Comments
Description
Transcript
Document 1804502
Chapter 8 Prerequisite Skills (p. 548) 3. Answers will vary. The equation should be of the form xy 5 a, where a is the approximate value of each product in Exercise 2. 1. The asymptote of the graph is y 5 0. 2. Two variables x and y show direct variation provided y 5 ax where a is a nonzero constant. 3. An extraneous solution of a transformed equation is not an actual solution of the original equation. 4. y 5 ax y 5 4x 8 5 a(2) 5 4(22) 45a 5 28 4. Answers will vary. 8.1 Guided Practice (pp. 552–554) 1. y 5 3x x and y show direct variation because the equation is of the form y 5 ax. 2. xy 5 0.75 y 5 4x 5. 0.75 y 5 ax y5} x y 5 24x 4 5 a(21) 24 5 a 5 24(22) x and y show inverse variation because the equation is of 58 the form y 5 }x . y 5 24x 6. a 3. y 5 x 2 5 1 y 5 }6 x y 5 ax x and y show neither direct variation nor inverse variation a because the equation is not of the form y 5 ax or y 5 }x . 1 2 5 a(12) 5 }6 (22) 4. 2 2 12 5 2}6 1 6 5 2}3 }5a 1 y 5 }6 x 8. 2x 3 2 4x 2 1 2x 5 2x(x 2 2 2x 1 1) 6. 21 5 }8 5 2}2 12 5 a 56 28 5 a 5 24 8 5 }2 65a 53 2 6 y 5 }x 5 2(3x 2 2)(x 3 2 4) 5 10x 2 x 2 6 11. (22x 2 1 6) 2 (x 2 2 x) 5 22x 2 1 6 2 x 2 1 x 5 23x 2 1 x 1 6 12. (x 1 2)(x 2 9) 5 (x 1 2)[x 2 2 2(x)(9) 1 92] 2 5 (x 1 2)(x 2 2 18x 1 81) 5 (x 1 2)x 2 1 (x 1 2)(218x) 1 (x 1 2)(81) 5 x 3 1 2x 2 2 18x 2 2 36x 1 81x 1 162 5 x 3 2 16x 2 1 45x 1 162 Lesson 8.1 Investigating Algebra Activity 8.1 (p. 550) 1. No, because the ratios of apparent height to the distance are not approximately equal. 2. Answers will vary. The products are approximately equal. 6 } 2 2 y 5 }x a 5 2[x 3(3x 2 2) 2 4(3x 2 2)] 10. (3x 2 6) 1 (7x 2 x) 5 3x 2 1 7x 2 2 x 2 6 6 a 12 5 } 1 9. 6x 4 2 4x 3 2 24x 1 16 5 2(3x 4 2 2x 3 2 12x 1 8) 2 y 5 2}x y 5 }x 5 2x(x 2 1)(x 2 1) 5 2x(x 2 1)2 8 a 12 8 y 5 2}x 5} 2 12 7. x 2 11x 2 26 5 (x 2 13)(x 1 2) y 5 ax 3 5 }4 y5} x 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5. y5} x a 1 }5a 12 y 5 ax a 7. n 5 }s a 3000 5 }5 15,000 5 a 15,000 A model is n 5 } . s 26,000 26,000 8. c 5 } 5 } ø 329 79 A The number of chips per wafer for a chip with an area of 79 square millimeters is about 329. 9. z 5 axy 7 z 5 }2 xy 7 7 5 a(1)(2) 5 }2(22)(5) 7 5 2a 5 235 7 }5a 2 7 z 5 }2 xy Algebra 2 Worked-Out Solution Key 415 Chapter 8, continued 10. z 5 22xy z 5 axy 24 5 a(4)(23) 5 22(22)(5) 24 5 212a 5 20 2 7. y 5 } x x and y show inverse variation because the equation is of a the form y 5 }x . 22 5 a 8. x 1 y 5 6 z 5 22xy z 5 axy y 5 2x 1 6 3 z 5 2}2 xy 18 5 a(22)(6) 3 5 2}2 (22)(5) 18 5 212a 5 15 x and y show neither direct nor inverse variation because a the equation is not of the form y 5 ax or y 5 }x . 9. 8y 5 x x 3 y 5 }8 2}2 5 a x and y show direct variation because the equation is of the form y 5 ax. 3 z 5 2}2 xy 12. z 5 axy 7 10. xy 5 12 z 5 }3 xy 12 7 56 5 a(26)(24) 5 }3 (22)(5) 56 5 24a 5 2} 3 y5} x x and y show inverse variation because the equation is of 70 a the form y 5 }x . 7 3 }5a 11. C; xy 5 5 7 z 5 }3 xy aw 13. x 5 } y 5 y 5 }x aqr 14. p 5 } s y 5 }x 20 24 5 }5 Skill Practice 20 y 5 2} x said to vary jointly with x and y. 2. Find the product x + y for each data pair (x, y). If the products are constant or approximately constant, then the set of data pairs shows inverse variation. 24 y 5 }x 24 a a the form y 5 }x . 21 y 5 }x 21 4 1 2 x and y show direct variation because the equation is of the form y 5 ax. 5 y 5 }x 2 y 5 }x y 5 }x a 1 2}6 5 } 212 1 2}6 (212) 5 a 25a 2 y 5 }x Algebra 2 Worked-Out Solution Key 2}4(24) 5 a 55a a 18. a 5 57 21 y5} x 6. 4x 5 y x and y show direct variation because the equation is of the form y 5 ax. 5 2}4 5 } 24 21 5 a y 5 8x y 5 }x 5} 3 3 28 }4 5 a a x 14 5} 3 a 17. y5} x a because the equation is not of the form y 5 ax or y 5 }. 14 y5} x 14 } x and y show neither direct variation nor inverse variation a y 5 }x y5} x 28 5 } 3 4. y 5 x 1 4 53 14 5 a 5 28 a 16. 95a a 24 y 5 2} x x and y show inverse variation because the equation is of 5 }3 2 5 }7 5 2} 3 224 5 a 1 y5} 5x 416 15. y 5 2} x 85} 23 1 3. xy 5 } 5 9 9 5 }1 9 y 5 }x a 14. y 5 }x a 5 2} 3 220 5 a 1. If z varies directly with the product of x and y, then z is 9 a 13. y 5 } x y 5 2} x a 8.1 Exercises (pp. 555–557) y 5. } 5 8 x 20 a 12. 2 5 }3 5 y 5 }x 5 5 }3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 11. Chapter 8, continued 35 a 19. y 5 }x 26. y 5 2} 3x 1 2 1 15 5 a 2}4 (23) 35 a 27 5 } 5 5 2} 3(3) } 3 z 5 20xy z 5 axy 3 15 5 }4 a 35 5 2} 9 5 27 }3 5 a 1 2 5 2400 20 5 a 35 5a 2} 3 z 5 20xy 27. 35 2} 3 1 z 5 axy z5} xy 14 35 y5} 5 2} 3x x 1 23 5 a(16)(27) (24)(5) 5} 14 23 5 242a 5 2} 14 20. x + y: 1.5(40) 5 60, 2.5(24) 5 60, 4(15) 5 60, 7.5(8) 5 60, 10(6) 5 60 y 40 x 1.5 80 3 48 5 24 2.5 15 4 16 15 6 10 3 5 1 28. 21. x + y: 12(132) 5 1584, 18(198) 5 3564, 23(253) 5 5819, 29(319) 5 9251, 34(374) 5 12,716 253 23 319 29 374 34 y x and y show direct variation because the ratios }x }: } 5 11, } 5 11, } 5 11, } 5 11, } 5 11 9 7 6 11 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x and y show neither direct variation nor inverse variation y because neither the products x + y nor the ratios }x are equal. 23. x + y: 4(21) 5 84, 6(14) 5 84, 8(10.5) 5 84, 6 5 218a 5} 3 20 1 z 5 axy z 5 25xy 75 5 a(5)(23) 5 25(24)(5) 75 5 215a 5 100 25 5 a z 5 25xy 30. A; z 5 axy 236 5 a(23)(24) y 21 7 21 10.5 14 }: } 5 5.25, } 5 } ø 2.3, } 5 } ø 1.3, 3 16 x 4 6 8 236 5 12a 10 8.4 25 21 7 12 x and y show inverse variation because the products x + y are equal. z 5 axy z 5 22xy 24 5 a(2)(26) 5 22(24)(5) 24 5 212a 5 40 22 5 a z 5 22xy 25. 5 2}3 (24)(5) 8.4(10) 5 84, 12(7) 5 84 } 5 } ø 1.2, } ø 0.6 24. 1 6 5 a(9)(22) z 5 2}3 xy 29. 10 6.2 11 5 }: } 5 4, } 5 2.2, } ø 1.6, } ø 1.3, } ø 0.5 z 5 2}3 xy 1 22. x + y: 4(16) 5 64, 5(11) 5 55, 6.2(10) 5 62, 7(9) 5 63, 11(6) 5 66 1 z 5 axy 2}3 5 a are equal. y 16 x 4 5 2} 7 z5} xy 14 x and y show inverse variation because the products x + y are equal. 198 18 10 }5a } 5 } ø 1.1, } 5 } 5 0.6 y 132 x 12 20 1 14 }: } 5 } ø 26.7, } 5 } 5 9.6, } 5 3.75, 8 7.5 z 5 axy 1 z 5 }4 xy 1 12 5 a(8)(6) 5 }4 (24)(5) 12 5 48a 5 215 1 }5a 4 5 20(24)(5) 23 5 a ay 31. x 5 } z 32. y 5 axz 2 axz 33. w 5 } y 34. The variables x and y should be in the numerator and the variable w should be in the denominator because z varies directly with x and y and inversely with w. The correct axy 3 equation is z 5 } }. Ïw 2 2 35. Sample answer: f(x) 5 2x, g(x) 5 }, h(x) 5 2x 1 }; x x 2 h(2) 5 2(2) 1 }2 5 4 1 1 5 5 36. x varies directly with z. a b x 5 }y , y 5 }z a a x5} 5 }b z 5 cz b } z 1 z 5 }4 xy Algebra 2 Worked-Out Solution Key 417 continued Problem Solving 37. (3.53 3 1022)(2.25 3 1022) 5 G(1.19002 3 1055) 7.9425 3 1044 5 G (1.19002 3 1055) 103.68 n5} s a n 5 }s 7.9425 3 1044 1.19002 3 10 103.68 a 54 5 } 1.92 103.68 5 a 5} 3.87 }} 55 5 G ø 26.8 7.9425 10 } 5G 1} 1.19002 21 1055 2 44 103.68 A model is n 5 } . You can store 26 photos on your s camera when the average photo size is 3.87 megapixels. 38. Sample answer: 7.4(1200) 5 8880, 8.9(1000) 5 8900, 6.7 3 10211 ø G c. As the masses of the two objects increase and the distance between them is held constant, the gravitational force increases. As the masses of the two objects are held constant and the distance between them increases, the gravitational force decreases. 12.1(750) 5 9075, 17.9(500) 5 8950 9000 I + R 5 9000 or R 5 } I 9000 9000 R5} 5} ø 265 I 34 When I 5 34 milliamps, the resistance is about 265 ohms. 172 a 39. P5} A P5} A a 0.43 5 } 400 172 5} 60 172 5 a ø 2.87 aWD 2 42. a. P 5 } L a(2W )D 2 aWD 2 }5}5P L 2L P stays the same when the width and length of the beam are doubled. aWD 2 b. P 5 } L a(2W)(2D)2 8aWD 2 } 5 } 5 8P L L 172 P5} A P is multiplied by 8 when the width and depth of the beam are doubled. The pressure if you wear the boots is about 2.87 pounds per square inch. aWD 2 c. P 5 } L a(2W )(2D)2 8aWD 2 4aWD 2 } 5 } 5 } 5 4P L 2L 2L } 40. a. aÏ T f5} Ld } aÏ 670 262 5 } 62(0.1025) P is quadrupled when all three dimensions are doubled. } 1665.01 5 aÏ 670 64.3 ø a d. Sample answer: If the safe load of a beam is increased } 64.3Ï T by a factor of 4, you can double the length, width, and depth, or you can quadruple the width, or you can double the depth. f5} Ld } } 64.3ÏT 64.3Ï 1629 b. f 5 } 5 } ø 26.3 Ld 201.6(0.49) The frequency of the note is about 26.3 hertz. 43. C; Gm1m2 41. a. F 5 } d2 a2 1 b2 5 c2 a 2 1 92 5 182 Gm1m2 b. F 5 } d2 a 2 1 81 5 324 G(5.98 3 10 )(1.99 3 10 ) (1.50 3 10 ) G(5.98 3 1.99)(1024 3 1030) 3.53 3 1022 5 }}} (1.50)2(1011)2 G(11.9002 3 1054) 22 24 30 3.53 3 1022 5 }}} 11 2 3.53 3 10 5 }} 22 2.25 3 10 G(1.19002 3 1055) 3.53 3 1022 5 }} 22 2.25 3 10 418 Mixed Review for TAKS Algebra 2 Worked-Out Solution Key a 2 5 243 a ø 15.588 1 A 5 }2bh 1 ø }2 (15.588)(9) 5 70.1 The area of nMNP is about 70.1 square centimeters. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 8, Chapter 8, continued 2x 1 1 5. y 5 } 4x 2 2 44. F; The domain is all real numbers On their own, 8 hexagons and 6 squares have 8(6) 1 6(4) 5 72 edges. y In the solid, each edge is shared by exactly two polygons. 1 1 except }2, and the range is all 1 real numbers except }2 . 1 So, the number of edges is }2 (72) 5 36. x 1 F1V5E12 14 1 V 5 36 1 2 23x 1 2 6. f(x) 5 } 2x 2 1 V 5 24 The domain is all real numbers except 21, and the range is all real numbers except 3. y The solid has 24 vertices. Lesson 8.2 8.2 Guided Practice (pp. 559–561) 4 1. f (x) 5 2} x The domain is all real numbers except 0, and the range is all real numbers except 0. y 1 x 1 x 22 7. If the cost of the 3-D printer is $21,000, then the function 300m 1 21,000 300m 1 21,000 is c 5 }} . The graph of c 5 }} m m lies closer to the axes than the graph of 21 300m 1 24,000 . Both graphs have the same c 5 }} m asymptotes, domain, and range. 8 2. y 5 } 2 5 x The domain is all real numbers except 0, and the range is all real numbers except 25. y 2 x 22 8.2 Exercises (pp. 561–563) Skill Practice 7 1. The function y 5 } 1 3 has a range of all real x14 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. numbers except 3 and a domain of all real numbers except 24. 23x 1 5 2. The function f (x) 5 } is not a rational function 2x 1 1 because the expression 2x 1 1 is not a polynomial. 1 3. y 5 } 1 2 x23 The domain is all real numbers except 3, and the range is all real numbers except 2. y 3 3. y 5 } x The graph lies farther from the 1 x 21 1 10 4. y 5 } x x 21 1 axes than the graph of y 5 }x . y The graph lies farther from the 1 axes than the graph of y 5 }x . y x21 4. y 5 } x13 The domain is all real numbers except 23, and the range is all real numbers except 1. y Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range. Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range. 2 x 22 2 21 x 25 5. y 5 } x The graph lies farther from the 1 axes than the graph of y 5 }x and it y 1 21 x lies in Quadrants II and IV instead of Quadrants I and III. Both graphs have the same asymptotes, domain, and range. Algebra 2 Worked-Out Solution Key 419