Comments
Description
Transcript
Document 1803826
Chapter 3, continued 3. 3x 2 6y 5 9 l x 5 2y 1 3 7. Let x 5 days in San Antonio. 24x 1 7y 5 216 Let y 5 say in Dallas. When x 5 2y 1 3: x1y57 24x 1 7y 5 216 275x 1 400y 5 2300 Using a graphing calculator, the solution is (4, 3). You should spend 4 days in San Antonio and 3 days in Dallas. 24(2y 1 3) 1 7y 5 216 28y 2 12 1 7y 5 216 2y 5 24 8. Let x 5 number of adult tickets sold. y54 Let y 5 number of child tickets sold. When y 5 4: x 1 y 5 800 3x 2 6y 5 9 7x 1 5y 5 4600 Using a graphing calculator, the solution is (300, 500). The movie theater admitted 300 adults and 500 children that day. 3x 5 33 x 5 11 The solution is (11, 4). Lesson 3.2 Check: 3x 2 6y 5 9 3(11) 2 6(4) 0 9 3.2 Guided Practice (pp. 161–163) 24x 1 7y 5 216 24(11) 1 7(4) 0 216 244 1 28 0 216 33 2 24 0 9 1. 4x 1 3y 5 22 9 5 9 x 1 5y 5 29 l x 5 29 2 5y 236 2 20y 1 3y 5 22 217y 5 34 Short Long Short Long Total Sleeve Sleeve Sleeve Sleeve 5 revenue Selling + Shirts 1 Selling + Shirts ($) Price Price (shirts) (shirts) ($/shirt) ($/shirt) 11 + x 1 16 + y 5 8335 y 5 22 When y 5 22: x 5 29 2 5y x 5 29 2 5(22) x 5 29 1 10 x51 The solution is (1, 22). Check: 4x 1 3y 5 22 4(1) 1 3(22) 0 22 x 1 5y 5 29 1 1 5(22) 0 29 4 2 6 0 22 1 2 10 0 29 2. 3x 1 3y 5 215 5x 2 9y 5 3 33 29 5 29 9x 1 9y 5 245 5x 2 9y 5 3 14x 5 242 x 5 23 When x 5 23: 38 288x 2 110y 5 261,820 88x 1 128y 5 18y 5 y5 4860 270 8x 1 10y 5 5620 8x 1 10(270) 5 5620 8x 5 2920 x 5 365 The school sold 365 short sleeve T-shirts and 270 long sleeve T-shirts. 12x 2 3(4x 1 3) 5 29 5x 2 9y 5 3 12x 2 12x 2 9 5 29 5(23) 2 9(22) 0 3 215 1 18 0 3 29 5 29 353 66,680 When y 5 270: 12x 2 3y 5 29 y 5 22 The solution is (23, 22). Algebra 2 Worked-Out Solution Key 11x 1 16y 5 8335 When y 5 4x 1 3: 29 1 3y 5 215 215 5 215 3 211 24x 1 y 5 3 l y 5 4x 1 3 3(23) 1 3y 5 215 29 2 6 0 215 8x 1 10y 5 5620 5. 12x 2 3y 5 29 3x 1 3y 5 215 Check: 3x 1 3y 5 215 3(23) 1 3(22) 0 215 216 5 216 There are infinitely many solutions. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4x 1 3y 5 22 4(29 2 5y) 1 3y 5 22 22 5 22 4. Short Long Long Short Total Sleeve Sleeve Sleeve + Sleeve 5 Cost + 1 Shirts Shirts Cost Cost ($) (shirts) (shirts) ($/shirt) ($/shirt) 8 + x 1 10 + y 5 5620 When x 5 29 2 5y: 108 3x 2 6(4) 5 9 Chapter 3, continued 6. 6x 1 15y 5 212 6x 1 15y 5 212 22x 2 5y 5 9 33 26x 2 15y 5 227 0 Þ 239 There is no solution. 7. 5x 1 3y 5 20 3 2x 2 }5 y 5 24 5x 1 3y 5 35 20 3.2 Exercises (pp. 164 –167) Skill Practice 1. To solve a linear system where one of the coefficients is 1 or 21, it is usually easiest to use the substitution method. 2. Multiply one (or both) of the equations by a constant to obtain coefficients that differ only in sign for one of the variables. Add the revised equations together and solve for the remaining variable. Substitute this value into either of the original equations and solve for the other variable. 25x 2 3y 5 220 05 0 There are infinitely many solutions. 8. 12x 2 2y 5 21 12x 2 2y 5 21 3x 1 12y 5 24 3 (24) 3. 2x 1 5y 5 7 x 1 4y 5 2 l x 5 2 2 4y 212x 2 48y 5 16 When x 5 2 2 4y: 250y 5 37 2x 1 5y 5 7 37 y 5 2} 50 37 x 5 2 2 4(21) 4 2 8y 1 5y 5 7 y 5 21 37 12x 2 2(2} ) 5 21 50 The solution is (6,21). 37 12x 1 } 5 21 25 4. 488 12x 5} 25 When y 5 23x 1 16: 122 ,2 } . The solution is 1 } 50 2 75 37 122 35 3 (28) 40x 1 45y 5 3x 1 y 5 16 2x 1 9x 2 48 5 24 3(4) 1 y 5 16 x54 75 240x 1 16y 5 2136 When x 5 4: 2x 2 3(23x 1 16) 5 24 11x 5 44 61y 5 261 12 1 y 5 16 y54 The solution is (4, 4). 5. 6x 2 2y 5 5 23x 1 y 5 7 l y 5 3x 1 7 y 5 21 When y 5 3x 1 7: When y 5 21: 6x 2 2(3x 1 7) 5 5 8x 1 9y 5 15 6x 2 6x 2 14 5 5 8x 1 9(21) 5 15 214 Þ 5 8x 2 9 5 15 There is no solution. x53 6. The solution is (3, 21). 10. 5x 1 5y 5 5 5x 1 3y 5 4.2 3x 1 y 5 16 l y 5 23x 1 16 2x 2 3y 5 24 x5} 75 9. 8x 1 9y 5 15 x56 23y 5 3 12x 2 2y 5 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 5 2 2 4y 2(2 2 4y) 1 5y 5 7 When y 5 2 } : 50 5x 2 2y 5 17 When y 5 21: 3x 1 2y 5 212 5x 1 5y 5 3 (21) 5 25x 2 3y 5 24.2 2y 5 0.8 y 5 0.4 When y 5 0.4: 5x 1 5y 5 5 5x 1 5(0.4) 5 5 5x 1 2 5 5 x 1 4y 5 1 l x 5 1 2 4y 3 When x 5 1 2 4y: When y 5 }2: 3(1 2 4y) 1 2y 5 212 x 1 41 }2 2 5 1 3 2 12y 1 2y 5 212 x1651 210y 5 215 3 x 5 25 3 y 5 }2 The solution is 1 25, }2 2. 3 x 5 0.6 The solution is (0.6, 0.4). Algebra 2 Worked-Out Solution Key 109 7. continued 3x 2 y 5 2 l y 5 3x 2 2 12. 6x 1 3y 5 14 2x 2 y 5 1 l y 5 21 1 2x 8x 1 4y 5 6 4 5 When y 5 3x 2 2: When x 5 }3: When y 5 21 1 2x: When x 5 }8 : 6x 1 3(3x 2 2) 5 14 3 1 }3 2 2 y 5 2 8x 1 4(21 1 2x) 5 6 2 1 }8 2 2 y 5 1 6x 1 9x 2 6 5 14 42y52 8x 2 4 1 8x 5 6 }2y51 15x 5 20 y52 4 5 4 y 5 }4 5 x 5 }8 2 4 The solution is }3, 2 . 5 1 The solution is 1 }8 , }4 2. 8. 3x 2 4y 5 25 2x 1 3y 5 25 l x 5 5 1 3y 13. 3x 1 7y 5 13 When x 5 5 1 3y: When y 5 24: 3(5 1 3y) 2 4y 5 25 2x 1 3(24) 5 25 15 1 9y 2 4y 5 25 2x 2 12 5 25 5y 5 220 x 1 3y 5 2 7 l x 5 27 2 3y When x 5 27 2 3y: When y 5 217: 3(27 2 3y) 1 7y 5 13 x 1 3(217) 5 27 221 2 9y 1 7y 5 13 x 2 51 5 27 22y 5 34 x 5 44 y 5 217 The solution is (44, 217). x 5 27 y 5 24 The solution is (27, 24). 9. 3x 1 2y 5 6 14. 2x 1 5y 5 10 x 2 4y 5 212 l x 5 4y 2 12 When x 5 4y 2 12: When y 5 3: 3(4y 2 12) 1 2y 5 6 x 2 4(3) 5 212 12y 2 36 1 2y 5 6 x 2 12 5 212 14y 5 42 23x 1 y 5 36 l y 5 3x 1 36 When y 5 3x 1 36: When x 5 210: 2x 1 5(3x 1 36) 5 10 23(210) 1 y 5 36 2x 1 15x 1 180 5 10 30 1 y 5 36 17x 5 2170 y56 x 5 210 The solution is (210, 6). x50 y53 The solution is (0, 3). 10. 6x 2 3y 5 15 15. 2x 1 6y 5 17 22x 1 y 5 25 l y 5 2x 2 5 2x 1 6y 5 17 3 (21) 2x 2 10y 5 9 When y 5 2x 2 5: 22x 1 10y 5 29 16y 5 8 6x 2 3(2x 2 5) 5 15 1 When y 5 }2 : 6x 2 6x 1 15 5 15 15 5 15 1 y 5 }2 2x 1 6 1 }2 2 5 17 1 There are infinitely many solutions. 2x 1 3 5 17 11. 3x 1 y 5 21 l y 5 23x21 x57 2x 1 3y 5 18 When y 5 23x 2 1: When x 5 23: 2x 1 3(23x 2 1) 5 18 3(23) 1 y 5 21 2x 2 9x 2 3 5 18 27x 5 21 y58 The solution is 1 7, }2 2 . 1 16. 4x 2 2y 5 216 23x 1 4y 5 32 12 x 5 23 The solution is (23, 8). When x 5 24: 216 2 2y 5 216 y50 The solution is (24, 0). Algebra 2 Worked-Out Solution Key 8x 2 4y 5 232 23x 1 4y 5 5x 4(24) 2 2y 5 216 110 1 16x 5 10 4 x 5 }3 1 5 12 5 220 x 5 24 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Chapter 3, Chapter 3, continued 3 (22) 17. 3x 2 4y 5 210 26x 1 8y 5 20 6x 1 3y 5 242 6x 1 3y 5 242 22. 7x 1 2y 5 11 3 (23) 22x 1 3y 5 29 32 11y 5 222 When y 5 22: y 5 22 221x 2 6y 5 233 24x 1 6y 5 225x When x 5 21: x 3x 2 4(22) 5 210 7(21) 1 2y 5 11 3x 1 8 5 210 27 1 2y 5 11 The solution is (26, 22). 3 (22) 18. 4x 2 3y 5 10 8x 2 6y 5 20 5 21 The solution is (21, 9). 28x 1 6y 5 220 8x 2 6y 5 20 05 0 There are infinitely many solutions. 32 19. 5x 2 3y 5 23 10x 2 6y 5 26 12x 1 26x 2 8y 5 236 6x 1 8y 5 6x 1 8y 5 18 0 x 5 2}2 51 2}2 2 2 3y 5 23 1 3 (23) 24. 2x 1 5y 5 13 26x 2 15y 5 239 6x 1 2y 5 213 6x 1 2y 5 213 213y 5 252 When y 5 4: y54 2x 1 5(4) 5 13 2x 1 20 5 13 7 x 5 2}2 5 2}2 2 3y 5 23 7 The solution is 1 2}2 , 4 2. 1 23y 5 2}2 1 y 5 }6 The solution is 1 2 }2 , }6 2. 25. 4x 2 5y 5 13 3 (23) 6x 1 2y 5 48 32 212x 1 15y 5 239 12x 1 4y 5 96 19y 5 57 1 1 When y 5 3: 20. 10x 2 2y 5 16 3 (22) 5x 1 3y 5 212 18 0 Þ 218 5 26 1 When x 5 2}2 : 3 (22) 23. 3x 1 4y 5 18 There is no solution. 2x 1 6y 5 2x 1 6y 5 0 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 25 y59 x 5 26 When y 5 25: y53 10x 2 2y 5 16 4x 2 5(3) 5 13 210x 2 6y 5 24 4x 2 15 5 13 x57 28y 5 40 y 5 25 The solution is (7, 3). 10x 2 2(25) 5 16 26. 6x 2 4y 5 14 10x 1 10 5 16 2x 1 8y 5 21 32 12x 2 8y 5 28 2x 1 8y 5 21 3 14x x 5 }5 7 When x 5 }2: 2 1 3 The solution is }5 , 25 . 21. 2x 1 5y 5 14 58 5 26x 2 15y 5 242 32 6x 2 4y 5 272 219y 5 2114 When y 5 6: 2x 1 5(6) 5 14 7 x 5 }2 7 3 (23) 3x 2 2y 5 236 5 49 y56 6 1 }2 2 2 4y 5 14 21 2 4y 5 14 7 y 5 }4 7 7 The solution is 1 }2 , }4 2. 2x 1 30 5 14 x 5 28 The solution is (28, 6). Algebra 2 Worked-Out Solution Key 111 Chapter 3, continued 27. The error was made when multiplying the first 33. equation by the constant 22. Not every term was multiplied by 22. 3 (22) 3x 1 2y 5 7 26x 2 4y 5 214 5x 1 4y 5 5x 1 4y 5 15 2x 5 When y 5 0: 3(28 2 2y) 2 4y 5 224 x 5 28 2 2(0) x 5 28 210y 5 0 y50 1 The solution is (28, 0). 28. 3x 1 2y 5 11 4x 1 y 5 22 l y 5 24x 2 2 34. 2x 1 3y 5 26 When y 5 24x 2 2: When x 5 23: 3x 1 2(24x 2 2) 5 11 y 5 24(23) 2 2 When y = 24: 4x 2 6y 5 16 24x 1 5y 5 210 2y 5 When y 5 26: The solution is (3, 24). 35. 6 y 5 26 2x 1 18 5 8 x 5 25 When y 5 23x 1 15: When x 5 7: 2x 1 2(23x 1 15) 5 219 2x 2 6x 1 30 5 219 27x 5 249 y 5 23(7) 1 15 y 5 26 x57 The solution is (25, 26). The solution is (7, 26). 3 (22) 26x 2 14y 5 2 33 6x 1 9y 5 18 2x 1 3y 5 6 3x 1 y 5 15 ly 5 23x 1 15 2x 1 2y 5 219 2x 2 3(26) 5 8 30. 3x 1 7y 5 21 y 5 24 2x 1 3(24) 5 26 2x 2 12 5 26 x53 x 5 23 24x 1 5y 5 210 6x 2 8y 5 50 217y 5 68 y 5 10 The solution is (23, 10). 32 26x 2 9y 5 18 32 3x 2 4y 5 25 25x 5 15 2x 2 3y 5 8 3 (23) 36. 32 4x 2 3y 5 8 8x 2 6y 5 16 28x 1 6y 5 16 28x 1 6y 5 16 25y 5 20 When y 5 24: 3x 1 7(24) 5 21 There is no solution. 37. 3x 2 28 5 21 4x 2 y 5 210 l y 5 4x 1 10 6x 1 2y 5 21 x59 The solution is (9, 24). 31. 4x 2 10y 5 18 22x 1 5y 5 29 0 Þ 32 y 5 24 32 4x 2 10y 5 18 24x 1 10y 5 218 05 0 When x 5 2}2 : 6x 1 2(4x 1 10) 5 21 y 5 41 2}2 21 10 6x 1 8x 1 20 5 21 3 The solution is 1 2}2 , 4 2. 3 When y 5 3x 1 2: When x 5 1: 5x 1 2(3x 1 2) 5 15 y 5 3(1) 1 2 5x 1 6x 1 4 5 15 y55 38. 7x 1 5y 5 212 34 28x 1 20y 5 248 3x 2 4y 5 1 35 15x 2 20y 5 11x 5 11 x51 The solution is (1, 5). When x 5 21: 7(21) 1 5y 5 212 5y 5 25 y 5 21 The solution is (21,21). 112 y54 x 5 2}2 3x 2 y 5 22 l y 5 3x 1 2 5x 1 2y 5 15 3 14x 5 221 There are infinitely many solutions. 32. 3 When y 5 4x 1 10: Algebra 2 Worked-Out Solution Key 5 43x 5 243 x 5 21 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3x 2 8x 2 4 5 11 29. When x 5 2822y: 224 2 6y 2 4y 5 224 15 5 21 x x 1 2y 5 28 l x 5 28 2 2y 3x 2 4y 5 224 Chapter 3, 39. continued 2x 1 y 5 21 l y 5 22x 2 1 24x 1 6y 5 6 42. Let (x1, y1) 5 (6, 1) and (x2, y2) 5 (3, 7). 721 m5} 5 22 326 When y 5 22x 2 1: 3 When x 5 2}4: 24x 1 6(22x 2 1) 5 6 3 y 5 22 2}4 2 1 1 2 y 5 }2 y 5 22x 1 13 Let (x1, y1) 5 (1, 6) and (x2, y2) 5 (7, 4). 216x 5 12 426 3 y 2 y1 5 m(x 2 x1) The solution is 1 2}4, }2 2. 3 1 3 (22) 6x 2 3y 5 227 1 26x 2 4y 5 28 6x 2 3y 5 227 27y 5 235 When y 5 5: y5 5 y 2 6 5 2}3 (x 2 1) 1 1 1 19 y 2 6 5 2}3 x 1 }3 y 5 2}3 x 1 } 3 System of equations: 3x 1 2(5) 5 4 3x 5 26 y 5 22x 1 13 x 5 22 y 5 2}3 x 1 } 3 41. Let (x1, y1) 5 (1, 4) and (x2, y2) 5 (5, 0). When y 5 22x 1 13: 19 1 5 20 y 2 4 5 21(x 2 1) x54 y 5 2x 1 5 The diagonals of the quadrilateral intersect at (4, 5). Let (x1, y1) 5 (0, 2) and (x2, y2) 5 (4, 4). 1 2 43. Let (x1, y1) 5 (7, 0) and (x2, y2) 5 (1, 3). 320 1 m 5 }5 } m5} 5 2}2 127 y 2 y1 5 m(x 2 x1) y 2 y1 5 m(x 2 x1) 1 y 2 2 5 }2 (x 2 0) 1 y 2 0 5 2}2 (x 2 7) 1 y 5 2}2 x 1 }2 System of equations: Let (x1, y1) 5 (1, 21) and (x2, y2) 5 (5, 5). y 5 2x 1 5 511 3 2 3 5 }x 3 m5} 5 }2 521 1 y 5 }2 x 1 2 1 2 7 1 y 5 }2 x 1 2 2x 1 5 5 } x 1 2 y 5 22(4) 1 13 y55 2}3 x 5 2} 3 y 2 y1 5 m(x, 2 x1) When y 5 2x 1 5: When x 5 4: 22x 1 13 5 2}3 x 1 } 3 024 m5} 5 21 521 422 420 19 1 The solution is (22, 5). Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 m5} 5 2}3 721 x 5 2}4 40. B; 3x 1 2y 5 4 y 2 1 5 22(x2 6) y 2 1 5 22x 1 12 1 24x 2 12x 2 6 5 6 y 2 y1 5 m(x 2 x1) When x 5 2: y 5 2(2) 1 5 y53 25x The diagonals of the quadrilateral intersect at (2, 3). y 2 y1 5 m(x 2 x1) 3 y 1 1 5 }2 (x 2 1) 3 5 y 5 }2 x 2 }2 System of equations: 7 1 y 5 2}2 x 1 }2 3 5 y 5 }2 x 2 }2 Algebra 2 Worked-Out Solution Key 113 Chapter 3, 7 3 5 When y 5 2}2 x 1 }2 : 7 1 5 2 1 47. } x 1 } y 5 } 3 6 2 7 3 5 }x 1 }y 5 } 12 4 12 When x 5 3: 7 1 y 5 2}2 (3) 1 }2 5 }2 x 2 }2 2}2 x 1} 2 3 y 5 2}2 1 }2 35x y52 0.03x 1 0.04y 5 1.04 6x 1 8y 5 208 23y 5 322 When y 5 14: 1 2 y 5 14 4 3 5 6 The solution is (21, 2). y21 x13 48. } 1 } 5 1 3 4 1 2 3(x 1 3) 1 4(2x 2 13) 5 12 The solution is (16, 14). 45. 0.05x 2 0.03y 5 0.21 3 200 10x 2 6y 5 42 0.07x 1 0.02y 5 0.16 3 300 21x 1 6y 5 48 31x 90 5 90 90 : When x 5 } 31 x5} 31 2 6y 5 42 10 1 } 31 2 90 y 5 22 3x 1 9 1 8x 2 52 5 12 11x 5 55 x55 The solution is (5, 22). y12 x21 49. } 1 } 5 4 3 2 x 2 2y 5 5 l x 5 2y 1 5 900 31 1 y12 2y 1 5 2 1 2 1} 54+6 6 } 3 2 402 26y 5 } 31 3(2y 1 4) 1 2(y 1 2) 5 24 67 y 5 2} 31 6y 1 12 1 2y 1 4 5 24 8y 5 8 ,2} . The solution is 1 } 31 31 2 67 y51 2 46. } x 1 3y 5 234 3 When y 5 1: x 5 2(1) 1 5 1 1 x 2 }2 y 5 21 lx 5 }2 y 2 1 1 When x 5 }2 y 2 1: x57 When y 5 210: 2 1 x 5 }2 (210) 2 1 2 3 x 5 26 } } y 2 1 1 3y 5 234 } y 2 } 1 3y 5 234 100 10 } y 5 2} 3 3 The solution is (7, 1). 50. Sample answer: Two lines intersect at (21, 4). Choose another point in the plane to create one line. Then choose a point not on that line to create a different line. y B A (0, 5) (21, 4) y 5 210 The solution is (26,210). 1 (0, 1) 1 Algebra 2 Worked-Out Solution Key y 5 2(5) 2 12 When x 5 2y 1 5: } 2 6y 5 42 114 When x 5 5: (2x 2 12) 2 1 x13 1 }} 5 1 + 12 12 } 3 4 x 5 16 1 3 2 When y 5 2x 2 12: 0.02x 5 0.32 1 y5 2x 2 y 5 12 l y 5 2x 2 12 0.02x 2 0.7 5 20.38 2 1 3 2 27 x 5 21 0.02x 2 0.05(14) 5 20.38 90 15x 1 21y 5 }x 1 } 5 } 26x 1 15y 5 114 3 200 3 36 5 2 1 } x 1 } (2) 5 } 3 6 2 The diagonals of the quadrilateral intersect at (3, 2). 44. 0.02x 2 0.05y 5 20.38 3 (2300) 215x 2 20y 5 225 When y 5 2: 7 6 5 2x 3 (230) x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 continued Chapter 3, continued Line A: (x1, y1) 5 (0, 1), (x2, y2) 5 (21, 4) 53. 2xy 1 y 5 44 421 21 2 0 22xy 2 6y 5 264 y 2 1 5 23(x 2 0) 25y 5 220 y 5 23x 1 1 When y 5 4: 425 m5} 51 21 2 0 2x(4) 1 4 5 44 8x 5 40 y 2 y1 5 m(x 2 x1) x55 y 2 5 5 1(x 2 0) The solution is (5, 4). y5x15 54. 23x 2 5y 5 9 System of equations: rx 1 sy 5 t y 5 23x 1 1 a. The system will have no solution if the equations y5x15 represent different lines with the same slope. Sample answer: r 5 23, s 5 25, and t Þ 9. Use substitution to check: When y 5 x 1 5: When x 5 21: x 1 5 5 23x 1 1 y 5 23(21) 1 1 4x 5 24 y54 x 5 21 b. The system will have infinitely many solutions if the equations represent the same line. Sample answer: r 5 23a, s 5 25a, and t 5 9a, where a is any real number. c. The system will have a solution of (2,23) for any The lines intersect at (21, 4). values or r, s, and t that satisfy the equation 2r 2 3s 5 t. Sample answer: r 5 1, s 5 1, and t 5 21. 7y 1 18xy 5 30 13y 2 18xy 5 90 5 120 Problem Solving y56 55. Let x 5 acoustic guitars and y 5 electric guitars. When y 5 6: Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 4 y5 Line B: (x1, y1) 5 (0, 5), (x2, y2) 5 (21, 4) 20y 64 2 2xy 5 6y 32 2xy 1 y 5 44 y 2 y1 5 m(x 2 x1) 51. 2xy 1 y 5 44 32 2 xy 5 3y m 5 } 5 23 Total Number of Number of acoustics guitars 1 electric guitars 5 number of guitars 7(6) 1 18x(6) 5 30 108x 5 212 1 x 5 2}9 x The solution is 1 2}9 , 6 2. 1 52. xy 2 x 5 14 xy 2 x 5 14 5 2 xy 5 2x 2xy 2 2x 5 25 23x 5 When x 5 23: 9 y 1 9 5 Number Number Price Price of of per per Total acoustic + acoustic 1 electric + electric 5 revenue guitars guitars guitar guitar 339 + x 5 23 x 1 479 + y 5 3611 x1y59ly592x 23y 2 (23) 5 14 339x 1 479y 5 3611 23y 1 3 5 14 When y 5 9 2 x: 23y 5 11 339x 1 479(9 2 x) 5 3611 11 y 5 2} 3 339x 1 4311 2 479x 5 3611 2140x 5 2700 . The solution is 1 23,2} 32 11 x55 When x 5 5: y5925 y54 The music store sold 5 acoustic guitars and 4 electric guitars. Algebra 2 Worked-Out Solution Key 115 Chapter 3, continued 56. Let x 5 price of adult pass and y 5 price of children’s pass. Let x 5 price of regular gasoline and y 5 price of premium gasoline. Adult Child price 5 price 12 12 y 5 Number of adult passes 378 Number Adult of + price 1 children’s passes Child + price 5 Total revenue + + x 214 1 y 2384 5 x5y12 Regular Premium Gallons Gallons + price 5 Total + price 1 of of price regular premium 11 + x 1 16 + y 5 58.55 Regular Premium 1 0.2 5 price gas y 11x 1 16y 5 58.55 y 5 x 1 0.2 378x 1 214y 5 2384 When y 5 x 1 0.2: When x 5 y 1 2: 11x 1 16(x 1 0.2) 5 58.55 378(y 1 2) 1 214y 5 2384 11x 1 16x 1 3.2 5 58.55 378y 1 756 1 214y 5 2384 27x 5 55.35 592y 5 1628 x 5 2.05 y 5 2.75 When x 5 2.05: When y 5 2.75: y 5 2.05 1 0.2 x 5 2.75 1 2 y 5 2.25 x 5 4.75 A gallon of premium gasoline costs $2.25. The cost of an adult pass is $4.75. 57. The company can fill its orders by operating Factory A for 5 weeks and Factory B for 3 weeks. Let x 5 weeks of operation at Factory A, and y 5 weeks of operation at Factory B. Wks at Factory A’s gas + Factory A mowers per wk 200 + x Wks at Factory Total # 1 B’s gas + Factory 5 of gas B mowers mowers per wk 400 1 + y 5 2200 Total # Wks at Wks at Factory Factory of Factory Factory A’s B’s 5 electric 1 electric + B electric + A mowers mowers mowers per wk per wk 100 + 1 0.2 x 5 x 300 1 200x 1 400y 5 2200 100x 1 300y 5 1400 + y 5 1400 59. Let x 5 doubles games in progress and y 5 singles games in progress. Number Number of doubles 1 of singles games games x 2200x 2 600y 5 22800 2200y 5 2600 When y 5 3: y53 200x 1 400(3) 5 2200 200x 5 1000 x55 The solution is (5, 3). Total number of games 5 26 Double Players Players + games 1 per per game game 4 + x + 2 1 Total Singles + game 5 number of players y 5 76 x 1 y 5 26 l y 5 26 2 x 4x 1 2y 5 76 When y 5 26 2 x: When x 5 12: 4x 1 2(26 2 x) 5 76 y 5 26 2 x 4x 1 52 2 2x 5 76 y 5 14 2x 5 24 200x 1 400y 5 2200 3 (22) y 1 5 x 5 12 There were 12 doubles games and 14 singles games in progress. 60. a. Let t 5 hours since 10:00 A.M. and d 5 distance traveled (miles). Martha’s 5 Martha’s + Martha’s rate time distance d 5 4 + t An equation for the distance Martha travels is d 5 4t. 116 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 58. B; Chapter 3, b. Carol’s 5 distance d continued Carol’s rate + + 6 5 Carol’s time (t 2 2) When y 5 1 2 x: When x 5 0.8: 2.8x 1 5.3(1 2 x) 5 3.3 y512x 2.8x 1 5.3 2 5.3x 5 3.3 y 5 0.2 22.5x 5 22 An equation for the distance Carol travels is d 5 6(t 2 2). x 5 0.8 One pound of mix should contain 0.8 pounds of peanuts and 0.2 pounds of cashews. c. d 5 4t d 5 6t 2 12 (0.8)100 5 80lb peanuts When d 5 4t: (0.2)100 5 20lb cashews 4t 5 6t 2 12 t56 Carol will catch up to Martha 6 hours after 10:00 A.M., or at 4:00 P.M. d. Changing starting time: Let h 5 the number of hours Carol starts after Martha. d 5 4t d 5 6(t 2 h) l d 5 6t 2 6h When t 5 5: When d 5 20 and t 5 5: d 5 4(5) 5 20 62. Let x 5 speed of the plane in calm air and y 5 speed of the wind. Plane’s speed in calm air 1 Speed of tailwind 5 x 1 y 5 Plane’s speed in calm air 20 5 6(5) 2 6h 6h 5 10 5 h 5 }3 5 Carol should start }3 hours, or 1 hour 40 minutes, after Martha. It is reasonable that Carol could change her starting time. Actual plane speed 1000 5 } 5 200 Speed of Actual plane 2 headwind 5 speed x y 2 5 500 5 } 5 100 x 1 y 5 200 l y 5 200 2 x x 2 y 5 100 Changing speed: When y 5 200 2 x: When x 5 150: Let r 5 Carol’s speed (miles per hour). x 2 (200 2 x) 5 100 y 5 200 2 x x 2 200 1 x 5 100 d 5 4t Copyright © by McDougal Littell, a division of Houghton Mifflin Company. The wholesaler should use 80 pounds of peanuts and 20 pounds of cashews for 100 pounds of mix. 2x 5 300 d 5 r(t 2 2) When t 5 5: When d 5 20 and t 5 5: d 5 4(5) 5 20 20 5 r (5 2 2) 20 2 63. Let x 5 hours the electrician worked and y 5 hours the apprentice worked. 2 Carol should run at a speed of 6 }3 miles per hour. Electrician’s Apprentice’s 145 hours hours y 145 x This is a reasonable speed. 61. Let x 5 pounds of peanuts in one pound of mix and y 5 pounds of cashews in one pound mix. Peanut Amount of Cashew Amount of Price peanuts cashews price price 5 of 1lb + 1 + in 1lb of in 1lb of per per of mix mix mix pound pound x 1 5.30 + y Amount of Amount of Total weight peanuts in 1 cashews in 5 of 1lb of mix 1lb of mix 1lb of mix x 1 y 5 2.8x 1 5.3y 5 3.3 x1y51ly512x 1 5 x 5 150 The speed of the plane in calm air was 150 mi/h, and the speed of the wind was 50 mi/h. 5 6 }3 r5} 3 2.80 + y 5 50 3.30 ApprenElectriTotal ElectriAppren+ + 1 5 earnings tice’s cian’s cian’s tice’s hours hours pay rate pay rate 50 + x 1 20 + y 5 550 y145x 50x 1 20y 5 550 When x 5 y 1 4: 50(y 1 4) 1 20y 5 550 50y 1 200 1 20y 5 550 70y 5 350 y55 The apprentice earned 20(5) 5 $100. Algebra 2 Worked-Out Solution Key 117 Chapter 3, continued 2. When y 5 5: From the graph, the lines appear to intersect at (23, 1). y x5y14 1 x59 x 21 The electrician earned 50(9) 5 $450. Mixed Review for TAKS The solution appears to be (23, 1). 64. B; 923 6 5 23 m5}5} 22 27 2(25) Choose (x1, y1) 5 (25, 3). 2x 1 y 5 25 2(23) 1 1 0 25 2x 1 3y 5 6 2(23) 1 3(1) 0 6 26 1 1 0 25 31306 y 2 y1 5 m(x 2 x1) 656 25 5 25 y 2 3 5 23(x 2 (25)) 3. 2 y 5 23x 2 15 1 3 y 5 23x 2 12 y x 21 From the graph, the lines appear to intersect at (26, 22). The y-intercept of the line shown is b 5 212. 65. G; 2x 1 6y 5 9 The solution appears to be (26, 22). 6y 5 22x 1 9 1 3 4x 1 12y 5 215 x 2 2y 5 22 3x 1 y 5 220 26 2 2(22) 0 22 26 1 4 0 22 3(26) 1 (22) 0 220 218 2 2 0 220 22 5 22 12y 5 24x 2 15 1 1 5 y 5 2}3 x 2 }4 l slope 5 2}3 4. y x 1 2y 5 6 2 The lines 2x 1 6y 5 9 and 4x 1 12y 5 215 are parallel. 220 5 220 x 66. D; 1 4x 2 5y 5 20 The graphs of the equations are parallel lines. There is no solution. The system is inconsistent. 4x 1 8y 5 8 4x 2 5(0) 5 20 x55 The ordered pair (5, 0) represents the x-intercept. 5. Quiz 3.1–3.2 (p. 167) 1. y 2 From the graph, the lines appear to intersect at (2, 5). y 5 y 5 3x 1 1 2 The graphs of the equations are parallel lines. There is no solution. The system is inconsistent. x 25x 1 3y 5 25 1 6. x 21 1 The solution appears to be (2, 5). 3x 1 y 5 11 3(2) 1 5 0 11 x 2 2y 5 28 2 2 2(5) 0 28 6 1 5 0 11 2 2 10 0 28 11 5 11 118 Algebra 2 Worked-Out Solution Key 28 5 28 21 x 2 2y 5 2 (24, 23) 2x 2 y 5 25 y x The solution is (24, 23). The system is consistent and independent. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 y 5 2}3x 1 }2 l slope 5 2}3 Chapter 3, 7. continued 13. Let x 5 cost per foot of cable and y 5 cost per 3x 2 y 5 24 connector. x 1 3y 5 228 l x 5 228 2 3y When x 5 228 2 3y: When y 5 28: 3(228 2 3y) 2 y 5 24 x 5 228 2 3(28) 284 2 9y 2 y 5 24 x 5 24 210y 5 80 y 5 28 The solution is (24, 28). x 1 5y 5 1 l x 5 1 2 5y 8. 23x 1 4y 5 16 Cost per Cost per 6 + foot of 1 2 + connector cable Cost of 6 foot 5 cable with connectors 6+ x 5 12+ Cost of 3 foot 5 cable with connectors 3+ 5 12+ x When x 5 1 2 5y: When y 5 1: 23(1 2 5y) 1 4y 5 16 x 5 1 2 5(1) 3x 1 2y 5 10.25 5 5.25 x5 1.75 6(1.75) 1 2y 5 15.50 2y 5 5 6x 1 y 5 26 l y 5 26x 2 6 y 5 2.5 4x 1 3y 5 17 4 - foot cable 5 4x 1 2y 5 When y 5 26x 2 6: When x 5 2}2 : 4x 1 3(26x 2 6) 5 17 y 5 26 1 2}2 2 2 6 4x 2 18x 2 18 5 17 5 4(1.75) 1 2(2.50) 5 12.00 5 y59 A 4 - foot cable should cost $12.00. Lesson 3.3 214x 5 35 3.3 Guided Practice (pp. 169–170) 5 x 5 2}2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 15.50 23x 2 2y 5 210.25 3 (21) When x 5 1.75: The solution is (24, 1). 1. ya3x 2 2 5 The solution is 2}2 , 9 . 2 y y > 2x 1 4 10. 2x 2 3y 5 21 1 2x 1 3y 5 219 4x 10.25 6x 1 2y 5 3x y51 1 y x 5 24 19y 5 19 9. 15.50 Cost per Cost per 3 + foot of 1 2 + connector cable 6x 1 2y 5 15.50 23 1 15y 1 4y 5 16 y x 21 5 220 x 5 25 When x 5 25: 1 2. 2x 2 } yq4 2 2(25) 2 3y 5 21 23y 5 9 y 21 4x 2 ya5 x 22 y 5 23 The solution is (25, 23). 11. 3x 2 2y 5 10 32 6x 2 4y 5 20 26x 1 4y 5 220 26x 1 4y 5 220 050 There are infinitely many solutions. 12. 2x 1 3y 5 17 3 (25) 5x 1 8y 5 20 32 3. x 1 y > 23 210x 2 15y 5 285 10x 1 16y 5 4. ya yq{x 2 5{ 26x 1 y < 1 40 y y y 5 245 When y 5 245: 2x 1 3(245) 5 17 2x 5 152 1 21 x 1 1 x x 5 76 The solution is (76, 245). Algebra 2 Worked-Out Solution Key 119