Comments
Description
Transcript
Document 1804509
Chapter 8, continued 3x(x 1 2) 3x 3x 2 1 6x 2. } 5 }} 5} x24 (x 2 4)(x 1 2) x 2 2 2x 2 8 X -2 -1 0 1 2 3 4 X=-2 Y1 ERROR .6 0 -1 -3 -9 ERROR Y2 1 .6 0 -1 -3 -9 ERROR 4x 2 2 8x x 1 3 x22 4x 2 2 8x 5. } 4 } 5 } + } x13 5x 1 15 x 2 2 5x 1 15 4x(x 2 2)(x 1 3) 4x 5 }} 5} 5 5(x 1 3)(x 2 2) X -3 -2 -1 0 1 2 3 X=-3 Y1 ERROR -1.6 -.8 0 .8 ERROR 2.4 Y2 -2.4 -1.6 -.8 0 .8 1.6 2.4 (x 1 1)(x 1 4) x11 x 2 1 5x 1 4 3. } 5 }} 5} x23 (x 1 4)(x 2 3) x 2 1 x 2 12 X -4 -3 -2 -1 0 1 2 X=-4 Y1 ERROR .33333 .2 0 -.3333 -1 -3 Y2 .42857 .33333 .2 0 -.3333 -1 -3 x 2 2 3x 2 10 x2 1 2x 2 3 6. } +} x2 1 3x 1 3 x2 1 x 2 2 (x 2 5)(x 1 2) (x 1 3)(x 2 1) (x 1 2)(x 2 1) 5 }} + }} 2 x 1 3x 1 3 (x 2 5)(x 1 2)(x 1 3)(x 2 1) (x 2 5)(x 1 3) (x 1 3x 1 3)(x 1 2)(x 2 1) x 1 3x 1 3 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 }}} 5 }} 2 2 (x 1 3)(x 2 1) x21 x13 x21 4. } +} 5 }} 5} x13 5x 2(x 1 3) 5x 2 5x 2 X -3 -2 -1 0 1 2 3 X=-3 Y1 ERROR -2.4 -.4 0 0 .8 3.6 X -2 -1 0 1 2 3 4 X=-2 Y1 ERROR -12 -5 ERROR -1.154 -.5714 -.2258 Y2 -7 -12 -5 -2.286 -1.154 -.5714 -.2258 Y2 -7.2 -2.4 -.4 0 0 .8 3.6 Lesson 8.5 8.5 Guided Practice (pp. 582–585) 5 725 2 1 7 1. } 2 } 5 } 5 } 5 } 12x 12x 12x 6x 12x 3 1 211 1 2 2. }2 1 }2 5 } 5 }2 5 }2 3x 3x 2 3x x 3x 3x x 4x 2 x 4x 3. } 2 } 5 } 5 } x22 x22 x22 x22 2(x 2 1 1) 2x 2 1 2 2 2x 2 4. } 1} 5} 5} 52 2 2 2 x 11 x 11 x2 1 1 x 11 5. 5x 3 10x 2 2 15x 5 5x(2x 2 3) LCM 5 5x 3(2x 2 3) Algebra 2 Worked-Out Solution Key 437 Chapter 8, continued 2 x 12. } 2 }13 x 6. 8x 2 16 5 8(x 2 2) 5 2 (x 2 2) 12x 2 1 12x 2 72 5 12(x 2 1 x 2 6) 2 x } 2 }13 x }24 }24 3 5 LCM 5 (23)(3)(x 1 3)(x 2 2) 5 24(x 1 3)(x 2 2) } } (x 2 3)(x 1 5) x15 x15 13. }} 5 }} + }} 1 2 1 2 } 1 } (x 2 3)(x 1 5) }1} x15 x15 x23 x23 3 7 4x 21 2 4x 1 1 4x 21 3 7. } 2 } 5 } + } 2 } + } 5 } 2 } 5 } 7 7 4x 4x 7 28x 28x 28x 4x 3(x 2 3) 5 }} 2(x 1 5) 1 x 2 3 x x 1 1 8. }2 1 } 5 }2 1 } 3x(3x 2 4) 9x 2 2 12x 3x 3x 3(x 2 3) 5 }} 2x 1 10 1 x 2 3 x 3x 2 4 x 3(x 2 3) 5 }2 + } 1} +} 3x(3x 2 4) x 3x 2 4 3x 2 4 3x (3x 2 4) x2 3x (3x 2 4) 5} 1} 2 2 2 denominator is called a complex fraction. 2. To add rational expressions with unlike denominators, 5 first find a common denominator. Then rewrite each rational expression using the common denominator. Finally, add the numerators. x13 5 }} +}1} +} (x 2 4)(x 1 3) 12 12(x 2 4) x 1 3 5 15 1 5 20 5 15 3. } 1 } 5 } 5 } 5 } 4x 4x 4x x 4x 5x 1 15 12(x 2 4)(x 1 3) 12x 12(x 2 4)(x 1 3) 5 }} 1 }} x24 4 x 4. }2 2 }2 5 } 16x 16x 2 16x 17x 1 15 5 }} 12(x 2 4)(x 1 3) 9 2 2x 2x 9 5. } 2 } 5 } x11 x11 x11 6 x11 10. } 2} x2 2 4 x 2 1 4x 1 4 3x(x 1 2) 6x 3x 2 1 6x 3x2 6. } 1 } 5 } 5 } x28 x28 x28 x28 x22 6 x12 5 }} + } 2 }} +} (x 1 2)(x 1 2) x 2 2 (x 1 2)(x 2 2) x 1 2 x2 2 x 2 2 (x 1 2) (x 2 2) 6x 1 12 (x 1 2) (x 2 2) 5 }} 2 }} 2 2 2 x 2 x 2 2 2 (6x 1 12) 5 }} 2 (x 1 2) (x 2 2) x 2 2 x 2 2 2 6x 2 12 (x 1 2) (x 2 2) 5 }} 2 2 x 2 7x 2 14 (x 1 2) (x 2 2) 5 x x }2} 6 3 } 7 x }2} 10 5 9. 3x, 3(x 2 2) LCM 5 3x(x 2 2) 10. 2x 2 4x 1 12 5 4(x 1 3) 5 22(x 1 3) LCM 5 4x 2(x 1 3) LCM 5 2x(x 2 5) 60 +} 60 10x 2 20x 5} 12x 2 42 210x 5} 12x 2 42 2(25x) 5} 2(6x 2 21) 25x 5} 6x 2 21 25x 5} 3(2x 2 7) 438 (2x 1 1)(2x 1 1) 4x 2 2 1 1 4x 2 8. } 2 } 5 } 5 }} 5 2x 1 1 2x 2 1 2x 2 1 2x 2 1 2x 2 1 11. 2x, 2x(x 2 5) 5 }} 2 x x }2} 3 6 11. } 7 x }2} 10 5 5(x 1 3) 15 5x 1 15 5x 7. } 1 } 5 } 5 } 5 5 x15 x13 x13 x13 Algebra 2 Worked-Out Solution Key 12. 24x 2 5 23(3)(x 2) 8x 2 2 16x 5 8x(x 2 2) 5 23(x)(x 2 2) LCM 5 23(3)(x2)(x 2 2) 5 24x 2(x 2 2) 13. x x25 x 2 2 25 5 (x 1 5)(x 2 5) LCM 5 x(x 1 5)(x 2 5) 14. 9x 2 2 16 5 (3x 1 4)(3x 2 4) 3x 2 2 2x 2 8 5 (3x 1 4)(x 2 2) LCM 5 (3x 1 4)(3x 2 4)(x 2 2) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 6 x11 5 }} 2 }} (x 1 2)(x 1 2) (x 1 2)(x 2 2) x11 8.5 Exercises (pp. 586–588) 1. A fraction that contains a fraction in its numerator or 5 x 12x 2 48 x 2 x 2 12 5 x 5 }} 1} (x 2 4)(x 1 3) 12(x 2 4) 9. } 1} 2 12 5} 3x 1 7 Skill Practice x 1 3x 2 4 3x (3x 2 4) 5} 2 x 2(1 2 2x) 3 3 5 (22)(3)(x 1 3)(x 2 2) 1 3x 2 2 4x x + }x 5 } 5} 2 1 3x 2 1 3x Chapter 8, continued 215x 12 12 215x 23. } 1} 5 }} 1} x24 x24 (x 2 4)(x 2 4) x2 2 8x 1 16 15. D; 3x 2 2 9x 5 3x(x 2 3) 6x 2 5 2(3)(x 2) 7 7 5 72 35 107 12 6 12 16. } 1 } 5 } + } 1 } + } 5 } 1 } 5 } 5x 6 6x 6x 5 30x 30x 30x 5x x24 12x 2 48 215x 5 }} 1 }} (x 2 4)(x 2 4) (x 2 4)(x 2 4) 5 8 5 3x 8 4 17. }2 2 } 5 }2 + } 2 } + } 4x 4x 3x 4 3x 3x 32 15x 32 2 15x 5 }2 2 }2 5 } 12x 12x 12x2 23x 2 48 (x 2 4) 5} 2 23(x 1 16) 5} 2 (x 2 4) x24 x24 12 12 x24 x 18. } 2 } 5 } + } 2 } + } 5x 5x 5(x 2 4) 5(x 2 4) x x24 2 x 2 8x 1 16 x13 x2 2 5 x13 x 25 24. } 2} 5 }} 2} 2 x 1 7 x17 (x 1 7)(x 2 2) x 1 5x 2 14 2 12x 5} 2} 5x(x 2 4) 5x(x 2 4) x2 2 5 x13 x 2 20x 1 16 5 }} 5x(x 2 4) x2 2 5 3 x2 2 5 2 (x2 1 x 2 6) 5 }} (x 1 7)(x 2 2) x18 5 }} 1} +} x23 x18 (x 1 8)(x 2 3) x2 2 5 2 x 2 2 x 1 6 5 }} (x 1 7)(x 2 2) 3x 1 24 12 5 }} 1 }} (x 1 8)(x 2 3) (x 1 8)(x 2 3) 2x 1 1 5 }} (x 1 7)(x 2 2) 3(x 1 12) 3x 1 36 5 }} 5 }} (x 1 8)(x 2 3) (x 1 8)(x 2 3) 3 1 1 3 x16 x14 20. } 2 } 5 } + } 2 } + } x16 x14 x16 x16 x14 x14 3x 1 18 x14 5 }} 2 }} (x 1 4)(x 1 6) (x 1 4)(x 1 6) x2 1 x 2 6 5 }} 2 }} (x 1 7)(x 2 2) (x 1 7)(x 2 2) 3 3 12 12 19. } 1} 5 }} 1} x23 x23 (x 1 8)(x 2 3) x 2 1 5x 2 24 12 x22 5 }} 2} +} x17 x22 (x 1 7)(x 2 2) 2 25. You must have a common denominator before you can add values in the numerator. x x12 4 x25 x x12 4 x25 x25 x25 x12 x12 }1}5}+}1}+} x 2 2 5x 4x 1 8 5 }} 1 }} (x 1 2)(x 2 5) (x 1 2)(x 2 5) 3x 1 18 2 (x 1 4) 5 }} (x 1 4)(x 1 6) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 12 215x 5 }} 1} +} x24 x24 (x 2 4)(x 2 4) LCM 5 6x2(x 2 3) x2 2 x 1 8 5 }} (x 1 2)(x 2 5) 3x 1 18 2 x 2 4 5 }} (x 1 4)(x 1 6) x2 1 4 2x x2 1 4 2x 26. C; } 2 } 5} 2 }} x14 (x 1 4)(x 2 4) x14 x 2 2 16 2x 1 14 5 }} (x 1 4)(x 1 6) 2x x24 x2 1 4 5} + } 2 }} x14 x24 (x 1 4)(x 2 4) 2(x 1 7) 5 }} (x 1 4)(x 1 6) 2x 2 2 8x 9 2x 2x 9 x23 x11 21. } 1 } 5 } + } 1 } + } x11 x23 x11 x11 x23 x23 x2 1 4 5 }} 2 }} (x 1 4)(x 2 4) (x 1 4)(x 2 4) 2x 2 2 8x 2 (x 2 1 4) 9x 1 9 2x 2 2 6x 5 }} 1 }} (x 2 3)(x 1 1) (x 2 3)(x 1 1) 5 }} (x 1 4)(x 2 4) 2x 2 1 3x 1 9 5 }} (x 2 3)(x 1 1) 5 }} (x 1 4)(x 2 4) 2x2 2 8x 2 x 2 2 4 x 2 2 8x 2 4 5 }} (x 1 4)(x 2 4) 15 15 x14 x14 22. } 2} 5 }} 2} x22 x22 (x 1 2)(x 2 2) x2 2 4 15 x14 x12 5 }} 2} +} x22 x12 (x 1 2)(x 2 2) 15x 1 30 x14 5 }} 2 }} (x 1 2)(x 2 2) (x 1 2)(x 2 2) x 1 4 2 (15x 1 30) 5 }} (x 1 2)(x 2 2) x 1 4 2 15x 2 30 5 }} (x 1 2)(x 2 2) 214x 2 26 22(7x 1 13) 5 }} 5 }} (x 1 2)(x 2 2) (x 1 2)(x 2 2) Algebra 2 Worked-Out Solution Key 439 Chapter 8, continued 3 x21 x13 30. } 2} 1} x25 x13 x2 2 25 x13 3 x21 5 }} 2} 1} x25 x13 (x 1 5)(x 2 5) x11 x 27. } 1} x2 1 6x 1 9 x2 2 9 x11 x 5 }} 1 }} (x 1 3)(x 2 3) (x 1 3)(x 1 3) x13 x11 x23 x 2 1 3x x 2 2 2x 2 3 5 }} 1 }} (x 1 3)(x 1 3)(x 2 3) (x 1 3)(x 1 3)(x 2 3) 2x 2 1 x 2 3 5 }} (x 1 3)(x 1 3)(x 2 3) x13 (2x 1 3)(x 2 1) 5 }} 2 (x 1 3) (x 2 3) 3 x25 (x 2 4)(x 2 8) 5 }} 2 }} (x 2 4)(x 1 2) x13 x25 x28 x12 5 }} + } 2 }} +} (x 2 4)(x 1 2) x 2 8 (x 2 4)(x 2 8) x 1 2 x 2 2 3x 2 10 x2 2 5x 2 24 2 }} 5 }} (x 2 4)(x 1 2)(x 2 8) (x 2 4)(x 1 2)(x 2 8) x2 2 5x 2 24 2 (x 2 2 3x 2 10) 5 }}} (x 2 4)(x 1 2)(x 2 8) 2 2 x 2 5x 2 24 2 x 1 3x 1 10 5 }}} (x 2 4)(x 1 2)(x 2 8) 22x 2 14 5 }} (x 2 4)(x 1 2)(x 2 8) 22(x 1 7) 5 }} (x 2 4)(x 1 2)(x 2 8) 5x 2 x12 29. } 1 } 1 } x 3x 2 1 x24 x 1 2 x(3x 2 1) 2 (x 2 4)(3x 2 1) 5} + } 1 }x + }} x 2 4 x(3x 2 1) (x 2 4)(3x 2 1) 5x (x 1 5)(x 2 5) (x 1 5)(x 2 5) (x 2 1)(x 2 1 8x 1 15) x 2 1 6x 1 9 5 }} 2 }} (x 1 5)(x 2 5)(x 1 3) (x 1 5)(x 2 5)(x 1 3) 3(x 2 2 25) 1 }} (x 1 5)(x 2 5)(x 1 3) x 2 1 6x 1 9 2 (x 3 1 7x 2 1 7x 2 15) 1 3x 2 2 75 (x 1 5)(x 2 5)(x 1 3) 5 }}}} x25 x13 28. } 2 }} x 2 2 12x 1 32 x2 2 2x 2 8 x13 (x 1 5)(x 1 3) (x 1 5)(x 1 3) 1} + }} x13 (2x 1 3)(x 2 1) 5 }} (x 1 3)(x 1 3)(x 2 3) x21 x13 5 }} +}2} + }} x25 (x 1 5)(x 2 5) x 1 3 x(x 2 4) x(x 2 4) 1} +} 3x 2 1 x(3x2 1 5x 2 2) 2(3x 2 2 13x 1 4) 5x 2(x 2 4) 5 }} 1 }} 1 }} x(x 2 4)(3x 2 1) x(x 2 4)(3x 2 1) x(x 2 4)(3x 2 1) 3x 3 1 5x 2 2 2x 6x 2 2 26x 1 8 5x 3 2 20x 2 5 }} 1 }} 1 }} x(x 2 4)(3x 2 1) x(x 2 4)(3x 2 1) x(x 2 4)(3x 2 1) 8x3 2 9x 2 2 28x 1 8 5 }} x(x 2 4)(3x 2 1) x 2 1 6x 1 9 2 x 3 2 7x 2 2 7x 1 15 1 3x 2 2 75 (x 1 5)(x 2 5)(x 1 3) 5 }}}} 2x 3 2 3x 2 2 x 2 51 (x 1 5)(x 2 5)(x 1 3) 5 }} x 3 31. } 4 10 1 }x 2 15 2 }x x 3 } 4 10 1 }x }26 }26 5 3x x2 2 18x x(x 2 18) +} 5} 5} 30x 1 12 6(5x 1 2) 3x 2 15 2 }x 5(15x 2 2) 75x 2 10 5x 32. } 5} +} 5} 5} x x 5x x(x 1 20) x 2 1 20x }14 }14 5 5 16 16 } } x(x 2 2)(x 1 1) x22 x22 } } 33. 5 4 + }} 6 x(x 2 2)(x 1 1) 6 4 } }1 }1} x x11 x x11 16x(x 1 1) 5 }}} 4x(x 2 2) 1 6(x 2 2)(x 1 1) 16x(x 1 1) 5 }} 2 2 4x 2 8x 1 6(x 2 x 2 2) 16x(x 1 1) 5 }} 2 2 4x 2 8x 1 6x 2 6x 2 12 16x(x 1 1) 5 }} 2 10x 2 14x 2 12 16x(x 1 1) 5 }} 2 2(5x 2 7x 2 6) 8x(x 1 1) 5 }} (5x 1 3)(x 2 2) 7 1 8x 2 20 2x 2 5 34. }} x } 2x 2 5 7 1 2x 2 5 4(2x 2 5) }} x } 2x 2 5 }2} }2} 5 7 1 }2} 2x 2 5 4(2x 2 5) 4(2x 2 5) }} 5 +} x 4(2x 2 5) } 2x 2 5 427 5} 4x 23 5} 4x 440 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 5 }} + } 1 }} +} (x 1 3)(x 2 3) x 1 3 (x 1 3)(x 1 3) x 2 3 Chapter 8, 6 3 x22 x 24 }} 35. 1 3 }1} x22 x12 }2} 2 continued 5 3 6 x22 (x 1 2)(x 2 2) }} 1 3 }1} x22 x12 5 3 6 x22 (x 1 2)(x 2 2) }} 1 3 }1} x22 x12 x2 1 3x 2 18 4 } x2 1 10x 1 24 }} 4 } 2 }} } 2 }} x 2 1 3x 2 18 4 } x 2 1 10x 1 24 }} 4 } } 5 x 2 1 3x 2 18 x 1 10x 1 24 5 }} 2 (x 1 2)(x 2 2) (x 1 2)(x 2 2) + }} (x 1 6)(x 2 3) 5 }} (x 1 6)(x 1 4) 3(x 1 2) 2 6 x23 5 }} 3(x 2 2) 1 (x 1 2) 5} x14 3x 1 6 2 6 5 }} 3x 2 6 1 x 1 2 3x 5} 4x 2 4 x 1 x x 11 38. } 5 } x }2} 21 5} 5 } x 1 3x 2 3 36. }} x14 5 }2} x11 x 2 2 3x 2 4 5} 5 } x x 1 x }2}+} 11x x } x 1 3(x 2 2 1) }} x14 5 } 2 }} (x 2 4)(x 1 1) x11 x } 5} 5 } x 5 x2 1 x 11x } 5 } x 5 x2 1 x 11x } 5 } x }2} 1 3(x 1 1)(x 2 1) }} x14 5 } 2 }} (x 2 4)(x 1 1) x11 }} 1 3(x 1 1)(x 2 1) }} x14 5 } 2 }} (x 2 4)(x 1 1) x11 }} Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 }2} 3(x 1 1)(x 2 1)(x 2 4) 3(x 1 1)(x 2 1)(x 2 4) + }} x24 15(x 2 1)(x 2 4) 2 3(x 1 4)(x 2 1) x24 15(x 2 2 5x 1 4) 2 3(x 2 1 3x 2 4) 5 }}} x24 15x 2 75x 1 60 2 3x 2 9x 1 12 5 }}} 2 2 1 1 x 2 x3 2x 3 1 x 1 1 5} 5(x 1 1) 3 2 2x x 39. } 1 2 }2 2 } x 3 1 x2 x } 3 5 3 2 2x x } 1 2 }2 2 } x3 1 x2 x } 3 x3(x 3 1 x 2) +} 3 3 2 x (x 1 x ) (3 2 2x)(x 3 1 x 2) 5 }} 3 2 3 2x(x 1 x ) 2 x x24 5 }} 12x 2 2 84x 1 72 3x 3 1 3x 2 2 2x 4 2 2x 3 5 }} 2x 4 1 2x 3 2 x 3 x24 12(x 2 7x 1 6) 5 }} 2 22x 4 1 x 3 1 3x 2 2x 1 x 5 }} 4 3 x24 12(x 2 6)(x 2 1) 5 }} x 2(22x 2 1 x 1 3) 37. Sample answer: x2 2 x 2 6 x 1 4x } x12 } x x(1 1 x) x(1 1 x) +} 5} 5(1 1 x) 5 }}} } 2 x 1 }2} 11x x } x } 2 5 x 1 }2} 1 x } x11 3x 5} 4(x 2 1) 5 4 + }4 5 }} 3 x (2x 1 1) } 5 x2 2 x 2 6 x(x 1 4) } x12 } x 22x 2 1 x 1 3 5 }} x(2x 1 1) 5 }} x(2x 1 1) 5 x2 2 x 2 6 } x(x 1 4) } x12 } x 2(2x 2 2 x 2 3) x(x 1 4) x(x 1 4) +} 2(2x 2 3)(x 1 1) 5 }} x(2x 1 1) x2 2 x 2 6 5 }} (x 1 2)(x 1 4) (x 2 3)(x 1 2) 5 }} (x 1 2)(x 1 4) x23 5} x14 Algebra 2 Worked-Out Solution Key 441 Chapter 8, continued 40. }} 5 6 } 1 3x 2 1 21 3 1 2x 2 1 x } 3 6 }1} 1 x }12 x When R1 5 2000 and R2 5 5600, 5 3 1 2x 2 1 x } 3 6 }1} x 1 1 2x 3 1 2x 2 1 x }} 3 6 x }+}1} 1 1 2x x x } The total resistance when R1 5 2000 ohms and R2 5 5600 ohms is about 1473.7 ohms. 3x22 1 (2x 2 1)21 x 12 }2 1 } R1R2 R1R2 1 1 42. Rt 5 } 5} +} 5} 1 1 1 1 R 1 R1 R R 2 1 2 }1} }1} R R R R1 }2 1 } R1R2 2 }2 1 } 5 3 1 2x 2 1 x } 3 6x }1} x 1 1 2x 3 1 2x 2 1 x } 3 6x }1} x 1 1 2x 11,200,000 11i }2 1 } }2 1 } (2000)(5600) 1 Pi Pi 43. a. M 5 }} 5} 1 1 12t } 1 2 (1 1 i)12t 1 2 1}2 x 5 2 1 5} 5} ø 1473.7 Rt 5 } R 1R 5600 1 2000 7600 } x 5 2 (1 1 i)12t Pi Pi(1 1 i)12t 5} +} 5} 12t 12t 1 12} 12t (1 1 i) 2 x (2x 2 1)(1 1 2x) + }} 2 x (2x 2 1)(1 1 2x) 3(2x 2 1)(1 1 2x) 1 x2(1 1 2x) 5 }}} 3 6x (2x 2 1) 1 3x(2x 2 1)(1 1 2x) 3(4x 2 1) 1 x 1 2x 2 2 3 5 }} 4 3 2 12x 2 6x 1 3x(4x 2 1) 12x2 2 3 1 x 2 1 2x 3 12x 2 6x 1 12x 2 3x 5 }} 4 3 3 2x 3 1 13x 2 2 3 5 }} 12x4 1 6x3 2 3x (1 1 i) (1 1 i) 21 b. When P 5 15,500, i 5 0.005, and t 5 4, Pi(1 1 i)12t 15,500(0.005)(1 1 0.005)12(4) M 5 }} 5 }}} 12t 12(4) (1 1 i) 21 (1 1 0.005) 21 48 77.5(1.005) ø 364.02 5} 48 (1.005) 2 1 Your monthly payment will be $364.02 if you borrow $15,500 at an annual interest rate of 0.5% and repay the loan over 4 years. 391t 2 1 0.112 44. a. A 5 }} 0.218t 4 1 0.991t 2 1 1 2x 3 1 13x 2 2 3 3x(4x 1 2x 2 1) (2x 1 1)(x2 1 6x 2 3) 5 }} 2 3x(2x 2 1)(2x 1 2x 1 1) Problem Solving 391(t 2 1)2 1 0.112 b. A 5 }}} 0.218(t 2 1)4 1 0.991(t 2 1)2 1 1 c. d d 41. T 5 } 1 } a2j a1j d a1j d a2j 5} +}1} +} a2j a1j a1j a2j ad 1 dj ad 2 dj 2ad 5 }} 1 }} 5 }} (a 2 j)(a 1 j) (a 1 j)(a 2 j) (a 2 j)(a 1 j) When d 5 2468, a 5 510, and j 5 115, 2ad 2(510)(2468) T 5 }} 5 }} (a 2 j)(a 1 j) (510 2 115)(510 1 115) Amount Amount Total amount of 5 after one 1 after two dose doses aspirin 391t 2 1 0.112 5 }} 0.218t 4 1 0.991t 2 1 1 391(t 2 1)2 1 0.112 1 }}} 4 2 0.218(t 2 1) 1 0.991(t 2 1) 1 1 2,517,360 5} ø 10.2. (395)(625) The total time needed to fly from New York to Los Angeles and back if d 5 2468 miles, a 5 510 miles per hour, and j 5 115 miles per hour is about 10.2 hours. d. Using the graph from part (c) and the maximum feature, you get a maximum value of about 369, which occurs when t ø 2.209. The time after the second dose has been taken is t 2 1 ø 2.209 2 1 ø 1.209. Since 0.209 3 60 ø 13, the greatest amount of aspirin is in the bloodstream about 1 hour 13 minutes after the second dose has been taken. 442 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 5 }} 3 2 Chapter 8, continued 1 45. 4th expression: 1 1 }} 1 2 1 }} 1 Mixed Review for TAKS 46. B; 21} 1 2 1 }1 a 2 1 b2 5 c 2 2 1 }2 x 2 1 (x 1 4)2 5 202 1 5th expression: 1 1 }} 1 2 x 1 x 2 18x 1 16 5 400 2 1 }} 1 2x 2 1 8x 2 384 5 0 2 1 }} 1 21} 1 } 2b 6 Ïb 2 2 4ac 2 1 }1 x 5 }} 2a 2 1 }2 1 1 2 1 }2 2 1 }2 }} 28 6 Ï82 2 4(2)(2384) 2(2) 2 1 1 }1 5 1 1 }1 + }2 5 }} } 28 6 Ï 3136 5} 4 2 2 2 511} 5 1 1 }5 5 1}5 5 1.4 411 1 1 28 6 56 5} 4 11} 5 1 1 }2 1 2 1 }1 2 1 }5 2 1 }2 x 5 12 1 5 1 1 }2 + }5 5 1 1 } 10 1 2 2 1 }5 5 12 5 12 47. G; } 5 1 1 } 5 1} 5 1.416 1 1 21} 1 21} 12 x 5 216 Because x must be positive, x 5 12. So, the length of the shorter leg is 12 centimeters. 5 5 or 3x 2 4y 5 218 5x 1 2y 5 24 35 3 23 y53 2 1 }2 1 3x 2 4y 5 218 12 12 } } 511} 5 + 12 5 1 1 24 1 5 3x 2 4(3) 5 218 21} 12 12 3x 2 12 5 218 3x 5 26 12 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 511} 5 1} ø 1.4137931 29 29 1 1 29 1 x 5 22 The solution is (22, 3). 1 29 511} 511} +} 1 1 }} 1 12 12 2 1 }} 21} 2 1 } 29 21} 1 29 2 1 }1 2 1 }2 Lesson 8.6 8.6 Guided Practice (pp. 590–592) 29 511} 58 1 12 29 2 x27 3 5x 1. }5} 511} 70 3(x 2 7) 5 2(5x) 29 5 1} ø 1.4142857 70 3x 2 21 5 10x 1 1 2 1 }} 1 21} 70 27x 2 21 5 0 511} 1 1 }} 1 29 2 1 }} 1 12 226y 5 278 1 1 }} 511} 5 1 2 1 }1 15x 2 20y 5 290 215x 2 6y 5 27x 5 21 x 5 23 21} 1 Check: 2 1 }1 2 1 }2 1 3 5(23) 21} 70 70 3 215 2 210 }0} 70 511} 511} 140 1 29 169 70 2 23 2 7 }0} 70 511} +} 29 70 1 1 2}5 5 2}5 5 1} ø 1.4142012 169 } The expressions approach Ï 2 ø 1.4142135 . . .. Algebra 2 Worked-Out Solution Key 443