Comments
Description
Transcript
Document 1804562
Chapter 9, continued 2. G; 5. D; 88.4x 2 2 49.7y 2 2 4390 5 0 Shaded area 5 88.4x2 2 49.7y2 5 4390 Area of large square 2 Area of small square 2 2 }2}ø1 28 5 4y2 2 4x2 y2 y2 88 x2 49.7 28 5 (2y) 2 (2x) So, mirror B represents a hyperbola. x2 15} 2} 7 7 y2 x2 The equation } 2} 5 1 describes the possible values of 7 7 x2 1 4y 2 5 16 6. 2 29x 2 2 36y 2 3 (29) 2 9x2 1 9x 1 y 1 8y 5 20 5 2144 y 2 1 8y 5 20 235y 2 1 8y 5 2124 x and y. 2 3. D; 35y 2 8y 2 124 5 0 The light beam originates at (0, 9) and travels towards the focus, (12, 0). 920 3 5 2}4 m5} 0 2 12 62 3 or y2250 or y52 So, the y-coordinate of the uppermost intersection point is 2. 3 y 5 2}4 x 1 9 3 An equation for the path of the light beam is y 5 2}4x 1 9. The intersection is the solution of the system: Chapter 9 Review (pp. 669–672) 1. A parabola is the set of all points in a plane equidistant from a point called the focus and a line called the directrix. 3 2. The line segment joining the two co-vertices of an ellipse 2 3. The line segment joining the two vertices of a hyperbola is y 5 2}4x 1 9 is the minor axis. y 80 } 2 } 5 1 l 5x 2 2 4y 2 5 320 by indicating how wide or narrow the hyperbola is. 2 3 5x 2 4 2}4 x 1 9 5 320 1 2 1 2 2 54 9 2 x 2} x 1 81 5 320 5x 2 4 } 4 16 2 9 5x 2 2 }4 x2 1 54x 2 324 5 320 11 4 }x 2 1 54x 2 644 5 0 11x 2 1 216x 2 2576 5 0 }} 2216 6Ï2162 2 4(11)(22576) x 5 }}} 2(11) 2216 6 400 x5} 22 x ø 8.4 or the transverse axis. 4. The asymptotes of a hyperbola help in drawing the graph 3 When y 5 2}4 x 1 9: x 5 228 Because x > 0, x ø 8.4. 3 y 5 2}4 (8.4) 1 9 5 2.7 At (8.4, 2.7), light will be reflected to the focus at (212, 0). 4. G; The vertices (66, 0) are the closest points to the origin. So, the shortest possible horizontal distance you could be from the jet when you first hear the sonic boom is 6 miles away. 5. (26, 25), (2, 23) }}} d 5 Ï(26 2 2)2 1 (25 2 (23))2 }} } } } 5 Ï(28)2 1 (22))2 5 Ï64 1 4 5 Ï68 5 2Ï17 1 26 1 2 25 1 (23) 2 24 ,} 5 1} , } 5 (22, 24) M } 2 2 2 2 2 28 6. (22, 5), (1, 9) }} d 5 Ï(22 2 1)2 1 (5 2 9)2 }} } } 5 Ï (23)2 1 (24)2 5 Ï9 1 16 5 Ï25 5 5 ,} 5 2}, 7 M 1} 2 2 2 1 2 2 22 1 1 5 1 9 1 7. (23, 24) , (2, 5) }} d 5 Ï(23 2 2)2 1 (24 2 5)2 }} } } 5 Ï (25)2 1 (29)2 5 Ï25 1 81 5 Ï106 M 1} ,} 5 2} , } 2 2 2 1 2 22 23 1 2 24 1 5 1 1 8. (2200, 40) , (30, 2140) }}} d 5 Ï(2200 2 30)2 1 (40 2 (2140))2 }} }} 5 Ï(2230)2 1 (180)2 5 Ï52,900 1 32,400 } 5 Ï 85,300 ø 292 The distance between the skydivers is about 292 yards. 528 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x 64 35y 1 62 5 0 y 5 2} 35 y 2 9 5 2}4 (x 2 0) 2 (35y 1 62)( y 2 2) 5 0 Chapter 9, continued 9. x2 5 16y 17. 3x 2 1 3y 2 5 147 y 4p 5 16 x 2 1 y 2 5 49 (0, 4) r 2 5 49 2 p54 x 2 The focus is (0, 4). y 5 24 The directrix is y 5 24. 2 (27, 0) r57 10. y 5 26x y 4p 5 26 18. (5, 9) 3 3 p 5 2}2 ( 3 22 , (5)2 1 (9)2 5 106 ) The standard form of the equation is x 2 1 y 2 5 106. 0 The focus is 1 2}2 , 0 2. 3 3 x 3 x 52 3 The directrix is x 5 }2 . 19. (28, 2) (28)2 1 (2)2 5 68 The standard form of the equation is x 2 1 y 2 5 68. The axis of symmetry is horizontal, y 5 0. 20. (27, 24) 11. x2 1 4y 5 0 (27)2 1 (24)2 5 65 y x2 5 24y 2 4p 5 24 The standard form of the equation is x 2 1 y 2 5 65. y51 3 p 5 21 21. 16x 2 1 25y 2 5 400 a 2 5 25 a55 The directrix is y 5 1. b 5 16 The axis of symmetry is vertical, x 5 0. Vertices: (5, 0) and (25, 0) 2 12. Focus: (25, 0) p 5 25 b54 y (0, 4) y2 x2 }1}51 16 25 x (0, 21) The focus is (0, 21). 1 (23, 0) (3, 0) x 21 (25, 0) (5, 0) (0, 24) Co-vertices: (0, 4) and (0, 24) The equation is y2 5 4(25)x, or y2 5 220x. c2 5 a 2 2 b2 5 25 2 16 5 9 13. Focus: (0, 3) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x (0, 27) 2 c53 p53 Foci: (3, 0) and (23, 0) 2 The form of the equation is x 5 4py. 22. 81x 2 1 9y 2 5 729 2 The equation is x 5 12y. p56 2 The form of the equation is y2 5 4px. 2 The equation is y 5 24x. 2 15. x 1 y 5 81 (0, 9) 2 r 5 81 y a59 b53 } } c 5 Ï 72 5 6Ï 2 (23, 0) 2 2 x (0, 26 2) (0, 2 x 2 1 y 2 5 40 10 ) x Foci: 1 0, 66Ï 2 2 23. 64x 2 1 36y 2 5 2304 a2 5 64 2 y (2 r 5 40 10, 0) b 5 36 a58 b56 } x 22 (0, 2 2 (26, 0) 7) (6, 0) 2 x c 2 5 64 2 36 5 28 } c 5 Ï 28 5 2Ï 7 2 r 5 Ï40 5 2Ï 10 (0, 8) y y2 x2 }1}51 64 36 } 2 (0, 29) } (9, 0) (0, 29) 2 (3, 0) 24 Co-vertices: (63, 0) 22 } a 5 81 b2 5 9 2) Vertices: (0, 69) (29, 0) x 5 40 2 y (0, 6 c 2 5 a2 2 b2 5 81 2 9 5 72 r59 2 y (0, 9) y2 x2 }1}51 81 9 14. Directrix: x 5 26 16. (7, 0) 2 The axis of symmetry is vertical, x 5 0. 2 y (0, 7) (0, 22 7) (0, 28) Vertices: (0, 68) Co-vertices: (66, 0) (22 10, 0) } (0, 22 10 ) Foci: (0, 62Ï7 ) Algebra 2 Worked-Out Solution Key 529 Chapter 9, continued 24. Vertex: (26, 0) 29. Foci: (0, 65) Vertices: (0, 62) a52 a2 5 4 c55 c2 5 25 2 2 c 5 a 1 b2 25 5 4 1 b2 b 2 5 25 2 4 5 21 Co-vertex: (0, 23) 2 a56 a 5 36 b53 b2 5 9 y2 x2 An equation is } 1} 5 1. 9 36 25. Vertex: (0, 28) y2 Focus: (0, 5) a2 5 64 30. Foci: (69, 0) c 2 5 25 c55 Vertices: (64, 0) c 2 5 a2 2 b2 2 c 5 a 1 b2 y2 x2 } 5 1. An equation is } 1 64 39 4 y2 x2 2 } 51 9 b2 5 9 2 ( 22 31. 4x2 1 9y2 1 40x 1 72y 1 208 5 0 10, 0) (1, 0) (0, 23) (21, 0) 2 c 5 a 1 b 5 1 1 9 5 10 x The conic is an ellipse because B 2 2 4AC < 0 and A Þ C. c 5 Ï10 Vertices: (61, 0) 4x2 1 9y2 1 40x 1 72y 1 208 5 0 } Foci: (6Ï 10 , 0) 4(x2 1 10x) 1 9(y2 1 8y) 5 2208 Asymptotes: y 5 63x. 27. 4x2 2 16y2 5 64 4(x2 1 10x 1 25) 1 9(y 2 1 8y 1 16) (22 y2 4 }2}51 5, 0)4 y a54 b2 5 4 b52 5 2208 1 100 1 144 (0, 2) (24, 0) a 2 5 16 4(x 1 5)2 1 9(y 1 4)2 5 36 (4, 0) (0, 22) (2 5, 0) }1}51 h 5 210, k 5 24 a2 5 9, } a53 c 5 Ï20 5 2Ï 5 b 5 4, Vertices: (64, 0) The center is (210, 24). 2 } Foci: (62Ï 5 , 0) 28. 100y 2 2 36x 2 5 3600 y2 36 x2 100 (0, 2 }2}51 a2 5 36 2 b 5 100 34 ) 8 (0, 6) x b 5 10 } } c 5 Ï136 5 2Ï 34 Vertices: (0, 66) } Foci: (0, 62Ï 34 ) 3 Asymptotes: y 5 6}5 x Algebra 2 Worked-Out Solution Key (0,22 2 (10, 0) 212 c 2 5 36 1 100 5 136 The co-vertices are 2 units above and below the center at (210, 22) and (210, 26). y (210, 0) a56 b52 The vertices are 3 units left and right of the center at (213, 24) and (27, 24). 1 Asymptotes: y 5 6}2 x 530 (y 1 4)2 4 (x 1 5)2 9 x 26 c 2 5 16 1 4 5 20 } A 5 4, B 5 0, C 5 9 B 2 2 4AC 5 0 2 4(4)(9) 5 2144 } x2 16 y2 2 x An equation is } 2} 5 1. 65 16 10, 0 ) (2 b53 2 b2 5 81 2 16 5 65 y (0, 3) a51 2 81 5 16 1 b2 26. 9x 2 2 y 2 5 9 a 51 c2 5 81 c59 b2 5 64 2 25 5 39 2 a2 5 16 a54 25 5 64 2 b2 34 ) (0, 26) (210, 22) 22 (210, 24) (27, 24) (213, 24) (210, 26) y x Copyright © by McDougal Littell, a division of Houghton Mifflin Company. a58 x2 An equation is } 2} 5 1. 21 4 Chapter 9, continued 32. y 2 2 10y 2 8x 1 1 5 0 34. x2 1 y2 1 4x 2 14y 1 17 5 0 A 5 0, B 5 0, C 5 1 A 5 1, B 5 0, C 5 1 2 B 2 2 4AC 5 0 2 4(1)(1) 5 24 B 2 4AC 5 0 2 4(0)(1) 5 0 2 The conic is a parabola because B 2 4AC 5 0. y2 2 10y 2 8x 1 1 5 0 The conic is a circle because B2 2 4AC < 0, b 5 0, and A 5 C. x2 1 y2 1 4x 2 14y 1 17 5 0 y2 2 10y 5 8x 2 1 ( y 2 5)2 5 8x 1 24 (x2 1 4x) 1 ( y2 2 14y) 5 217 (x2 1 4x 1 4) 1 ( y2 2 14y 1 49) 5 217 1 4 1 49 ( y 2 5)2 5 8(x 1 3) (x 1 2)2 1 ( y 2 7)2 5 36 y2 2 10y 1 25 5 8x 2 1 1 25 h 5 23, k 5 5 The radius is 6. The vertex is at (23, 5). h 5 22, k 5 7 4p 5 8 The center is (22, 7). y p52 The paprabola opens to the right, so the focus is 2 units to the right of the vertex at (21, 5). (22, 7) y 4 (23, 5) 2 1 35. y2 5 4x lx 5 } y2 4 x 4 2x 2 5y 5 28 33. 9x2 2 y2 2 18x 2 4y 2 5 5 0 21 }4 y2 2 2 5y 5 28 1 A 5 9, B 5 0, C 5 21 B 2 2 4AC 5 0 2 4(9)(21) 5 36 1 2 } y2 2 5y 1 8 5 0 2 The conic is a hyperbola because B 2 4AC > 0. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 9x2 2 y2 2 18x 2 4y 2 5 5 0 9(x2 2 2x) 2 (y2 1 4y) 5 5 9(x 2 2x 1 1) 2 (y2 1 4y 1 4) 5 5 1 9 2 4 2 9(x 2 1)2 2 (y 1 2)2 5 10 (y 1 2)2 }2}51 10 10 } (x 2 1)2 9 a5} 3 b2 5 10 b 5 Ï 10 x 1 y 2 14 5 0 l x 5 14 2 y } Ï10 Vertices: 16} , 22 3 y 21 10 , 22 3 ) 1 When y 5 8: x 5 }4 (8)2 5 16 36. x2 1 y2 2 100 5 0 } 1 y 5 8 or y 5 2 The solutions are (1, 2) and (16, 8). } Ï10 10 1 2 } ( y 2 8)(y 2 2) 5 0 When y 5 2: x 5 }4 (2)2 5 1 The center is at (1, 22). a2 5 } 9 1 2 } ( y2 2 10y 1 16) 5 0 1 h 5 1, k 5 22 (1 2 x 22 (21, 5) (14 2 y)2 1 y2 2 100 5 0 2 196 2 28y 1 y2 1 y2 2 100 5 0 (22 1 (1 1 10 , 22 3 (1, 22) (22 2 2y2 2 28y 1 96 5 0 10 ) 2(y2 2 14y 1 48) 5 0 ) 10 ) x 2(y 2 8)(y 2 6) 5 0 y 5 8 or y 5 6 When y 5 8: x 5 14 2 (8) 5 6 When y 5 6: x 5 14 2 (6) 5 8 The solutions are (6, 8) and (8, 6). Algebra 2 Worked-Out Solution Key 531 Chapter 9, 37. 16x2 2 4y2 continued 6. (1, 9), (10, 22) 2 64 5 0 }}} d 5 Ï(1 2 10)2 1 (9 2 (22))2 4x2 1 9y2 2 40x 1 64 5 0 36x2 2 9y2 2 2 144 5 0 }} 5 Ï (29)2 1 (11)2 2 4x 1 9y 2 40x 1 64 5 0 40x2 } } 5 Ï 81 1 12 1 5 Ï202 2 40x 2 80 5 0 1 1 1 10 9 1 (22) 2 11 7 M} ,} 5 1} ,} 2 2 22 2 40 1 x2 2 x 2 2 2 5 0 40(x 1 1)(x 2 2) 5 0 2 7. y 2 24x 5 0 x 5 21 or x 5 2 y2 5 24x When x 5 21: When x 5 2: 16(21)2 2 4y2 2 64 5 0 16(2)2 2 4y2 2 64 5 0 24y2 5 48 The conic is a parabola. 4p 5 24 24y2 5 0 y2 5 224 No real solution The solution is (2, 0). y50 p56 The focus is (6, 0). y Chapter 9 Test (p. 673) 2 1. (21, 5), (7, 3) (0, 0) (6, 0) x 22 }} d 5 Ï(21 2 7) 1 (5 2 3) 2 2 }} 5 Ï(28)2 1 (2)2 } } } 5 Ï64 1 4 5 Ï 68 5 2Ï17 1 8. x2 1 y2 5 16 } 2 21 1 7 5 1 3 M} ,} 5 (3, 4) 2 2 The conic is a circle with radius r 5 Ï16 5 4. (0, 4) y 2. (4, 2),(8, 8) }} d 5 Ï(4 2 8)2 1 (2 2 8)2 } 1 (24, 0) 21 } (4 , 0) (0, 0) x } 5 Ï16 1 36 5 Ï52 5 2Ï13 M1 } ,} 5 (6, 5) 2 2 2 418 218 (0, 24) 2 3. (21, 26), (1, 5) 9. 64y 2 x 5 64 }} d 5 Ï(21 2 1) 1 (26 2 5) 2 2 x2 y2 2 } 51 64 }} 5 Ï(22) 1 (211) 2 2 } The conic is a hyperbola. } a2 5 1 } 5 Ï4 1 121 5 Ï125 5 5Ï5 21 1 1 26 1 5 b 5 64 1 d 5 Ï(2 2 3) 1 (25 2 1) 2 2 5 Ï1 1 36 5 Ï 37 M1 } ,} 5 } , 22 2 2 2 2 12 5 }}} d 5 Ï(26 2 (23)) 1 (22 2 5) 2 2 }} 5 Ï(23)2 1 (27)2 } 5 Ï9 1 49 5 Ï 58 22 1 5 3 M} ,} 5 1 2}2 , }2 2 2 2 532 Algebra 2 Worked-Out Solution Key a 59 a53 b2 5 1 b51 Vertices: (0, 63) 5. (26, 22), (23, 5) 2 x (0, 21) b58 The conic is an ellipse. } 26 1 (23) (8, 0) 29 y2 }} 1 (28, 0) x2 1 } 51 9 5 Ï(21)2 1 (26)2 } y (0, 1) 10. 18x2 1 2y2 5 18 }} 2 1 3 25 1 1 2 Vertices: (0, 61) 4. (2, 25), (3, 1) } a51 2 M1 } ,} 5 0, 2}2 2 2 2 2 1 2 2 9 (0, 3) (21, 0) 1 y (1, 0) x 22 Co-vertices: (61, 0) (0, 23) Copyright © by McDougal Littell, a division of Houghton Mifflin Company. }} 5 Ï(24)2 1 (26)2 Chapter 9, continued 11. (x 2 6)2 1 ( y 1 1)2 5 36 } The conic is a circle with radius r 5 Ï 36 5 6 and center (6, 21). y 2 22 x (6, 21) 12. (x 1 4)2 5 6(y 2 2) h 5 24, k 5 2 ( y 2 2)2 (x 2 8)2 14. } 1 } 5 1 100 81 The conic is an ellipse. h 5 8, k 5 2 Center: (8, 2) a2 5 100 a 5 10 2 b 5 81 b59 The vertices are 10 units above and below the center at (8, 12) and (8, 28). The co-vertices are 9 units left and right of the center at (17, 2) and (21, 2). y The conic is a parabola with vertex (24, 2). The parabola opens up. (8, 12) 8 4p 5 6 (21, 2) 3 p 5 }2 (8, 2) (17, 2) Focus: 1 24, 2 1 }2 25 1 24, 3}2 2 3 1 x 22 y (8, 28) (24, ) 1 32 (24, 2) 2 1 21 (x 1 4)2 9 ( y 2 5) 15. } 2 (x 1 3)2 5 1 9 x h 5 23, k 5 5 ( y 2 7)2 49 Center: (23, 5) 13. } 2 } 5 1 The conic is a hyperbola. Copyright © by McDougal Littell, a division of Houghton Mifflin Company. h 5 24 The conic is a hyperbola. k57 a2 5 9 a53 b2 5 1 b51 (23, 5) (24, 5) (22, 5) 2 (23, 2) a2 5 9 a53 b2 5 49 16. Parabola; vertex: (0, 0); directrix: x 5 26 b57 The form of the equation is y2 5 4px p56 The vertices are 3 units left and right of the center at (27, 7) and (21, 7). y The equation is y2 5 24x. The form of the equation is (x 2 h)2 5 4p ( y 2 k). (24, 7) (21, 7) 24 x 17. Parabola; vertex: (22, 21); focus: (22, 5) (24, 14) (24, 0) 1 The vertices are 3 units above and below the center at (23, 8) and (23, 2). Center: (24, 7) (27, 7) y (23, 8) 2 x h 5 22, k 5 21 p 5 5 2 (21) 5 6 The equation is (x 1 2)2 5 24( y 1 1). 18. Circle; center: (0, 0); passes through (25, 2) x2 1 y2 5 r2 (25)2 1 (2)2 5 r2 29 5 r2 The equation is x2 1 y2 5 29. 19. Circle; center: (1, 24); radius 5 6 h 5 1, k 5 24 The equation is (x 2 1)2 1 ( y 1 4)2 5 36. Algebra 2 Worked-Out Solution Key 533 Chapter 9, continued 20. Ellipse; center: (0,0); vertex: (0, 6); co-vertex: (23, 0) y 2 2 A 5 1, B 5 0, C 5 4 x The form of the equation is }2 1 }2 5 1. a2 5 36 b53 b2 5 9 2 B2 2 4AC 5 0 2 4(1)(4) 5 216 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. x 2 1 4y2 2 6x 2 16y 1 21 5 0 y2 x The equation is } 1} 5 1. 36 9 1 x2 2 6x 2 1 4(y2 2 4y) 5 221 21. Ellipse; vertices: (21, 4) and (7, 4); foci: (1, 4) and (5, 4) 2 (x2 2 6x 1 9) 1 4( y2 2 4y 1 4) 5 221 (x 2 h) ( y 2 k) a b 1 9 1 16 (x 2 3)2 1 4( y 2 2)2 5 4 2 The form of the equation is } 1} 5 1. 2 2 (x 2 3)2 4 } 1 ( y 2 2)2 5 1 The center is the midpoint of the vertices at 25. x 2 1 y 2 1 8x 1 12y 1 3 5 0 21 1 7 4 1 4 ,} 5 (3, 4). 1} 2 2 2 A 5 1, B 5 0, C 5 1 h 5 3, k 5 4 B2 2 4AC 5 0 2 4(1)(1) 5 24 The vertices are 4 units from the center, so a 5 4 and a2 5 16. The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. The foci are 2 units from the center, so c 5 2 and c2 5 4. c2 5 a2 2 b2 x2 1 y2 1 8x 1 12y 1 3 5 0 (x2 1 8x) 1 ( y2 1 12y) 5 23 (x2 1 8x 1 16) 1 ( y2 1 12y 1 36) 5 23 1 16 1 36 2 4 5 16 2 b b2 5 16 2 4 5 12 (x 1 4)2 1 ( y 1 6)2 5 49 ( y 2 4)2 (x 2 3)2 The equation is } 1} 5 1. 12 16 26. 4x2 2 9y 2 2 40x 1 64 5 0 A 5 4, B 5 0, C 5 29 22. Hyperbola; vertices: (0, 66); foci: (0, 69) y2 B2 2 4AC 5 0 2 4(4)(29) 5 144 x2 b The form of the equation is }2 2 }2 5 1. a a56 a2 5 36 c59 c2 5 81 The conic is a hyperbola because B2 2 4AC > 0. 4x2 2 9y 2 2 40x 1 64 5 0 4(x2 2 10x) 2 9y 2 5 264 4(x2 2 10x 1 25) 2 9y 2 5 264 1 100 c2 5 a2 1 b2 4(x 2 5)2 2 9y 2 5 36 b2 5 81 2 36 5 45 y2 36 (x 2 5)2 9 x2 45 y2 4 }2}51 The equation is } 2 } 5 0. 27. y2 2 16y 2 12x 1 40 5 0 23. Hyperbola: vertex: (2, 25); focus: (21, 25); A 5 0, B 5 0, C 5 1 center: (5, 25) 2 2 (x 2 h) ( y 2 k) a b B2 2 4AC 5 0 2 4(0)(1) 5 0 2} 5 1. The form of the equation is } 2 2 The conic is a parabola because B2 2 4AC 5 0. h 5 5, k 5 25 y 2 2 16y 2 12x 1 40 5 0 y 2 2 16y 5 12x 2 40 The vertex is 3 units from the center, so a 5 3 and a2 5 9. y 2 2 16y 1 64 5 12x 2 40 1 64 The focus is 6 units from the center, so c 5 6 and c2 5 36. c2 5 a2 1 b2 36 5 9 1 b2 b2 5 36 2 9 5 27 ( y 1 5)2 (x 2 5)2 The equation is } 2} 5 1. 27 9 ( y 2 8)2 5 12x 1 24 ( y 2 8)2 5 12(x 1 2) 2 2 28. 25x 1 4y 1 50x 2 24y 2 39 5 0 A 5 25, B 5 0, C 5 4 B2 2 4AC 5 0 2 4(25)(4) 5 2400 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 25x 2 1 4y 2 1 50x 2 24y 2 39 5 0 25(x2 1 2x) 5 4( y2 2 6y) 5 39 25(x 1 2x 1 1) 1 4( y2 2 6y 1 9) 5 39 1 25 1 36 2 25(x 1 1)2 1 4( y 2 3)2 5 100 (x 1 1)2 4 ( y 2 3)2 25 }1 }51 534 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. a 5 6, a b 24. x 2 1 4y 2 2 6x 2 16y 1 21 5 0 Chapter 9, continued 29. y 2 2 16x2 1 14y 1 64x 2 31 5 0 33. Upright glass: A 5 216, B 5 0, C 5 1 B2 2 4AC 5 0 2 4(216)(1) 5 64 The conic is a hyperbola because B2 2 4AC > 0. y 2 2 16x 2 1 14y 1 64x 2 31 5 0 ( y2 1 14y) 2 16(x2 2 4) 5 31 ( y2 1 14y 1 49) 2 16(x2 2 4x 1 4) 5 31 1 49 2 64 ( y 1 7)2 2 16(x 2 2)2 5 16 ( y 1 7)2 } 2 (x 2 2)2 5 1 16 30. 4x 2 1 y 2 5 16 1 a 5 }2 (6) 5 3, a2 5 9 4x 1 (2 2 x) 5 16 (2104)2 5 4p(45) 2 5x 2 4x 2 12 5 0 10,816 5 4p(45) (5x 1 6)(x 2 2) 5 0 10,816 4p 5 } 45 5x 5 26 or x 2 2 5 0 10,816 6 An equation is x 2 5 } y. 45 x 5 2}5 or x 5 2 10,816 When x 5 2}5 : y 5 2 2 1 2}5 25 } 5 6 6 16 4p 5 } 45 2704 When x 5 2: y 5 2 2 (2) 5 0 The solutions are 1 2}5 , } and (2, 0). 52 6 16 31. x2 1 4y2 2 8y 5 4 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 3 (24) 24y 1 32x 1 8y 1 64 5 0 (x 1 2)(x 1 30) 5 0 x 5 22 or x 5 230 When x 5 22: When x 5 230: (22)2 1 4y 2 2 8y 5 4 (230)2 1 4y 2 2 8y 5 4 4y 2 8y 5 0 4y 2 2 8y 1 896 5 0 4y(y 2 2) 5 0 41 y2 2 2y 1 224 2 5 0 y 5 0 or y 5 2 22 023 23 220 2 5} 51 mXY 5 } 326 23 1 60 5 0 2 325 5} 5 21 mWX 5 } 624 2 2 No real solution The solutions are (22, 0) and (22, 2). 2 The distance from the vertex to the focus is about 60.1. 1. C; 2 8y 2 4 5 0 1 32x p5} ø 60.1 45 TAKS Practice (pp. 676–677) y2 2 2y 2 8x 2 16 5 0 x 4y2 x2 1} 5 1. An equation is } 9 9 When x 5 2104 and y 5 45: 4x 2 1 4 2 4x 1 x 2 5 16 2 9 The form of the equation is x2 5 4py. 2 x2 1 4y2 3 1 b 5 }2(3) 5 }2, b2 5 }4 34. Parabola with point (2104, 45) x1y52ly522x 2 radius 5 1.5, r2 5 2.25 An equation of the water’s surface with the glass upright is x2 1 y2 5 2.25. Tilted glass: The water’s edge forms an ellipse. 2 32. 2x 1 y 1 2x 2 5 5 0 x2 1 y2 2 2x 2 3 5 0 2y2 2850 2( y2 2 4) 5 0 y2 5 4 y 5 62 When y 5 62: (62) 2 2 x 2 1 2x 2 5 5 0 2x 2 1 2x 2 1 5 0 2(x 2 2 2x 1 1) 5 0 2(x 2 1) 2 5 0 x51 The solutions are (1, 2) and (1, 22). 5} 5 21 mYZ 5 } 123 22 522 3 5 }3 5 1 mWZ 5 } 421 } } } } So, WX and YZ are parallel and XY and WZ are parallel } because their slopes are the same. The slopes of WX and } } } } } XY are negative riciprocals, so WX > XY, XY > YZ, } } } } YZ > WZ, and WZ > WX. This means, WXYZ has 4 right angles. }} } } WX 5 Ï(6 2 4)2 1 (3 2 5)2 5 Ï22 1 (22)2 5 2Ï2 }} }} } XY 5 Ï(3 2 6)2 1 (0 2 3)2 5 Ï(23)2 1 (23)2 5 3Ï2 Because WXYZ has two pairs of parallel sides, four right angles, and adjacent sides are not congruent, it is a rectangle. 2. G; y (24, 4) (2, 4) (24, 2) (4, 1) 1 1 (22, 22) The vertices are at (2, 4), (4, 1), (1, 22), (22, 22), (24, 2), and (24, 4). x (1, 22) Algebra 2 Worked-Out Solution Key 535 Chapter 9, continued 3. B; 9. B; y The polygon has one line of symmetry. 1 3608 5 608 and the The measure of the central angle is } 6 1 measure of the bisected angle is }2(608) 5 308. To find the length of the apothem, use a special triangle. 1 x 308 4. H; When a point (x, y) is rotated 1808 about the origin, the point (x, y) is mapped onto the point (2x, 2y). So, M(21, 1) l M9(1, 21) and N(1, 3) l N9(21, 23). y x 608 4 x } So, x 5 4. The apothem is a 5 4Ï3 . 1 1 } The area of the hexagon is about 166 square units. 1 1 10. J; x M9 13 P(blue) 5 } 20 N9 Number of blue marbles 5 P(blue) + Total number of marbles Point N9 is in Quadrant III. 13 5. B; The line of symmetry passes through the points (24, 3) and (2, 23). + 100 5} 20 5 65 There are most likely 65 blue marbles in the bag. 23 2 3 26 5} 5 21 m5} 6 2 2 (4) 11. B; y 2 y1 5 m(x 2 x1) 50 2 35 15 5} 5 0.3 5 30% Percent of time saved 5 } 50 50 y 2 3 5 21(x 2 (24)) 12. H; Because c represents the vertical translation of the y 5 2x 2 1 The line of symmetry of the hexagon is y 5 2x 2 1. 6. G; parabola, c must be 0 to be on the origin. So, c 5 0. 13. Let x 5 amount invested in 3% account. Let y 5 amount invested in 5% account. 4(3 2 x) 2 3(2x2 2 9x 1 10) 5 x 1 y 5 4500 12 2 4x 2 6x2 1 27x 2 30 5 0.03x 1 0.05y 5 186 26x2 1 23x 2 18 23x 2 3y 5 213,500 3 (23) 3x 1 5y 5 18,600 3 100 2y 5 5100 7. D; The dashed line passes through the points (0, 4) and (3, 2). 224 2 5 2}3 m5} 320 1. 5x 1 24 5 11 2 2x 2 y 2 4 5 2}3 (x 2 0) 7x 5 213 13 x 5 2} 7 2 2 So, the graph represents the inequality y > 2}3x 1 4. 8. G; So, $2550 should be invested into the account that pays 5% interest anually. Cumulative Review Chs. 1–9 (pp. 678–679) y 2 y1 5 m(x 2 x1) y 5 2}3x 1 4 y 5 2550 1 24 0 11 2 21 2} Check: 51 2} 72 72 13 13 65 5x 1 3y 5 220 5x 1 3(0) 5 220 5x 5 220 x 5 24 The x-intercept is 24. Algebra 2 Worked-Out Solution Key 26 2} 1 24 0 11 1 } 7 7 103 7 103 7 }5} Copyright © by McDougal Littell, a division of Houghton Mifflin Company. Oliver saved 30% of the time by driving on the highway. y 2 3 5 2(x 1 4) 536 3 A 5 }2aP 5 }2(4Ï3 )(6)(8) ø 166.28 N M 308 2x a Chapter 9, continued 2. {4x 2 7{ 5 13 } Ïx 2 2 5 x 2 4 6. x 2 2 5 (x 2 4)2 4x 5 20 or 4x 5 26 x 2 2 5 x2 2 8x 1 16 3 x 5 5 or x 5 2}2 2 x 2 8x 1 16 2 x 1 2 5 0 Check: {4(5) 2 7{ 0 13 {41 2}2 22 7{ 0 13 {13{ 0 13 0 13 {2} 2 { x2 2 9x 1 18 5 0 3 (x 2 3)(x 2 6) 5 0 26 13 5 13 x 5 3 or x 5 6 13 5 13 Check: } 3. x2 2 12x 1 35 5 0 (x 2 7)(x 2 5) 5 0 x 5 7 or x 5 5 72 2 12(7) 1 35 0 0 49 2 84 1 35 0 0 52 2 12(5) 0 0 25 2 60 1 35 0 0 050 4. 2x2 2 5x 1 5 5 0 4x 5 8 (2 ) 2 x 050 2 (25) 6 Ï(25) 2 4(2)(5) 2x 5 3 x 5 }}} 2(2) 3 x 5 }2 } 5 6 Ï 215 5 6 iÏ15 5} x5} 4 4 Check: Check: 432 2 5 0 3 82503 } 1 5 1 iÏ15 2 1 5 1 iÏ15 2 25 5iÏ 15 5 1 5iÏ15 2} 1500 21 } 22} 4 4 8 2 2} 25 } 1500 4 4 5 4 5iÏ15 4 353 } } 25 4 } Copyright © by McDougal Littell, a division of Houghton Mifflin Company. x2 1 5x 1 6 5 3x2 1 x 2x2 2 4x 2 6 5 0 } 1 2 1 2 25 5iÏ 15 5 2 5iÏ15 1} 1500 21 } 22} 4 4 8 5 2 iÏ15 2 5 2 iÏ 15 25 } 1500 2} 4 4 2(x2 2 2x 2 3) 5 0 2(x 1 1)(x 2 3) 5 0 } } }5} (x 1 3)(x 1 2) 5 x(3x 1 1) 050 } x 5 21 or x 5 3 Check: } 5iÏ 15 25 5iÏ15 5 }2}2}1}1500 4 4 4 4 21 1 3 3(21) 1 1 2 22 x3 1 3x2 2 18x 2 40 5 0 (x 1 2)(x 1 x 2 20) 5 0 x 5 22 or x 5 25 or x 5 4 Check: 40 5 40 4 1 3(4) 2 18(4) 0 40 64 1 48 2 72 0 40 3 2 40 5 40 6 10 3 5 3 5 3 5 }0} }5} x24 x23 9. 2x 2 3 x23 }125} (x 2 3)1 } 1 (x 2 3)2 5 (x 2 3)1 } x23 2 x23 2 2x 2 3 x24 x 2 4 1 2x 2 6 5 2x 2 3 (22)3 1 3(22)2 2 18(22) 0 40 28 1 12 1 36 0 40 40 5 40 (25)3 1 3(25)2 2 18(25) 0 40 2125 1 75 1 90 0 40 21 1 21 5 21 2 3 312 }0} }0} x3 1 3x2 2 18x 5 40 (x 1 2)(x 1 5)(x 2 4) 5 0 313 3(3) 1 1 21 21 1 2 }0} 050 5. x x12 x13 3x 1 1 8. } 1 } 2 } 2 5iÏ 15 1 5 0 0 } 5 23 22x 5 23 }} } 252 7. 4 x 2 5 5 3 2 } Ï6 2 2 0 6 2 4 } Ï4 0 2 1 Þ 21 Reject x 5 3. The solution is 6. Check: } } Ï3 2 2 0 3 2 4 } Ï 1 0 21 x2750 x57 Check: 2(7) 2 3 723 724 723 }120} 3 4 11 4 }120} 11 4 11 4 }5} Algebra 2 Worked-Out Solution Key 537 Chapter 9, continued 22. f(x) 5 5(1.4x) 11. y 5 (x 1 1)2(x 2 2) 10. y 5 22x 1 7 The function is an example of exponential growth because 1.4 > 1. y y 1 x 22 The function is an example of exponential decay because 0.6 < 1. 2 x 22 } 24. f(x) 5 8e22x The function is an example of exponential decay because e22 < 1. 13. y 5 4ex 12. y 5 Ï x 1 4 1 3 23. f(x) 5 3(0.6)x y 25. 3 ln x 2 ln 5 5 ln x3 1 ln 521 x3 5 ln } 5 y 26. log3 4 1 2 log3 7 5 log3 4 1 log3 72 (24, 3) 5 log3(4)(49) 5 x 21 x 21 5 log3 196 27. 5 log x 1 log y 2 3 log z 5 log x5 1 log y 1 log z23 x5y 3x 2 1 15. y 5 } x2 2 9 14. y 5 ln(x 2 2) 5 log } 3 z y y 28. x 5 18, y 5 6 x53 x52 a 1 x 21 x 5 23 16. 2x2 2 20x 2 48 5 2(x2 2 10x 2 24) 5 2(x 1 2)(x 2 12) 17. 6x2 1 7x 2 20 5 (3x 2 4)(2x 1 5) 18. x3 1 8x2 2 4x 2 32 5 (x 1 8)(x2 2 4) 5 (x 1 8)(x 1 2)(x 2 2) 19. f (x) 5 6x 2 1 a y 5 }x 1 21 29. x 5 5, y 5 215 y 5 }x a x a 65} 18 (215) 5 }5 a 5 108 275 5 a 108 y5} x y 5 2} x 75 30. x 5 6, y 5 9 a y 5 }x a 9 5 }6 54 5 a 54 y5} x y 5 6x 2 1 (x 2 5)(3)(x 1 7) x 2 5 3x 1 21 31. } : } 5 }} x 1 7 x2 2 25 (x 1 7)(x 1 5)(x 2 5) 6x 5 y 1 1 y11 x5} 6 3 x11 Write the inverse as y 5 } . 6 x11 The inverse function is f (x) 5 } . 6 5} x15 2(x 1 4)(x 1 2)(x 2 3) x14 2x 1 8 32. } 4 } 5 }} (x 2 3)(x 1 4) x23 x2 2 x 2 6 5 2(x 1 2) 5 2x 1 4 20. f (x) 5 x3 2 5 7 x23 33. } 1 } x22 x15 3 y5x 25 x3 5 y 1 5 3} 3} Write the inverse function as y 5 Ïx 1 5 . 3} The inverse function is f (x) 5 Ï x 1 5 . 21. f (x) 5 x5 y 5 x5 x 5 y 1/5 Write the inverse function as y 5 x 1/5. The inverse function is f (x) 5 x 1/5. 538 Algebra 2 Worked-Out Solution Key (x 2 3)(x 2 2) 7(x 1 5) x2 2 5x 1 6 7x 1 35 1 }} 5 }} (x 1 5)(x 2 2) (x 1 5)(x 2 2) x 5 Ïx 1 5 1 }} 5 }} (x 1 5)(x 2 2) (x 1 5)(x 2 2) x2 1 2x 1 41 x 1 3x 2 10 5} 2 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 1 Chapter 9, continued 38. 4x2 2 16y2 2 56x 1 160y 2 268 5 0 34. (28, 5), (24, 21) A 5 4, B 5 0, C 5 216 }}} d 5 Ï(28 2 (24))2 1 (5 2 (21))2 B2 2 4AC 5 24(4)(216) 5 256 } 5 Ï(24)2 1 62 The conic is a hyperbola because B2 2 4AC > 0. } 4x2 2 16y2 2 56x 1 160y 2 268 5 0 5 Ï16 1 36 4 (x2 2 14) 2 16 ( y2 2 10y) 5 268 } 5 Ï52 4 (x2 2 14x 1 49) 2 16 ( y2 2 10y 1 25) } 5 2Ï13 1 5 268 1 196 2 400 2 1 28 1 (24) 5 1 (21) 212 4 M} ,} 5 } , }2 5 (26, 2) 2 2 2 2 2 4 (x 2 7) 2 16(y 2 5) 5 64 (y 2 5) 2 (x 2 7) 2 }2}51 4 16 35. (3, 5), (8, 7) }} 2 h 5 7, k 5 5 d 5 Ï(3 2 8)2 1 (5 2 7)2 Center: (7, 5) }} 5 Ï(25)2 1 (22) 2 a2 5 16 } 5 Ï25 1 4 a54 2 b 54 b52 c2 5 a2 1 b2 5 20 } 5 Ï29 The vertices are 4 units left and right of the center, at (3, 5) and (11, 5). M 1} ,} 5 } , 62 2 2 2 12 318 517 11 y 36. (22, 7), (1, 14) (7, 7) }} d 5 Ï(22 2 1)2 1 (7 2 14)2 (3, 5) (11,5) 4 }} 5 Ï(23)2 1 (27)2 (7, 3) } 5 Ï9 1 49 (7, 5) x 22 } 5 Ï58 1 2 1 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 22 1 1 7 1 14 1 21 M } ,} 5 2}2 , } 2 2 2 39. y2 1 6x 1 4y 1 16 5 0 2 A 5 0, B 5 0, C 5 1 The conic is a parabola because B2 2 4AC 5 0. 37. x2 1 y 2 1 12x 2 4y 1 15 5 0 y2 1 6x 1 4y 1 16 5 0 A 5 1, B 5 0, C 5 1 y2 1 4y 5 26x 2 16 B2 2 4AC 5 24 2 y 1 4y 1 4 5 26x 2 16 1 4 The conic is a circle because B2 2 4AC < 0, B 5 0, and A 5 C. x2 1 y2 1 12x 2 4y 1 15 5 0 (x (x 2 2 1 12x) 1 ( y 2 4y) 5 215 2 1 12x 1 36) 1 ( y 2 4y 1 4) 5 215 1 36 1 4 2 2 2 (x 1 6) 1 (y 2 2) 5 25 h 5 26, k 5 2 (y 1 2)2 5 26(x 1 2) h 5 22, k 5 22 Vertex: (22, 22) 4p 5 26 3 p 5 2}2 3 7 The focus is 2}2 units left of the vertex, at 1 2}2, 22 2. r2 5 25, r 5 5 y Center: (26, 2) y 6 2 (26, 2) 24 x (2 7 , 2 22 ) 2 x (22, 22) Algebra 2 Worked-Out Solution Key 539 Chapter 9, continued 40. 2x2 1 3y2 1 4x 1 12y 2 14 5 0 42. g 5 games A 5 2, B 5 0, C 5 3 r 5 rides 2 B 2 4AC 5 24(2)(3) 5 224 1.5g 1 2.5ra30 The conic is an ellipse because B2 2 4AC < 0 and A Þ C. 1.5ga30 2 2.5r ga}1 2}2 r 2 1 1 }2 5 2 2x 1 3y 1 4x 1 12y 2 14 5 0 21 x 1 2x 2 1 31 y 1 4y 2 5 14 2 2 21 x2 1 2x 1 1 2 1 31 y2 1 4y 1 4 2 5 14 1 2 1 12 An inequality representing the number of games and rides that can be purchased for $30 or less is 5 ga2}3r 1 20. 2(x 1 1)2 1 3(y 1 2)2 5 28 (y 1 2)2 (x 1 1)2 } 1 }5 1 28 14 } 3 Number of games h 5 21, k 5 22 Center: (21, 22) } a2 5 14 a 5 Ï14 } Ï 28 b2 5 } 3 28 b5 } 3 Ï 43. 14 } 3 } The vertices are Ï 14 units left and right of the center, at } } (21 2 Ï14 , 22) and (21 1 Ï14 , 22). } Ï 28 The co-vertices are } units above and below the 3 } 1 Ï 2 1 28 3 ) 4 (211 14, 22 ) (21, 22 2 28 3 5x 1 1300 2 2x 5 2500 3x 5 1200 Ï 2 28 y 22 Student Number Adult price + of adults 1 price + 5 + x 1 2 + Number Total of students 5 income (650 2 x) 5 2500 } 28 and 21, 22 2 } . center, at 21, 22 1 } 3 3 (21, 22 1 (12, 0) Number of rides } c5 The ordered pairs (rides, games) that use exactly $30 are (0, 20), (3, 15), (6, 10), (9, 5) and (12, 0). 0 2 4 6 8 10 12 14 r 14 c2 5 14 2 } 5} 3 3 (212 g 21 (0, 20) 18 15 12 9 6 3 0 c2 5 a2 2 b2 28 5 ga2}3 r 1 20 x 14, 22 ) x 5 400 There were 400 adults and 650 2 400 5 250 students at the basketball game. 44. T 5 F 0.05 0.98 (21, 22) ) M1 5 TM0 5 41. y 5 x x 5 y 1 40 M2 5 TM1 5 2x 1 2y 5 380 2( y 1 40) 1 2y 5 380 5 2y 1 80 1 2y 5 380 4y 5 300 y 5 75 M3 5 TM2 5 x 5 (75) 1 40 5 115 The width of the garden is 75 feet and the length is 115 feet. G 0.95 0.02 5 F F F F F F F G GF G G F G GF G G F G G F G G F G M0 5 700 700 0.95 0.02 700 0.05 0.98 700 665 1 14 35 1 686 679 5 721 0.95 0.02 679 0.05 0.98 721 645 1 14 34 1 707 0.95 0.02 0.05 0.98 626 1 15 33 1 726 659 5 741 5 5 659 741 641 759 The matrices M1, M2, and M3 represent the distribution of customers in company A and company B for the first three months. Each month, the total number of customers for company A is declining, while the total number of customers for company B is increasing. 540 Algebra 2 Worked-Out Solution Key Copyright © by McDougal Littell, a division of Houghton Mifflin Company. 2 Chapter 9, 2 2 12 19 18 7 { { 1 45. Area 5 6} 2 2 2 1 5 6}2 12 19 18 7 continued 1 1 1 { { 1 2 2 1 12 19 1 18 7 1 5 6}2 [(38 1 36 1 84) 2 (342 1 14 1 24)] 1 5 6}2 (2222) 49. t ln s t ln s 5.75 6.13 60 70 7.14 20 30 40 50 6.42 6.62 6.83 6.97 80 90 100 7.35 7.65 7.97 8.27 8.27 2 5.75 ø 0.025 m5} 100 2 0 ln s 2 5.75 5 0.025(t 2 0) ln s 5 0.025t 1 5.75 0.25mi 2 111 units + } ø 6.9 mi2 1 unit 1 10 The data pairs (t, ln s) lie close to a line. 5 111 2 0 2 s 5 e 0.025t 1 5.75 s 5 e5.751 e0.025 2t The area of the surface of the lake is about 6.9 square miles. 46. h 5 216t2 1 v0t 1 h0 The ball’s initial velocity is v0 5 16 feet per second. s 5 314(1.025)t An exponential model for the data pairs (t, s) is s 5 314(1.025)t. Let h 5 0 and solve for t to find the time when the ball hits the ground. 0 5 216t2 1 16t 1 9 }} 216 6 Ï(16)2 2 4(216)(9) t 5 }}} 2(216) 216 6 28.8 232 tø} t 5 1.4 or 20.4 Cumulative number of stamp designs The initial height of the ball is h0 5 9 feet. ns 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 (0, 5.75) 5.0 0 0 20 40 (100, 8.27) 60 80 100 t Years since 1904 Copyright © by McDougal Littell, a division of Houghton Mifflin Company. The ball hits the ground in about 1.4 seconds. 47. The function that gives the sale price of the television after $50 is subtracted and a 15% discount is applied is f (t) 5 0.85(t 2 50). If t 5 $480: f (t) 5 0.85(480 2 50) 5 0.85(430) 5 365.5 The sale price of the television will be $365.50. 48. p 5 4500 r 5 0.0275 n 5 12 r nt A 5 P1 1 1 }n 2 0.0275 12t A 5 45001 1 1 } 12 2 A 5 4500(1.0023)12t When t 5 5: A 5 4500(1.0023)60 ø 5165.07 The balance after 5 years will be $5165.07. Algebra 2 Worked-Out Solution Key 541