Comments
Description
Transcript
Document 1804607
Chapter 6, continued 10 times as massive: 10k 5 ks 6 64. Q 5 3.367*h3/2 10 5 s6 Q 5 3.367(20)(5)3/2 6} 6Ï 10 5 s Q ø 753 The flow rate of the weir is about 753 cubic feet per second. 65. a. V 5 s 3 V 5 (16)3 61.5 ø s Reject the negative value, 21.5. The river’s speed must be about 1.5 meters per second to transport particles that are 10 times as massive as usual. 100 times as massive: 100k 5 ks6 100 5 s6 The volume of the cube is 4096 cubic millimeters. 6} 6Ï 100 5 s b. Tetrahedron: V 5 0.118x 3 4096 5 0.118x 3 34,712 ø x 3 3} Ï34,712 ø x 33 ø x Edge length: about 33 millimeters Octahedron: V 5 0.471x 3 4096 5 0.471x 3 8696 ø x 3} 3 Ï8696 ø x 21 ø x Edge length: about 21 millimeters Dodecahedron: V 5 7.663x 3 4096 5 7.663x 3 535 ø x 3 3} Ï535 ø x 8øx Edge length: about 8 millimeters Icosahedron: V 5 2.182x 3 4096 5 2.182x 3 1877 ø x 3 3} Ï1877 ø x 12 ø x Edge length: about 12 millimeters c. No; the icosahedron has the greatest number of faces but not the smallest edge length. Of the three polyhedra with equilateral triangles for faces, the icosahedron has the smallest edge length, but the dodecahedron’s faces are regular pentagons, so its edge length is smaller. 66. An equation for mass m in terms of speed s is m 5 ks6, where k is a constant. At speed of 1 meter per second: m 5 k(1)6 5 k Twice as massive: 2k 5 ks 6 2 5 s6 6} 6Ï 2 5 s 61.1 ø s Reject the negative value, 21.1. The river’s speed must be about 1.1 meters per second to transport particles that are twice as massive as usual. 324 Algebra 2 Worked-Out Solution Key 62.2 ø s Reject the negative value 22.2. The river’s speed must be about 2.2 meters per second to transport particles that are 100 times as massive as usual. Mixed Review for TAKS 67. D; 2x(4x 1 1) 2 (7x 1 3)(x 2 4) 5 8x 2 1 2x 2 7x 2 1 28x 2 3x 1 12 5 x 2 1 27x 1 12 68. F; a2 1 b2 5 c 2 42 1 b2 5 82 16 1 b2 5 64 b2 5 48 b ø 6.9 Perimeter ø 8 1 4 1 6.9 5 18.9 The trench is about 18.9 meters long. Lesson 6.2 6.2 Guided Practice (pp. 421– 423) 1. (51/3 + 71/4)3 5 (51/3)3 + (71/4)3 5 5(1/3 + 3) + 7(1/4 + 3) 5 5 + 73/4 2. 23/4 + 21/2 5 2(3/4 1 1/2) 5 25/4 31 3 3. } 5} 5 3(1 2 1/4) 5 33/4 31/4 31/4 201/2 3 4. } 5 51/2 1 2 F 1 205 2 G 5 (4 1/2 3 } ) 1/2 3 5 23 5 8 5. S 5 km2/3 5 8.4(9.5 3 104)2/3 5 8.4(9.5)2/3(104)2/3 ø 8.4(4.49)(108/3) ø 17,506 The sheep’s surface area is about 17,506 square centimeters. 4} 4} 4} 4} 6. Ï 27 + Ï 3 5 Ï 27 + 3 5 Ï 81 5 3 3} Ï250 7. } 3} 5 Ï2 Î2502 5 Ï125 5 5 } 3 } 3} Copyright © by McDougal Littell, a division of Houghton Mifflin Company. V 5 4096 Chapter 6, 8. continued Î34 5 ÏÏ34 + ÏÏ88 5 ÏÏ2432 5 Ï224 } 5} 5} 5} 5} } } 5} } 5} } 5} } 5 3} 3} 3} 3} 13. (165/9 + 57/9)23 5 (165/9)23 + (57/9)23 5 1625/3 + 527/3 3} 9. Ï 5 1 Ï 40 5 Ï 5 1 Ï 8 + Ï 5 3} 1 161/3 + 52/3 16 + 5 16 + 5 161/3 + (52)1/3 } 5} 5/3 7/3 + 1/3 2/3 3} 5 Ï 5 1 2Ï5 3} 3} 3} 3} 5 (1 1 2)Ï 5 5 3Ï5 10. 3} 3} Ï27q 5 Ï 3 (q 9 3 Î 5 Ï 3 + Ï (q } ) 3 3 5} 2 3 5 3q 16 + 5 3 4001/3 5} 32,000 } 5 12. } 5 2x 3x1/2y1/2 13. 3 5 10 5 (x2)5 x 2 x Ï Ï x10 } } } 5 5 } } 5 } y y5 Ï5 y5 Ï5 y5 3/4 6xy (1 2 1/2) (3/4 2 1/2) } 11. ) 3 3 y } } 81/3 + 501/3 5} 32,000 5 2x1/2y1/4 } 3} Ï50 5} 16,000 } Ï9w5 2 wÏw3 5 3w 2Ï w 2 w 2Ï w } 133/7 13 5 (3w 2 2 w 2)Ï w 5 2w 2Ï w } } 3} 3} } } 3} 3} 6.2 Exercises (pp. 424– 427) 15. Ï 20 + Ï 5 5 Ï 20 + 5 5 Ï 100 5 10 Skill Practice 16. Ï 16 + Ï 4 5 Ï 16 + 4 5 Ï 64 5 4 } 3} 1. No, 2Ï 5 and 2Ï 5 are not like radicals because they do 4} 4} 4} 4} the radicand has no perfect nth powers as factors and any denominator has been rationalized. 3. 53/2 + 51/2 5 5(3/2 1 1/2) 5 52 5 25 4. (6 5. 3 1/4 ) 9 (2/3 + 1/2) 56 + 27 1/4 1/3 56 5 (3 + 27)1/4 5 811/4 5 3 (1 1 4/5) 6. } 59 924/5 5 99/5 801/4 7. } 5 801/4 + 51/4 521/4 5 (80 + 5)1/4 3} 4} } 4} 5 312/3 + 312/4 5 34 + 33 5 37 5 2187 5} Î Î Î } 5} Ï64 5 64 } 5 Ï 32 5 2 19. } 5} 5 2 Ï2 } } } } Ï1 1 Ï3 3 1 }5 }5} 20. } } 5 } } 5 5 75 25 Ï25 Ï 75 4} 4} 4} 4} Ï36 + 9 Ï324 Ï36 + Ï9 21. } 5} 5} 4} 4} 5 4} Ï4 Ï4 Ï4 } } } 4 4 4 Ï128 67/8 Ï8 + Ï16 } 22. } 5} 8 } + 7/8 8} 8} 6 Ï6 Ï2 + Ï3 Î3244 5 Ï81 5 3 } 4 4} } 1281/4 + 67/8 5} 6 5 161/4 + 251/4 (1282)1/8 + (67)1/8 5 }} 5 2 + 251/4 6 (1282 + 67)1/8 52+5 1/2 1 2 4} 4} 18. (Ï 3 + Ï 3 )12 5 1 31/3 + 31/4 212 5 4001/4 73 21/3 8. }3 5 4 4} 13 5 Ï16 + Ï 4 5 2Ï4 5 2Ï 2 2. A radical expression with index n is in simplest form if 2/3 1/2 7} Ï371,293 17. Ï 8 + Ï 8 5 Ï 8 + 8 5 Ï 64 5 Ï 16 + 4 } not have the same } index. The expression 2Ï5 has an 3 index of 2 and 2Ï 5 has an index of 3. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 135/7 13 1 13 } 14. } 5 13(3/7 2 5/7) 5 1322/7 5 } 5} 2/7 + 5/7 5/7 } F1 2 G 5} 6 7 3 21/3 7 [3 + (21/3)] 7 21 4 } 5 }4 5 }4 5 }7 4 1 2 1 2 (4,586,471,424)1/8 5 }} 6 5} Ï1331 1 112/5 113/5 9. } 5 11(2/5 2 4/5) 5 1122/5 5 } +}5} 11 112/5 113/5 114/5 4(69,984)1/8 5} 6 10. (123/5 + 83/5)5 5 [(12 + 8)3/5]5 5 (963/5)5 5 963 5 884,736 120(22/5 1 2/5) 1 12022/5 + 1202/5 11. }} 5} 5} 5 73/4 723/4 723/4 723/4 (641/3)5/3 + (641/3)2/3 645/9 + 642/9 12. } 5 }} 3/4 43/4 4 47/3 5} 43/4 } 8 2Ï 69,984 23. C; 4} 5} 3 4} 5 419/12 5 4 + 47/12 4} 4} 4} 5 3Ï 16 + Ï 2 + (26Ï 5 ) 4} 4} 5 3 + 2 + Ï2 + (26Ï5 ) 4} 5 236Ï 2 + 5 4} 5 236Ï 10 7/3 2 3/4 54 4} 4} 3Ï 32 + (26Ï5 ) 5 3Ï16 + 2 + (26Ï 5 ) } } } } } 24. Ï 72 5 Ï 36 + 2 5 Ï 36 + Ï 2 5 6Ï 2 6} 6} 6} 6} 6} 3} 25. Ï 256 5 Ï 64 + 4 5 Ï 64 + Ï 4 5 2Ï 4 5 2Ï 2 5 4 + (47/2)1/6 5 4 + (27)1/6 5 4(2 + 26)1/6 5 8 + 21/6 Algebra 2 Worked-Out Solution Key 325 Chapter 6, 3} 7} 7} 5 26Ï 2 1 2 + 2 + Ï2 5 26Ï 2 1 4Ï 2 7} 3} 4} 4} 4} 4} 4} 5 (12 2 28)Ï2 5 10 + 4 + Ï2 4} 4} 5 216Ï 2 5 40Ï 2 3} Ï36 3 3 } 29. } 4} 5 4} Ï16 + 9 Ï144 3 5} 4} 4} Ï16 + Ï9 4} 3 Ï9 } 5} 4} + 4} 2Ï 9 Ï9 4} 3Ï 9 5} 4} 2Ï 81 } 3Ï 3 5} 6 4} 30. 4} 4} 6} 6} } } 6} } 6} 6 4} 4} 5 10Ï 2 2 16Ï 2 4} 5 (10 2 16)Ï 2 5} 6} 4} 5 26Ï 2 3} 3} 3} 3} 40. 5Ï 48 2 Ï 750 5 5Ï 8 + 6 2 Ï 125 + 6 3} 3} 3} 3} 5 5Ï 8 + Ï 6 2 Ï125 + Ï6 3} 3} 5 5 + 2 + Ï6 2 5 + Ï6 3} 3} 5 10Ï 6 2 5Ï 6 3} 5 (10 2 5)Ï 6 3} 5 5Ï 6 5} 9 +9 } } 31. } 5} 5} + 5} 5 Ï243 Ï27 Ï9 9(1/3 1 1/5) 5} 3 Ï9 1/3 1/5 3} 3} 41. The radical expressions 2Ï 10 and 6Ï 5 are not like radicals because they don’t have the same radicand. 3} 3} Therefore, 2Ï10 1 6Ï5 cannot be combined. 42. To make the denominator a perfect cube, you must 98/15 multiply the numerator and denominator of the fraction by y so that the value of the fraction does not change. 5} 3 (9 ) Î Î 1/2 16/15 3 3 x y }2 5 } } } 5} 3 x+y } Ï3 xy Ï3 xy } 5} } 5 } 2 y +y y Ï3 y 3 316/15 5} 3 43. x1/4 + x1/3 5 x(1/4 1 1/3) 5 x7/12 5 31/15 44. ( y4)1/6 5 y(4 + 1/6) 5 y 2/3 45. Ï81x 4 5 Ï34x4 5 Ï34 + Ïx4 5 3x 15 } 5 Ï3 6} 6} 6} 32. 2Ï 3 1 7Ï 3 5 (2 1 7)Ï 3 5 9Ï 3 3} 2Ï 5 3 1 1 3 33. }Ï 5 2 }Ï 5 5 } 2 } Ï 5 5 } 5 5 5 5 5 3} 1 2 3} 5} 5} 5} 34. 25Ï 2 2 15Ï 2 5 (25 2 15)Ï 2 5 10Ï 2 4} 34} 3 4 } Ï7 1 14} 35. }Ï 7 1 }Ï 7 5 } 1 } Ï 7 5 } 8 8 8 2 8 1 3} 2 3} 3} 3} 3} 36. 6Ï 5 1 4Ï 625 5 6Ï 5 1 4Ï 125 + 5 3} 5 6Ï 5 1 4Ï125 + Ï5 3} 3} 5 6Ï 5 1 4 + 5Ï 5 3} 3} 5 6Ï 5 1 20Ï5 3} 5 (6 1 20)Ï 5 3} 5 26Ï 5 326 4} 4} 4} 6} Ï1296 Ï64 3} Ï36 5} 2 4} 5 2 + 5Ï 2 2 8 + 2Ï2 Ï3 5} 2 3} 4} 4} 5 2Ï625 + Ï 2 2 8Ï16 + Ï2 Î814 5 ÏÏ814 + ÏÏ1616 } } 5} 4} 39. 2Ï 1250 2 8Ï 32 5 2Ï 625 + 2 2 8Ï 16 + 2 3} Ï36 1 } } } 28. 3 } 5 } 3} + 3} 5 3} 5 6 6 Ï6 Ï36 Ï216 3} 4} 5 12Ï 2 2 28Ï 2 4} 6} 4} 4} 4} 5 10Ï256 + Ï 2 Ï9 4} 5 12Ï 2 2 7 + 4Ï2 4} 5 10Ï256 + 2 3} 4} 4} 5 12Ï 2 2 7Ï 256 + Ï2 5 10Ï512 4} 4} 4} 38. 12Ï 2 2 7Ï 512 5 12Ï 2 2 7Ï 256 + 2 4} 4} Ï36 7} 5 (26 1 4)Ï 2 5 22Ï2 27. 5Ï 64 + 2Ï 8 5 5 + 2Ï 64 + 8 3} 7} 7} 5 6Ï 2 Î 7} 7} 3} 3} Ï1 7} 7} 5 Ï216 + Ï 2 3} 7} 3} 5 Ï216 + 2 } 7} 5 26Ï 2 1 2Ï128 + Ï2 3} 5 Ï432 4} 7} 37. 26Ï 2 1 2Ï 256 5 26Ï 2 1 2Ï 128 + 2 3} 26. Ï 108 + Ï 4 5 Ï 108 + 4 Algebra 2 Worked-Out Solution Key 4} 4} 4} 4} 2 46. } 5 2x3/2 x23/2 y4/3 x2/5y (2/5 2 1) (1 1 1/3) 23/5 4/3 } 47. } 5 x y 5 x y 5 x3/5 xy21/3 } } } 3 3 5 3 Ïx15 Ï (x ) x5 x15 48. 3 } 5} } 5 } } 5 } 2 3 6 3 2 3 y6 Ïy Ï( y ) y 3} 6 } 23 1 1 } 49. (Ï x 2 + Ï x4 ) 5 } 3 5 2/3 3} 6} 2 4 ( x + x4/6)3 (Ïx + Ïx ) Î 1 1 1 x 5} 5 }4 5} (2/3 1 4/6) 3 4/3 3 [x ] (x ) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3} continued Chapter 6, } continued } } Îx + Ïx 5 Îx + Ïx 5 Î x + Ïx5 50. } } 5 } } } 5 } } } 16 16 Ï25 + Ïx Ï25x Ï25 + Ï (x8)2 3 } 3 } 3 } } 3} } 1/3 5x } 5 (3 2 2)x 2Ï x } x(1/3 1 5/2) x17/6 5} 5} 8 5x 5x8 5 x2Ï x 4} 6 } 4} 2 4} 5 (2xy 1 3y)Ï 2x2 5 2(x ) 1 2(2x 3 1 52. 53. 54. ,x } 5 2(7x 1/4 } Ï49x 5 Ï49x x 5 Ï49x + Ï x 5 7x x 4 2Ï 5 14x } 12x 2y 4y 2z12 Ï4 12x2y6z12 5 Ï4 } } 4 4 12 4 y z +Ï 12x2y2 5Ï } 34 2 2 5 yz Ï12x y } 5 24x 68. } 55. Ïx 8 } 5 Ïx4xyz8 } c 5 5x1/3 } 5 Ïx4z8 + Ï xy 5} Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5} 23 Ïx4 23Ïx4 23Ïx 4 23 56. } 5} +} 5} 5} 5} 5} 5} 5} 6 10 6 4 x2 Ïx Ïx Ïx Ïx Î Î Î Î } 57. 58. 3 x y x 3 + y2 3 }4 5 3 } 3} } Ïx3y2 3 2 Ïx3 + Ï y Ï3 y 6 Ï3 y6 3 } 3 2 xÏ y y +y } } 5 3 } 5 3 20x 3y 2 9xz 9xz + xz Ï4 + 5x y z } 5 } Ï9x2z4 } Î 5 }2 (4x1/3)(3x1/3) 5 12x1/3 5 }2 + 12x(1/3 1 1/3) 1 9x z 5 1 2}3 2 }2 2Ï x 1 } Ï4x y + Ï5z } 4 2 5 5 } Ï9x2z4 } 2x2yÏ 5z 2xyÏ 5z 3xz 3z 7} 2 4} 6 5} 72. (x6y2)20.75 5 x6 + (20.75)y2 + (20.75) 1 5 x24.5y21.5 5 } x4.5y1.5 14 } 11 Ïx y0.75 y3/2 3 1 1 3 61. } y3/2 2 } y3/2 5 } 2 } y3/2 5 } 4 4 4 2 4 5 x21.25y0.75 5 } 1.25 2 x 62. 27Î y 1 16Î y 5 (27 1 16)Î y 5 9Î y 3 } 3 } 63. (x 4y)1/2 1 (xy1/4)2 5 x(4 + 1/2)y1/2 1 x2y(1/4 + 2) 2 1/2 5x y 2 1/2 1x y 1 x0.3 73. } 5 x(0.3 2 1.5) 5 x21.2 5 } x1.2 x1.5 74. (x5y23)20.25 5 x5 + (20.25)y23 + (20.25) 5} 60. 3Ï x 1 9Ï x 5 (3 1 9)Ï x 5 12Ï x 1 } 1 71. y20.6 + y26 5 y[20.6 1 (26)] 5 y26.6 5 } y6.6 7} 2 x25/14 (25/14 2 1) 5} 5 x11/14 5 x 5x 3 } } 70. x 0.5 + x 2 5 x(0.5 1 2) 5 x2.5 Ïx Ïx Ïx + Ïx Ïx } } } 59. } 7} 7} 5 7} + 7} 5 Ïx7 Ïx 5 Ïx5 Ïx2 x6/4 + x2/7 x(6/4 1 2/7) 5} 5} x x 5} 1 5 2}6Ï x 5} 5} 2 2 4} 6 5 6x2/3 } } 1 } 1 } 1 1 69. C; 2}Ï 4x 2 }Ï 9x 5 2} + 2Ï x 2 } + 3Ï x 6 6 6 6 20x4y2z } 2 4 } 4 2 3 } 1 5 3x1/3 1 4x1/3 1 5x1/3 y } 20x3y2 + xz } 5} A 5 }2 bh } 5} 5} } 5 } } 2 4 2 } 4} 6 1 P5a1b1c } 5 x 2z 4 Ï xy } c2 5 a2 1 b2 c 5 5Ï (x1/3)2 } 5} 5 35x1/2 1/4 } yz + Ï x z 5 Ï x yz 5 5 35x(1/4 1 1/4) 1 10x c 5 Ï 25x2/3 } 3 5 5 (7x1/4)(5x 1/4) 1/4 c2 5 25x2/3 3 6y 5 2xy2Ï } ) 1 2(5x ) c2 5 9x2/3 1 16x2/3 } 3 1/4 c2 5 (3x1/3)2 1 (4x1/3)2 3 3 8x3y6 + Ï 6y 5Ï 2 A 5 *w 1/4 5 (14 1 10)x1/4 48x 3y7 Ï3 4x 3y5 + Ï3 12y 2 5 Ï3 } 3 5 Ï8 + 6x3y6y } } } 5 2x(3 1 2/3) 67. P 5 2* 1 2w } 4 } 5 x3(2x 2/3) 5 2x11/3 1/8 } } ) 2/3 5 2x 1 4x 51. Sample answer: x 5 2/3 3 5} 6 } 5x 5Î x } A 5 *w 66. P 5 2* 1 2w 1 +x } 5} 31/6 5 30/6 1/6 7/8 } 4} 2 5 2xyÏ 2x 1 3yÏ2x x231/6 5x 4} 4 4 65. yÏ 32x 1 Ï 162x2y4 5 yÏ16 + 2x4x2 1 Ï 81 + 2x2y4 5} 5} 5 5 1 5x } } 5/2 5x x(17/6 2 8) } 5 3x2Ï x 2 2x2Ï x Ïx + Ïx x +x 5} 5} 8 8 5 } } 64. xÏ 9x3 2 2Ï x5 5 xÏ 9x2x 2 2Ï x4x 2 1/2 5 2x y y20.5 75. } 5y y0.8 (20.5 2 0.8) 21.3 5y 1 y 5} 1.3 76. 10x0.6 1 (4x0.3)2 5 10x0.6 1 16x0.3 + 2 5 10x0.6 1 16x0.6 5 26x0.6 Algebra 2 Worked-Out Solution Key 327 continued 77. 15z 0.3 2 (2z0.1)3 5 15z0.3 2 8z 0.3 5 7z 0.3 85. d 5 1.9[1 5.5 3 1024 2*]1/2 } x5Ï3 (5Ï3 2 2Ï3 ) } 78. }} 5 x x2Ï3 } 5 1.9[(5.5 3 10 } 5 x3Ï3 ø 1.9(0.23) 5 0.44 x2: x: 2 80. } 5} 5 x(2: 2 2:/3) 5 x4:/3 :/3 x2:/3 x } } The optimum pinhole diameter is about 0.44 millimeter. 86. } 81. x2yÏ2 1 3x2yÏ2 5 4x2yÏ2 82. a. 1 b. 2x + 2x 1 1 5 } 16 1 2x 1 (x 1 1) 5 } 16 3 9 }x 5 243 3 5 243 + 9x 1 3 243 22x 1 1 5 } 16 } 5 9x 1 81 22x 1 1 5 }4 1 }2 5 9 x 9 22x 1 1 5 224 922 5 9 x 2x 1 1 5 24 } 5 9x x a2 1 b2 5 c2 } x2 1 x2 0 (xÏ2 )2 } 2x2 0 x2 + (Ï2 )2 2x2 5 2x2 2x 5 25 5 2 x 5 2} 2.5120.77 2.512m1 87. a. } 5} 5 2.5120.74 ø 1.98 2.512m2 2.5120.03 Altair is about 2 times fainter than Vega. 2.5121.25 2.512m1 b. } 5 2.5120.48 ø 1.56 m2 5 } 2.512 2.5120.77 Deneb is about 1.6 times fainter than Altair. (4x)x 1 2 5 64 4x + (x 1 2) 5 64 4 x2 1 2x 5 64 4 x2 1 2x 5 43 x 2 x 1 2 x 5 22 c. 2.5121.25 2.512m1 c. } 5} 5 2.5121.22 ø 3.08 2.512m2 2.5120.03 Deneb is about 3 times fainter than Vega. }} V0Ï (V0)2 1 2gh0 2 x 1 2x 5 3 } V0Ï (V0)2 (x 1 3)(x 2 1) 5 0 3V 4: }F 5 r3 5 57.5(32)2/3 5 11(5.9 3 104)2/3 ø 57.5(10.08) 5 11(5.9) (104)2/3 ø 11(3.27)(108/3) 2/3 The bat’s surface area ø 11(3.27)(464.16) is about 580 square ø 16,696 centimeters. The human’s surface area is about 16,700 square centimeters. L 84. v 5 8.8 } A Î g 4 b. S 5 km2/3 Î (V0)2 V 5 }3:r 3 89. a. Problem Solving } V0 + V0 5} 5} 5} g g x 5 23 or x 5 1 ø 580 }} V0Ï (V0)2 1 2g(0) 88. d 5 }} 5 }} g g x2 1 2x 2 3 5 0 83. a. S 5 km2/3 )(100)] 5 1.9(0.055)1/2 } } } ( } }) 79. (xÏ2 )Ï3 5 x Ï2 + Ï3 5 xÏ6 1 2 * 5 10 cm 5 100 mm 1/2 24 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 6, } 7 1.4 3 10 5.5 3 10 5 8.8 }3 } ø 8.8Ï0.25 3 104 } 5 8.8Ï 2500 5 8.8(50) 5 440 The velocity of the jet is about 440 feet per second. Î4:3VF5 r } 3 } b. S 5 4:r 2 3V F 1Î} 4: 2 } 5 4: 3 2 3V 2/3 5 4: 1 } F 4: 2 (3V)2/3 5 4: } 2/3 (4:) 5 (4:)(1 2 2/3)(3V)2/3 5 (4:)1/3(3V)2/3 c. Balloon with volume V: S1 5 (4:)1/3(3V)2/3 Balloon with volume 2V: S2 5 (4:)1/3(3 + 2V)2/3 5 (4:)1/3(2)2/3(3V)2/3 5 (4:)1/3(4)1/3(3V)2/3 3} 3} 5 Ï 4 (4:)1/3(3V)2/3 5 Ï4 S1 3} The balloon with twice as much water has Ï4 , or about 1.59 times the surface area of the other balloon. 328 Algebra 2 Worked-Out Solution Key Chapter 6, continued n} 90. Sample answer: Ï xm n 5 3, m 5 5, x 5 21: n 5 4, m 5 5, x 5 21: 11. (x6y 4)1/8 1 2(x1/3y1/4)2 5 x3/4y1/2 1 2(x2/3y1/2) } (21) 5 21 Ï} 4} 4 , but 21 has no Ï(21)5 5 Ï21} 3 5 real 4th root; Ï{(21) {5 1 5 4 n 5 3, m 5 4, x 5 21: n 5 2, m 5 4, x 5 21: } (21)4 5 1 Ï3 } Ï(21)4 5 1 } } } 7Ï7 Ï75 3Ï7 1 4Ï 7 } 12. }} 5 } + } } } Ï75 Ï75 Ï75 3/2 7 + 7 + 75/2 71 1 3/2 1 5/2 75 5} 5 }5 5 1 5} 5 5 7 7 7 3 } Absolute value is needed when n is even and m is odd. 3 } 3 } } Ïx 2Ïx 4 2x2 2x2Ï x Ïx 2Ï x + Ïx 3 } 13. } 5 5 }6 } 5 } } } 5 } } + } 7 8x8 4x Ï82 + x14 + x 8x Ïx Ï x Ï64x15 5} } } } 5} 5} 91. A; 22 2 3 5} 5 24xy2Ï2x 5} 5 }8 slope 5 } 24 2 4 28 15. Three labels A, B, C, are added to the graph to indicate Choice A: 25x 1 8y 5 14 the three right triangles. 8y 5 5x 1 14 5 7 a2 1 b2 5 c2 (8 2 2)2 1 82 5 c2 62 1 82 5 c2 100 5 c2 10 5 c For right triangle B a2 1 b2 5 c2 42 1 82 5 c2 80 5 c2 } 4Ï 5 5 c 5 slope 5 }8 92. G; 25 a 26x 1 3 a 15 26x 1 3 a 15 6x a 8 26x a 12 4 x a }3 x q 22 4 22 a x a }3 } 1. 363/2 5 (Ï 36 )3 5 63 5 216 1 1 1 1 2. 6422/3 5 } 5} 5}5} } 642/3 (Ï3 64 )2 42 16 8 For right triangle C a2 1 b2 5 c 2 22 1 42 5 c 2 20 5 c 2 } 2Ï 5 5 c 1. f(x) 1 g(x) 5 22x 2/3 1 7x2/3 5 (22 1 7)x 2/3 5 5x2/3 2. f(x) 2 g(x) 5 22x2/3 2 7x2/3 5 (22 2 7)x2/3 5 29x2/3 5} 4. (232)2/5 5 (Ï 232 )2 5 (22)2 5 4 5. x4 5 20 3. The functions f and g each have the same domain: all real 6. x5 5 210 4} numbers. So, the domains of f 1 g and f 2 g also consist of all real numbers. 4. f(x) + g(x) 5 3x(x1/5) 5 3x(1 1 1/5) 5 3x6/5 5} x 5 6Ï 20 x 5 Ï 210 x ø 62.11 x ø 21.58 7. x6 1 5 5 26 3} f (x) 3x 5. } 5 } 5 3x(1 2 1/5) 5 3x4/5 g(x) x1/5 3} 6. The functions f and g each have the same domain: all real 8. (x 1 3)3 5 216 x6 5 21 x 1 3 5 Ï 216 x 5 6 Î21 6 } x 5 Ï 216 2 3 x ø 61.66 x ø 25.52 4} 9. Ï 32 + Ï 8 5 Ï 32 + 8 5 Ï 256 5 4 } 4 6.3 Guided Practice (pp. 429–431) 3. 2(6253/4) 5 2[(Ï 625 )3] 5 2(53) 5 2125 4} B 4 Lesson 6.3 4} 4} A The perimeter of the right triangle is } } } 10 1 4Ï 5 1 2Ï5 5 10 1 6Ï 5 . Quiz 6.1–6.2 (p. 427) 4} 2 C For right triangle A y 5 }8 x 1 }4 25 a 26x 1 3 5} 5 2xy2Ï 2x 2 6xy2Ï 2x 5 25 } 5 5 14. y 2Ï 64x6 2 6Ï 2x6y10 5 y2Ï 32 + 2x5x 2 6Ï 2x5xy10 Mixed Review for TAKS Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 x3/4y1/2 1 2x2/3y1/2 } 3} 10. (Ï 10 + Ï 10 )8 5 (101/2 + 101/3)8 5 F 10 G (1/2 1 1/3) 8 5 (105/6)8 numbers. So, the domain of f + g also consists of all real f numbers. Because g(0) 5 0, the domain of }g is restricted to all real numbers except x 5 0. 7. r(m) + s(m) 5 (1.446 3 109)m20.05 5 (1.446 3 109)(1.7 3 105)20.05 ø (1.446 3 109)(0.55) 20/3 5 10 3} 20 5 Ï 10 3} 5 Ï 1018 + 102 } 3 (106)3 + 102 5Ï 3} 5 106Ï 102 3} 5 1,000,000Ï 100 ø 791,855,335 The white rhino has about 791,855,335 heartbeats over its lifetime. 8. g( f (5)) 9. f ( g(5)) f(5) 5 3(5) 2 8 5 7 g(5) 5 2(5)2 5 50 g( f (5)) 5 g(7) f ( g(5)) 5 f (50) 5 2(7)2 5 3(50) 2 8 5 98 5 142 Algebra 2 Worked-Out Solution Key 329