Comments
Description
Transcript
Document 1804579
Chapter 7, 5. continued y 5 385(1.04)x 9. When P 5 1500, r 5 0.07 550 5 385(1.04)x n 5 365, and t 5 2: x 1.43 5 1.04 r nt A 5 P 1 1 1 }n 2 log 1.43 log 1.04 }5x 9.12 ø x 365.07 730 5 1500 1 } 365 2 The expenditures reached $550 billion in 1996 1 9, or 2005. ø 1725.39 A 5 Pe rt 6. 0.07 365 + 2 A 5 1500 1 1 1 } 365 2 The balance after 2 years is $1725.39. 4000 1 1000 5 4000e0.02t y 10. 1.25 5 e0.02t y 11. ln 1.25 5 ln e0.02t 1 0.223 ø 0.02t 1 x 3 1 2 is y 5 5. Domain: all real numbers Domain: all real numbers Range: y > 0 Range: y > 24 12. 2. The decay factor in the model y 5 7.2(0.89) x is 0.89. base b, and it is equal to x if and only if b x 5 y. 5. y 5 (1.4) is an exponential function because it has the form y 5 ab . Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 8. Range: y > 0 Range: y > 0 ( ) (22, 2 ) 11 4 (3, 2.72) (2, 1) y 5 ex 2 2 21 21 x x Domain: all real numbers (0, 23) (21, 25) y (0, 1) f(x) 1 Range: y > 0 (1, 2.72) Domain: all real numbers f(x) 5 23 ? 4x Domain: all real numbers Range: y > 3 y 5 ex x Domain: all real numbers 1 Domain: all real numbers 14. x 3 x x 1 21 y 1 21, 2 4 21 (1, 1.6) x 21 1 f(x) 5 2(0.8)x (0, 2) x 2 y (2, 4.6) 4. A logarithm with base e is called a natural logarithm. 7. 13. f(x) f(x) 5 2(0.8)x 2 1 1 3 (1, 5) 3. Sample answer: logb y represents the logarithm of y with 21 x 11 3 (0, 23) 1 x11 1. The asymptote of the function y 5 22 } 15 4 6. 1 3 (1, 2 ) y5( ) 24 x Chapter 7 Review (pp. 539–542) y (1, ) 2 21 You will earn $1000 in interest in about 11 years. 1 x 3 (0, 1) 1 11.2 ø t () y5 Range: y > 0 15. f(x) (22, 7) f(x) 5 e20.4(x 1 2) 1 6 (21, 6.67) f(x) 5 23 ? 4x 1 1 2 2 Domain: all real numbers 2 Range: y < 22 21 (0, 1) f(x) 5 e20.4x (1, 0.67) x Domain: all real numbers Range: y > 6 Algebra 2 Worked-Out Solution Key 409 continued 31. 2 ln 3 1 5 ln 2 2 ln 8 5 ln 32 1 ln 25 2 ln 8 16. When t 5 10: N 5 6.9e20.0695t 20.0695(10) 5 ln 9 1 ln 32 2 ln 8 20.695 5 ln 9 + 32 2 ln 8 N 5 6.9e N 5 6.9e N ø 3.44 288 About 3.44 picograms of nitrogen-13 remain after 10 minutes. 32. 17. 35 5 243, so log3 243 5 5. 18. 70 5 1, so log7 1 5 0. log 32 x5} 5 2.153 log 5 1 23 19. } 5 216, so log1/6 216 5 23. 6 1 1 1 20. 12521/3 5 }, so log125 } 5 2} . 5 3 5 1 2 21. 2.153 y y 5 log3x 1 21 1 (3, 1) (1, 0) x (3, 23) (1, 24) y 5 log3x 2 4 23. Domain: x > 0 Domain: x > 0 Range: all real numbers Range: all real numbers f(x) f(x) 5 ln(x 2 1) 1 3 (5, 4.39) (2, 3) 1 21 (4, 1.39) (1, 0) 5x 5 32 0 32 5 2.153 ø 32, 32 5 32 5 33. log3 (2x 2 5) 5 2 3log3 (2x 2 5) 5 32 2x 2 5 5 9 2x 5 14 x57 Check: log3 (2x 2 5) 5 2 log3(2 + 7 2 5) 0 2 log3 9 0 2 2 3 5 9, log3 9 5 2 34. ln x 1 ln (x 1 2) 5 3 ln [x(x 1 2)] 5 3 eln [x(x 1 2)] 5 e3 x(x 1 2) 5 e3 2 x 1 2x 2 e3 5 0 Check: 22. y 21 5x 5 32 log55x 5 log5 32 x 5 log5 32 x } 226Ï 4 2 4(2e3) 226Ï 84.34 ø} x 5 }} 2 2 x f(x) 5ln x } ø 3.59, 25.59 Domain: x > 1 Range: all real numbers 24. d 5 22.1158 ln a 1 13.669 When a 5 25: d 5 22.1158 ln 25 1 13.669 d ø 22.1158(3.2189) 1 13.669 ø 6.8585 When a 5 50: d 5 22.1158 ln 50 1 13.669 d ø 22.1158(3.9120) 1 13.669 ø 5.3920 The average diameter of a pupil is about 6.8585 millimeters for a 25 year old and and about 5.3920 millimeters for a 50 year old. 25. log8 3xy 5 log8 3 1 log8 x 1 log8 y 26. ln 10x 3y 5 ln 10 1 ln x 3 1 ln y 5 ln 10 1 3 ln x 1 ln y 8 27. log }4 5 log 8 2 log y 4 5 log 8 2 4 log y y 3y 28. ln }5 5 ln 3y 2 ln x 5 5 ln 3 1 ln y 2 5 ln x x 29. 3 log 7 4 1 log 7 6 5 log 7 43 1 log 7 6 5 log 7 64 1 log 7 6 5 log 7 64 + 6 5 log 7 384 12 30. ln 12 2 2 ln x 5 ln 12 2 ln x2 5 ln }2 x 410 5 ln 36 5 ln 288 2 ln 8 5 ln } 8 Algebra 2 Worked-Out Solution Key Check: ln x 1 ln (x 1 2) 5 3 ln (25.59) 1 ln (25.59 1 2) 0 3 ln (25.59) 1 ln (23.59) 0 3 Because ln (25.59) and ln (23.59) are not defined, 25.59 is not a solution. ln x 1 ln (x 1 2) 5 3 ln 3.59 1 ln (3.59 1 2) 0 3 ln 3.59 1 ln 5.59 0 3 ln 3.59 + 5.59 0 3 ln 20.07 0 3 3ø3 The solution is about 3.59. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 7, Chapter 7, continued 8 35. (3, 8): 8 5 ab 3 l a 5 }3 b 4.673 2 3.332 M: }} ø 0.75 1.792 2 0 (5, 2): 2 5 ab5 ln y 2 4.673 5 0.75(ln x 2 1.792) ln y 5 0.75 ln x 1 3.329 1 2 8 2 5 }3 b5 b 2 5 8b ln y 5 ln x0.75 1 3.329 2 y 5 eln x 1 } 5 b2 4 0.75 1 3.329 y 5 e3.329 + eln x y 5 27.91x0.75 1 2 }5b 8 b Chapter 7 Test (p. 543) 8 a 5 }3 5 }3 5 64 1. 1 2 1 } 2 2. y y 5 2 ? 4x 2 2 1 2 2 2 b 2 5 ab22 l a 5 } 22 (1, 0.25): 0.25 5 ab y (1, 8) (3, 8) 1 x 2 So, an equation is y 5 64 + } . 36. (22, 2): 0.75 2 1 1b 2 (0, 2) y 5 2 ? 4x x 21 2 1 0.25 5 } 22 b Domain: all real numbers 3. 0.5 5 b f(x) 5 25 ? 2 1 2 5 2 x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1b 2 9 Domain: all real numbers Domain: all real numbers Range: y < 3 Range: y > 0 5. y52 65b ( 2 3 y52 () 21, 1 ln y (0, 2) (22, 2) 1 So, an equation is y 5 }4 + 6x. 0 6. y 2 a 5 }2 5 } 5 }4 36 0.693 1.099 1.386 1.609 1.792 3.332 3.850 4.159 4.369 4.543 4.673 ) 2 2 3 (0, 1) x 2 x 1 3 8 3 (0, 3) (1, ) 1 1 x12 3 () (1, ) (1, ) g(x) 5 1 x 3 2 3 1 g(x) () 1 21 g(x) 5 () 2 x x 3 Domain: all real numbers Domain: all real numbers Range: y > 0 Range: y > 2 7. 8. y ln y (0, 3.332) x 21 (0, 25) f(x) 5 25 ? 2 324 5 }2 b4 ln x 1 (21, 2 ) (4, 324): 324 5 ab4 9 x 1 (23, 22) 9 9 5 ab l a 5 }2 b 9 b y 1 2 324 5 9b 2 4. f(x) 13 (24, ) 2 0.5 So, an equation is y 5 0.5 + 0.5x. 38. Range: y > 0 x13 } a5} 22 5 22 5 0.5 36 5 b Domain: all real numbers Range: y > 0 0.125 5 b 3 37. (2, 9): x 21 0.25 5 2b3 2 b (2, 2) y y 5 2.5e 20.5x 1 1 (0, 3.5) (1, 2.52) (1.792, 4.673) 2 21 (0, 2.5) x (1, 1.52) 21 21 y 5 2.5e 20.5x x 0.5 0.2 ln x Domain: all real numbers Domain: all real numbers Range: y > 0 Range: y > 1 Algebra 2 Worked-Out Solution Key 411 Chapter 7, 22. h(x) () 1 3 h(x) 5 x 4 (2, 21.09) x h(x) 5 ( )e 1 3 x21 x ø 0.8740 Check: 72x 5 30 72(0.8740) 0 30 71.748 0 30 30 ø 30 22 Domain: all real numbers Range: y > 22 10. 52 5 25, so log5 25 5 2. 1 1 11. 225 5 }, so log2 } 5 25. 32 32 14. y y y 5 ln x 1 1 x 21 (1, 0) (2, 0.69) x 21 (2, 22.31) (1, 23) y 5 ln x 2 3 Domain: x > 0 Domain: x > 0 Range: all real numbers Range: all real numbers Domain: x > 23 f(x) f(x) 5 log(x 1 3) 1 2 (21, 2.30) Range: all real numbers (22, 2) 1 (2, 0.30) (1, 0) x f(x) 5log x 49 16. 2 ln 7 2 3 ln 4 5 ln 72 2 ln 43 5 ln 49 2 ln 64 5 ln } 64 5 17. log4 3 1 5 log4 2 5 log4 3 1 log4 2 5 log4 3 1 log4 32 5 log4 3 + 32 5 log4 96 18. log 5 1 log x 2 2 log 3 5 log 5 1 log x 2 log 32 5 log 5 1 log x 2 log 9 5x 5 log 5 + x 2 log 9 5 log } 9 log 50 19. log5 50 5 } ø 2.431 log 5 log 23 20. log6 23 5 } ø 1.750 log 6 log 45 21. log9 45 5 } ø 1.732 log 9 412 Algebra 2 Worked-Out Solution Key x 5 104 Check: 3 log (x 2 4) 5 6 3 log (104 2 4) 0 6 3 log 100 0 6 3+206 656 24. log4 x 1 log4 (x 1 6) 5 2 12. 60 5 1, so log6 1 5 0. 21 x 2 4 5 100 x5} 2 log 7 21 15. 10log (x 2 4) 5 102 log 30 1 3 13. log (x 2 4) 5 2 2x 5 log 7 30 (0, ) 5 3 23. 3 log (x 2 4) 5 6 log 7 72x 5 log 7 30 e (1, 0.91) (1, 2 ) 72x 5 30 log4 [x(x 1 6)] 5 2 4log 4[x(x 1 6)] 5 42 x(x 1 6) 5 16 x2 1 6x 5 16 2 x 1 6x 2 16 5 0 (x 1 8)(x 2 2) 5 0 x 5 28 or x 5 2 Check: log4 x 1 log4 (x 1 6) 5 2 log4 (28) 1 log4 (28 1 6) 0 2 log4 (28) 1 log4 (22) 0 2 Because log4 (28) and log4 (22) are not defined, 28 is not a solution. log4 x 1 log4 (x 1 6) 5 2 log4 2 1 log4 (2 1 6) 0 2 log4 2 1 log4 8 0 2 log4 16 0 2 Because 42 5 16, log4 16 5 2. The solution is 2. 48 25. (21, 48): 48 5 ab21 l a 5 } b21 (2, 6): 6 5 ab2 1b 2 48 2 65 } 21 b 6 5 48 + b3 1 8 } 5 b3 1 2 }5b 48 b 48 } a5} 21 5 21 5 24 1 2 1 } 2 1 x So, an equation is y 5 241 }2 2 . Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9. continued Chapter 7, 26. (3, 8): continued 8 3 8 5 a(3)b l a 5 }b TAKS Practice (pp. 546–547) 1. B; (6, 15): 15 5 a(6)b In choice A, the two vertical lines should be horizontal. 13 2 8 15 5 }b 6b 15 5 8 + 2b In choice C, the two horizontal lines should be on the trapezoid, and the vertical line should be on the triangle. 15 8 In choice D, the circle should be on the trapezoid, and the vertical line should be on the triangle. } 5 2b 15 log } 8 }5b In choice B, the circle and the vertical line are positioned correctly, so the net represents the figure in choice B. log 2 2. G; 0.907 ø b 8 3 On their own, 8 triangles and 6 octagons have 8 a 5 }b ø } ø 2.954 0.907 8(3) 1 6(8) 5 72 edges. 3 So, an equation is y 5 (2.954)x0.907. In the solid, each edge is shared by exactly two polygons. 1 27. H 5 a(1 1 r)t The initial amount is a 5 62 and the percent increase is r 5 0.0485. So, the exponential growth model is H 5 62(1.0485)t. So, the number of edges is }2 (72) 5 36. F1V5E12 14 1 V 5 36 1 2 28. When P 5 2500, r 5 0.035, and t 5 8: A 5 Pe rt 0.035(B) A 5 2500e 0.28 5 2500e The solid has 24 vertices. ø 3307.82 3. C; The balance after 8 years is $3307.82. 29. a. ln x 21.609 ln y 22.303 20.643 20.288 1.609 2.398 2.996 3.807 0 0.405 Faces P and U are perpendicular, not parallel. Faces R and S are parallel, not perpendicular. 4. G; 1 There are 6 triangles and 1 hexagon in a hexagonal pyramid for a total of 7 faces. On their own, 6 triangles and 1 hexagon have 6(3) 1 1(6) 5 24 edges. In the solid, each edge is shared by exactly two polygons. So the ln x 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Faces S and T are perpendicular, not parallel. Faces Q and T are perpendicular, so choice C is true. ln y b. V 5 24 0.405 2 (22 + 203) M 5 }} 5 0.5 3.807 2 (21 + 609) ln y 2 0.405 5 0.5(ln x 2 3.807) ln y 5 0.5ln x 2 1.4985 ln y 5 ln x0.5 2 1.4985 y 5 eln x 0.5 2 1.4985 y 5 e21.4985eln x 0.5 y 5 0.2235x0.5 1 number of edges is }2 (24) 5 12. F1V5E12 7 1 V 5 12 1 2 V57 The solid has 7 vertices. 5. D; 2 3y 5 22x 1 3 l y 5 2}3 x 1 1 3 When x 5 120: 0.5 y 5 0.2235(120) ø 0.2235(10.9545) l y ø 2.4483 The speed of the current needed to carry a particle with a diameter of 120 millimeters downstream is about 2.45 meters per second. 2y 5 3x 1 8 l y 5 }2 x 1 4 2 3 Because 2}3 1 }2 2 5 21, the lines are perpendicular. 6. J; Volume of box 5 * + w + h 5 9 + 6 + 12 5 648 in.3 Volume of cube 5 s 3 5 33 5 27 in.3 648 in.3 27 in. Cubes in box 5 } 5 24 3 24 cubes can be placed completely inside the box. Algebra 2 Worked-Out Solution Key 413 Chapter 7, continued 7. B; h 5 216t 2 1 12t 1 5 7 5 216t 2 1 12t 1 5 0 5 216t 2 1 12t 2 2 }} 212 6 Ï122 2 4(216)(22) 2(216) t 5 }}} 212 6 4 t5} 232 t 5 0.25 or t 5 0.5 The ball has a height of 7 feet on its way up at 0.25 second, and on its way down at 0.5 second. Because Alan hit the ball on its way down, the ball was in the air for 0.5 second. 8. H; 5x 2 6y 5 22 26y 5 25x 2 2 5 1 y 5 }6 x 1 }3 1 y 5 mx 1 b, so b 5 }3 . 9. D; 3 2}4 (12x 2 4y) 1 (5y 2 8x) 5 29x 1 3y 1 5y 2 8x 5 8y 2 17x 10. J; 1 1 1 1 1 Sequence: }2 , }4, }6, }8 , } ,...5 10 1 1 1 1 2+1 2+2 2+3 2+4 1 2n 11. C; The range of the function is 24 < y a 3. 12. H; 24 2 1 5 slope: } 5 }3 23 2 0 y-intercept: (0, 1) 5 y > }3x 1 1 3y > 5x 1 3 25x 1 3y > 3 13. 4s 1 6h 5 54 h 5 3s 2 2 4s 1 6(3s 2 2) 5 54 22s 5 66 s53 h 5 3(3) 2 2 5 7 There are 7 hexagonal tables in the dining room. 414 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. }, }, }, }, . . . , }, . . .