Comments
Description
Transcript
Document 1804710
Chapter 3, continued Lesson 3.5 3. B; s 5 320t 2 2300, s 5 440t 2 3500 3.5 Guided Practice (pp. 188–190) 320t 2 2300 5 440t 2 3500 10 5 t The average annual salaries were equal in 1990 1 10, or the year 2000. 5 4. G; Let x 5 number of 4-seat tables. 5 Let y 5 number of 6-seat tables. x 1 y 5 20 3 24 24x 2 4y 5 280 4x 1 6y 5 90 4x 1 6y 5 90 5 11 8 26 1 25 23 1 4 22 28 G G 511 11 1 (25) 4 1 (22) 26 1 (28) 814 25 6 6 2 214 12 G F GF G F G F G F G F G F G 0 2 7 22 y55 GF 22 1 (23) 23 2 0 2 23 5 214 1 24 2 2 There are five 6-seat tables. 022 22 2 0 5 7 2 (23) 23 2 5 1 2 (214) 5. D; Let x 5 number of small chairs. 26 22 Let y 5 number of large chairs. 5 51x 1 70y a 2000 10 22 28 15 80x 1 110y q 2750 2000 Choice D: 51(24) 1 70(8)a 1784 a 2000 2750 80(24) 1 110(8)q 2 21 3. 24 27 22 2800 q 2750 4. 3 6s 1 8(5 2 s) 5 34 s53 The student spends three hours skating. 7. Let s 5 the price of a soda. Let p 5 the price of a pretzel. Let h 5 the price of a hot dog. Equation 1: s 1 p 1 2h 5 7 Equation 2: 2s 1 p 1 2h 5 8 Equation 3: s 1 4h 5 10 7 24(6) 4 12 24 5 F F 8 0 4 21 23 25 24(1) 24(0) 24(25) 28 224 28 5 Equation 1: 6s 1 8b 5 34 22s 5 26 0 25 24(22) Let b 5 the number of hours bicycling. b552s 1 5 24(27) 6. Let s 5 the number of hours skating. Equation 2: b 1 s 5 5 23 6 24(2) 24(21) 24(23) The store can buy and sell 24 small chairs and 8 large chairs. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 24 2. 2y 5 10 s 1 p 1 2h 5 F F F 22 1. 1200 5 120t 20 GF 1 22 22 0 6 G 3(4) 1 (22) 3(21) 1 (22) 3(23) 1 0 3(25) 1 6 GF 5 10 25 29 29 G F GF G F GF G 95 114 5. B 2 A 5 316 125 100 215 2 278 251 205 300 225 270 95 2 125 114 2 100 5 316 2 278 215 2 251 205 2 225 300 2 270 5 230 14 38 236 220 30 This matrix represents the change in the number of DVD racks sold from last month to this month. 22s 2 p 2 2h 5 28 Multiply Equation 2 by 21. 2s 5 21 s5 1 1 1 4h 5 10 h 5 2.25 The price of one hotdog is $2.25. Algebra 2 Worked-Out Solution Key 133 Chapter 3, (F GF F 23x 21 4 1 y 22 F 9 24 3 25 G) G G G 23x 1 9 25 21 y13 22(23x 1 9) 22(25) 22(21) 22(y 1 3) F 6x 2 18 10 2 22y 2 6 6x 2 18 5 12 5 5 5 5 F F F F 12 10 2 218 12 10 2 218 12 10 2 218 12 10 2 218 G G G G F GF G F GF G 7 23 9. 12 y5 526 24 2 6 11 2 5 4 2(21) 10. 2 F 6 11. 23 26 5. 10 28 5 23 5 2 12 5 1 (28) 2 1 10 21 1 (26) 813 G 5 2 3 23 2 (24) 5 2 1 7. F GF G F GF 0.1 4.4 6.2 0.7 5 1 14. } 2 2.4 20.6 1 6.1 3.1 8.1 21.9 1.2 1 2.4 5.3 1 (20.6) 0.1 1 6.1 4.4 1 3.1 6.2 1 8.1 0.7 1 (21.9) 5 3.6 6.2 4.7 7.5 14.3 21.2 0 15 26 212 221 9 G F F F 5 24(22) 11 24 1 } 2 24 1 }7 2 5.4 1.6 0 23 G 8.1 1.5(1.6) 1.5(0) 1.5(23) 23 5.1 2.4 0 24.5 G 8 12 22 20 21 0 G F G F G 10 28 2 1 2 1 2 1 2 } (8) } (12) } (20) 1 2 } (21) 1 2 } (0) 1 2 }(10) 1 2 }(2) 21 4 1 6 10 2}2 0 5 1 24 4 G 8 3.4 22 }(28) 5 24(23) 222 27 } (22) matrix to a 3 3 2 matrix. Algebra 2 Worked-Out Solution Key 23(23) 2 1.5(5.4) F 8. This operation is not possible. You cannot add a 3 3 3 134 23(4) 23(7) 1.5(22) 1.5(3.4) 5 2 3 1 matrix from a 2 3 2 matrix. 5.3 5 2 5 6. This operation is not possible. You cannot subtract a 1.2 23(25) } 12 } 13. 1.5 3 24 25 23(2) 23(0) 7 4 11 2 } 28 5 27 11 22 5 2}8 5 23 10 2 12 28 2 (23) 6 212 4 7 23 24 2}8 2 23 12 5 8 5 24(2) 13.1 . 5 2(4) 2(3) 2(26) F G F1 F G 5 21.2 3 6 210 22 2 0 25 12. 24 3. The final matrix has the wrong dimensions. 28 10 25 14 21 2 23 22 the dimensions and then compare the corresponding elements. If they are the same, then the matrices are equal. 1 5 3 26 5 2. To determine if two matrices are equal, first compare 22 5 GF G F G F GF G F G 21 are 3 3 4. 21 8 6 5 6 23 2 2 1. The dimensions of a matrix with 3 rows and 4 columns 5 2 22 729 Skill Practice 4. 2 5 3.5 Exercises (pp. 190–193) F G F GF GF F G F GF G F GF G 9 5 12 2 (22) The solution is x 5 5 and y 5 6. It should be 5 11 24 22y 2 6 5 218 x5 5 2 1 2 1 2 G Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6. 22 continued Chapter 3, F 15. 22.2 F F continued 6 3.1 4.5 21 0 2.5 5.5 21.8 6.4 22.2(6) G 22. D 2 2C 5 22.2(3.1) 22.2(4.5) 22.2(0) 22.2(2.5) 5 22.2(21) 22.2(5.5) 22.2(21.8) 22.2(6.4) 5 213.2 26.82 2.2 0 17. B 2 A 5 5 5 24 3 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 0 24 1 (212) 3 1 (26) 21 1 0 18 212 5 0 2 (21) 4(5) 2 18 29 2 3 0 26 }(18) 5 5 F F F 5 2 3 2 3 }(26) 25. 2 }3(0) 7.2 1 5 3.4 28.8 1.8 1 7.2 21.5 1 0 10.6 1 (25.4) 28.8 1 2.1 3.4 1 (21.9) 9 5 21.5 5.2 1.5 3.3 26.7 21. C 1 3D 5 13 0 1 3.3 3.6 3 226.6 19.7 28.7 3.3 F F 3.4 7.2 0 0 25.4 2.1 21.9 1.8 1 3(7.2) 3.3 21.5 1 3(0) 10.6 1 3(25.4) 28.8 1 3(2.1) 3.4 1 3(21.9) 3.3 2 2(0) G 1.8 21.5 10.6 3.4 28.8 7.2 0 25.4 2.1 21.9 3.3 0.5(1.8) 2 7.2 0 G 21 3x 5 24 10.7 GF G 21 218 5 5 2y G 0.5(0) 2 3.3 2y 5 24 x 5 26 y 5 22 6 22x F 1 28 G F 12 22x 1 2(5) 5 21 6 27 6 1 2(21) 1 1 2(27) 28 1 2(6) F G G 3x 5 218 F G 0.5(21.5) 2 0 0.5(10.6) 2 (25.4) 3.6 23.3 26.5 4 GF GF GF 5 5 5 213 4 y54 29 4 213 y 29 4 213 y 29 4 213 y G G G 19 x5} 2 19 The solution is x 5 } and y 5 4. 2 26. 2 F F GF 8 2x 5 2 6 2(8) 2 3 2(5) 2 10 3 29 10 24y 2(2x) 2 (29) F 22x 1 9 5 4 5 x 5 }2 GF G GF G GF G 5 5 2(6) 2 (24y) 13 22x 1 9 1.8 21.5 10.6 28.8 G 0 2 2(21.5) 25.4 2 2(10.6) 22x 1 10 5 29 0 25.4 3.3 0 G 2.1 2 2(28.8) 21.9 2 2(3.4) 0 2.1 21.9 3.4 22x 1 10 1.8 21.5 10.6 20. C 1 D 5 1.8 21.5 10.6 28.8 0 24 3.3 The solution is x 5 26 and y 5 22. 12 28 5 2.1 21.9 26.3 20.75 24. 18 24 }(212) 25.4 0.5(28.8) 2 2.1 0.5(3.4) 2 (21.9) 2 24 4(21) 2 0 18 212 5 0 26 4(24) 2 (212) 4(3) 2 (26) 1 18 212 2 3 21 21 13 28 0 7.2 2 2(1.8) 2 3 21 18 2 5 212 2 (24) 5 24 23 F 7.2 23. 0.5C 2 D 5 0.5 23 216 5 5 24 2 0 26 18 212 26 26 2 3 2 2 19. } B 5 } 3 3 5 1 5 1 18 18. 4A 2 B 5 4 5 GF G F F 5 G GF G GF G GF G F GF G F GF G F GF G F G F G F G F G F G F G F G F G F G 5 F F F F 25.5 3.96 214.08 212.1 16. A 1 B 5 5 29.9 G 22 F 0 12 1 4y 13 0 16 13 4 0 16 13 5 4 4 0 16 12 1 4y 5 16 y51 5 The solution is x 5 }2 and y 5 1. 0 1 3(3.3) 23.4 21.5 25.6 22.5 22.3 9.9 Algebra 2 Worked-Out Solution Key 135 Chapter 3, F GF F GF F GF 21 2 4x 5 3 6 4x(21) 4x(2) 8 216 12x 5 24x 3y 224 8x 24x 3y 224 5 4x(3) 4x(6) 8 216 8 216 3y 224 G G G d. 3X 2 F 3y 5 24x x 5 22 3y 5 24(22) 3b 2 (26) 3c 2 2 3d 2 1 y 5 20.25 X5 Problem Solving 30. a. 5 F G F G F GF G F GF G 23 2 4 23 a 1 (25) d 1 (23) 5 7 28 5 5 23 b10 c14 2 5 2 0 25 X1 7 28 5 5 5 23 a 5 12, b 5 28, c 5 27, and d 5 8. G F GF G F GF G X5 b. F X2 3 5 0 a22 b23 c25 d20 5 5 8 30 19 16 20 14 29 39 36 31 32 42 29 20 12 17 25 16 28 40 32 21 30 2 29 19 2 20 5 2 12 16 2 17 20 2 25 14 2 16 29 2 28 39 2 40 36 2 32 31 2 21 0 5 1 21 27 21 25 22 1 21 F 4 Mid-size 6 Mini-van Suv 6 21 3 c. 4 3 23 1 2X 1 4 7 5 2a 1 (23) 2b 1 1 2c 1 4 2d 1 7 8 29 32 40 24 34 18 25 0 22 8 29 5 0 10 X5 F 10 4 23 G 34.56 18 25 19 22 5 Downtown Mall b. M 1 J 5 5 5 F F F F B 31 42 18 22 25 11 31 42 18 25 11 19.44 C GF GF 1 A B 25 36 12 38 32 15 32 15 18 1 12 22 1 38 25 1 32 11 1 15 78 30 57 26 G G G 36 12 38 42 1 36 56 C 25 31 1 25 60 27 June (J ) A 22 43.2 25.92 36.72 20.52 23.76 May(M) a 5 211, b 5 10, c 5 4, and d 5 23. 211 40 24 34 After an 8% increase: 1.08 10 G F GF G 19 33. a. G Highway mpg 32 F G F GF G F GF G X5 9 G 10 a 5 10, b 5 9, c 5 4, and d 5 3. 10 G G 32 2 32 47 2 42 Economy 21 3 8 47 5 City mpg 8 2 32 32. 12 28 27 F F F F 31. Change in sales 5 Sales for 2004 2 Sales for 2003 5 10.1 ,B5 F G 2}3 3 17 29. Sample answer: 25 4 2 219 2} 1 3 5 9.6 1 0.50 A5 213 15 5 G G 17 2 3x 2 2y 5 3(3.2) 2 2(20.25) 10 3 2 219 a 5 2}3, b 5 3, c 5 2} , and d 5 1. 3 The solution is x 5 22 and y 5 216. x 5 3.2 1 2 213 15 5 3a 2 11 y 5 216 3y 5 20.75 GF GF 11 26 2 24x 5 8 28. C; 2x 5 6.4 F G This matrix represents the total sales for May and June. 136 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 27. continued Chapter 3, continued F 1 56 1 c. }(M 1 J) 5 } 2 60 2 78 30 57 26 GF 5 28 39 15 30 28.5 13 G 7. 2x 2 y 2 3z 5 2x 2 3y 5 10 l x 5 210 2 3y 34. No, the matrix A 1 B does not give meaningful 2(210 2 3y) 2 y 2 3z 5 5 information. The team size in each matrix is an average, but the sum of the two averages is not an average. 35. A 5 3A 5 F F 1 1 5 5 1 4 1 4 3 3 15 3 12 G 15 3 12 5 x 1 2y 2 5z 5 211 27y 2 3z 5 25 (210 2 3y) 1 2y 2 5z 5 211 y 2y 2 5z 5 21 27y 2 3z 5 25 G 2y 2 5z 5 21 27y 2 3z 5 25 7y 1 35z 5 7 3 (27) 2 32z 5 32 2 x The height of the large rectangle is three times the height of the small rectangle, and the width of the large rectangle is three times the width of the small rectangle. Therefore, the large rectangle is nine times the size of the small rectangle. z5 1 27y 2 3(1) 5 25 l y 5 24 x 1 2(24) 2 5(1) 5 211 l x 5 2 The solution is (2, 24, 1). 8. Mixed Review for TAKS x 1 y 1 z 5 23 22x 2 2y 2 2z 5 6 3 (22) 4x 2 5y 1 2z 5 16 4x 2 5y 1 2z 5 16 2x 2 7y 36. C; 42 students chose only running as their favorite activity. 2x 2 3y 1 z 5 9 37. F; 4x 2 5y 1 2z 5 16 y 5 22 4x 2 5y 1 2z 5 16 When the y-intercept is decreased, the line shifts to the left, so the x-intercept also decreases. 2x 2 7(22) Quiz 3.3–3.5 (p. 193) 1. 5 22 24x 1 6y 2 2z 5 218 3 (22) 5 22 l x 5 4 4 1 (22) 1 z 5 23 l z 5 25 2. y The solution is (4, 22, 25). y 9. 2x 2 4y 1 3z 5 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22x 1 5y 2 2z 5 2 y1 z53 1 4. y 2 1 x y 22x 1 5y 2 2z 5 2 y1 z5 3 x 21 6x 1 2y 1 10z 5 19 6x 1 2y 1 10z 5 19 1 x 22 3. 1 x 26x 1 15y 2 6z 5 6 33 17y 1 4z 5 25 24y 2 4z 5 212 3 (24) 17y 1 4z 5 17y 1 4z 5 25 13y 1 25 5 13 y5 1 11z53lz52 1 5. 2x 2 4(1) 1 3(2) 5 1 l x 5 2}2 6. y y The solution is 1 2}2, 1, 2 2. 1 8 10. A 1 B 5 1 21 22 x x 5 F GF G F GF G F G F G F GF G 11. B 2 2A 5 5 2 25 1 3 21 3 24 8 10 2 1 (24) 25 1 3 318 21 1 10 24 3 8 10 24 2 2(2) 22 5 22 22 11 9 2 25 3 21 3 2 2(25) 8 2 2(3) 10 2 2(21) 5 28 13 2 12 Algebra 2 Worked-Out Solution Key 137 Chapter 3, continued matrix to a 2 3 3 matrix. 2 13. } C 5 3 5 F F 2 } (26) 3 2 } (22) 3 2 2 3 }3(1) 2 3 }(24) 4 24 2}3 2 3 2}3 }(21) 6 8 } 2 } (9) 3 2 2}3 G G 3. AB 5 5 5 F F F 1 22 1(5) 1 (22)(22) g 5 21 7 2 23 0 4 1 21 2 5 23 0 1.4e 1 1.1r 1 1.3g 5 25 25 2e 1 2r 1 2g 5 42 22e 1 r 2 2g 5 0 20.3(14) 2 0.1g 5 24.4 l g 5 2 25 213 5. AB 2 AC 5 2 e 1 14 1 2 5 21 l e 5 5 You should buy 5 pounds of Empire, 14 pounds of Red Delicious, and 2 pounds of Golden Delicious apples. 2. 3. F F F 8 8 G 32.24 17.68 23.12 22.08 14.56 28.32 G 26 11 25 21 11 7 18 20 28 5. Hardcover Paperback F 7 23 4. F G G R M S C 44 36 38 21 76 44 22 50 12 3.6 Guided Practice (pp. 195–198) 1. AB is defined and has dimensions 5 3 2. 2. AB is not defined because the number of columns in A does not equal the number of rows in B. 5 1 0 G 21 2 23 0 4 1 21 2 23 0 4 1 4(23) 1 1(21) G F G) G F G) 3 22 21 24 5 1 0 23(2) 1 0(21) 14(2) 1 1(21) 21(24) 1 2(1) 21(5) 1 2(0) 2 23(24) 1 0(1) 23(5) 1 0(0) 5 27 24 29 26 10 7 GF G G G 213 1 5 221 9 1 1 6. 2}(AB) 5 2} 2 2 5 F 4(5) 1 1(0) 6 G G 25 12 215 2 20 215 25 213 27 24 29 26 10 7 1 2}2 (27) 1 2}2 (29) 1 2}2 (10) G 2 4(3) 1 1(22) 38 239 211 24 23(23) 1 0(21) 4(24) 1 1(1) G 2 21(2) 1 2(21) 22 225 Algebra 2 Worked-Out Solution Key 22 21 G F G) G 21(3) 1 2(22) Lesson 3.6 138 2 5 23(3) 1 0(22) Graphing Calculator Activity 3.5 (p. 194) 1. 9 5 221 22e 1 r 2 2g 5 0 3r 5 42 r 5 14 19 25 3 4(7) 1 1(23) 213 1 20.3r 2 0.1g 5 24.4 32 G (F GF 5 23(7) 1 0(23) 21.4e 2 1.4r 2 1.4g 5 229.4 e 1 r 1 g 5 21 F F F F (F (F F F F F F 9 21 3 (21.4) 1.4e 1 1.1r 1 1.3g 5 G 212 221 G 23 21 4 1 21(7) 1 2(23) 21(23) 1 2(21) Equation 3: r 5 2(g 1 e), or 22e 1 r 2 2g 5 0 r1 23 22 1(1) 1 (22)(23) Equation 2: 1.4e 1 1.1r 1 1.3g 5 25 e1 G 5 23(5) 1 3(22) r 5 pounds of Red Delicious apples g 5 pounds of Golden Delicious apples Equation 1: e 1 r 1 g 5 21 1 23(1) 1 3(23) 4. A(B 2 C) 5 14. e 5 pounds of Empire apples GF 3 23 1 2}2 (24) 1 2}2 (26) 1 2}2 (7) GF G 5 } 7 2 2 9 2 3 } 7 25 2}2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 12. The sum 3A 1 C is not possible. You cannot add a 2 3 2