (98%) Tj = 150 °C (98%) Tj = 150 °C (98%) 1.2 1.6 2.0 2.4 V 10 -2 0.0 3.0 -0.4 -0.8 -1.2 -1.6 VSD -2.0 -2.4 V -3.0 VSD www.BDTIC.com/infineon Page 10 2012-04-04 Rev. 2.1 BSO 615 C G Avalanche Energy EAS = f (Tj) (N-Ch.) Avalanche Energy EAS = f (Tj ) parameter: ID = 3.1 A , V DD = 25 V RGS = 25 W parameter: ID = -2 A , VDD = -25 V RGS = 25 W 50 80 mJ mJ 40 60 E AS E AS 35 50 BDTIC 30 25 40 20 30 15 20 10 10 5 0 25 45 65 85 105 125 0 25 165 °C 45 65 85 105 125 Tj Tj Typ. gate charge (N-Ch.) Typ. gate charge (P-Ch.) VGS = f (QGate) parameter: ID = 3.1 A VGS = f (QGate) parameter: ID = -2 A BSO 615 C BSO 615 C 16 -16 V V -12 VGS 12 VGS 165 °C 10 8 -10 -8 0,2 VDS max 6 0,8 VDS max 4 -4 2 -2 0 0 2 4 6 8 10 12 14 16 nC 0,2 VDS max -6 0 0 20 2 4 6 8 0,8 VDS max 10 QGate 12 14 16 nC 20 QGate www.BDTIC.com/infineon Page 11 2012-04-04 Rev. 2.1 BSO 615 C G Drain-source breakdown voltage Drain-source breakdown voltage V(BR)DSS = f (Tj), (N-Ch.) V(BR)DSS = f (Tj ), (P-Ch.) BSO 615 C BSO 615 C 72 -72 V 68 V(BR)DSS V(BR)DSS V 66 -68 -66 BDTIC 64 -64 62 -62 60 -60 58 -58 56 -56 54 -60 -20 20 60 100 °C -54 -60 180 -20 20 60 Tj 100 °C 180 Tj www.BDTIC.com/infineon Page 12 2012-04-04 Rev. 2.1 BSO 615 C G BDTIC Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com ). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.BDTIC.com/infineon Page 13 2012-04-04